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FOREWORD 

The present book is meant as a basic text for a one-year course in algebra, 

at the graduate level. 

A perspective on algebra 

As I see it, the graduate course in algebra must primarily prepare students 

to handle the algebra which they will meet in all of mathematics: topology, 

partial differential equations, differential geometry, algebraic geometry, analysis, 

and representation theory, not to speak of algebra itself and algebraic number 

theory with all its ramifications. Hence I have inserted throughout references to 

papers and books which have appeared during the last decades, to indicate some 

of the directions in which the algebraic foundations provided by this book are 

used; I have accompanied these references with some motivating comments, to 

explain how the topics of the present book fit into the mathematics that is to 

come subsequently in various fields; and I have also mentioned some unsolved 

problems of mathematics in algebra and number theory. The abc conjecture is 

perhaps the most spectacular of these. 

Often when such comments and examples occur out of the logical order, 

especially with examples from other branches of mathematics, of necessity some 

terms may not be defined, or may be defined only later in the book. I have tried 

to help the reader not only by making cross-references within the book, but also 

by referring to other books or papers which I mention explicitly. 

I have also added a number of exercises. On the whole, I have tried to make 

the exercises complement the examples, and to give them aesthetic appeal. I 

have tried to use the exercises also to drive readers toward variations and appli¬ 

cations of the main text, as well as toward working out special cases, and as 

openings toward applications beyond this book. 

Organization 

Unfortunately, a book must be projected in a totally ordered way on the page 

axis, but that’s not the way mathematics “is”, so readers have to make choices 

how to reset certain topics in parallel for themselves, rather than in succession. 

V 



Vi FOREWORD 

I have inserted cross-references to help them do this, but different people will 

make different choices at different times depending on different circumstances. 

The book splits naturally into several parts. The first part introduces the basic 

notions of algebra. After these basic notions, the book splits in two major 

directions: the direction of algebraic equations including the Galois theory in 

Part II; and the direction of linear and multilinear algebra in Parts III and IV. 

There is some sporadic feedback between them, but their unification takes place 

at the next level of mathematics, which is suggested, for instance, in §15 of 

Chapter VI. Indeed, the study of algebraic extensions of the rationals can be 

carried out from two points of view which are complementary and interrelated: 

representing the Galois group of the algebraic closure in groups of matrices (the 

linear approach), and giving an explicit determination of the irrationalities gen¬ 

erating algebraic extensions (the equations approach). At the moment, repre¬ 

sentations in GL2 are at the center of attention from various quarters, and readers 

will see GL2 appear several times throughout the book. For instance, I have 

found it appropriate to add a section describing all irreducible characters of 

GL2(F) when F is a finite field. Ultimately, GL2 will appear as the simplest but 

typical case of groups of Lie types, occurring both in a differential context and 

over finite fields or more general arithmetic rings for arithmetic applications. 

After almost a decade since the second edition, I find that the basic topics 

of algebra have become stable, with one exception. I have added two sections 

on elimination theory, complementing the existing section on the resultant. 

Algebraic geometry having progressed in many ways, it is now sometimes return¬ 

ing to older and harder problems, such as searching for the effective construction 

of polynomials vanishing on certain algebraic sets, and the older elimination 

procedures of last century serve as an introduction to those problems. 

Except for this addition, the main topics of the book are unchanged from the 

second edition, but I have tried to improve the book in several ways. 

First, some topics have been reordered. I was informed by readers and review¬ 

ers of the tension existing between having a textbook usable for relatively inex¬ 

perienced students, and a reference book where results could easily be found in 

a systematic arrangement. I have tried to reduce this tension by moving all the 

homological algebra to a fourth part, and by integrating the commutative algebra 

with the chapter on algebraic sets and elimination theory, thus giving an intro¬ 

duction to different points of view leading toward algebraic geometry. 

The book as a text and a reference 

In teaching the course, one might wish to push into the study of algebraic 

equations through Part II, or one may choose to go first into the linear algebra 

of Parts III and IV. One semester could be devoted to each, for instance. The 

chapters have been so written as to allow maximal flexibility in this respect, and 

I have frequently committed the crime of lese-Bourbaki by repeating short argu¬ 

ments or definitions to make certain sections or chapters logically independent 

of each other. 
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Granting the material which under no circumstances can be omitted from a 

basic course, there exist several options for leading the course in various direc¬ 

tions. It is impossible to treat all of them with the same degree of thoroughness. 

The precise point at which one is willing to stop in any given direction will 

depend on time, place, and mood. However, any book with the aims of the 

present one must include a choice of topics, pushing ahead in deeper waters, 

while stopping short of full involvement. 

There can be no universal agreement on these matters, not even between the 

author and himself. Thus the concrete decisions as to what to include and what 

not to include are finally taken on grounds of general coherence and aesthetic 

balance. Anyone teaching the course will want to impress their own personality 

on the material, and may push certain topics with more vigor than I have, at the 

expense of others. Nothing in the present book is meant to inhibit this. 

Unfortunately, the goal to present a fairly comprehensive perspective on 

algebra required a substantial increase in size from the first to the second edition, 

and a moderate increase in this third edition. These increases require some 

decisions as to what to omit in a given course. 

Many shortcuts can be taken in the presentation of the topics, which 

admits many variations. For instance, one can proceed into field theory and 

Galois theory immediately after giving the basic definitions for groups, rings, 

fields, polynomials in one variable, and vector spaces. Since the Galois theory 

gives very quickly an impression of depth, this is very satisfactory in many 

respects. 

It is appropriate here to recall my original indebtedness to Artin, who first 

taught me algebra. The treatment of the basics of Galois theory is much 

influenced by the presentation in his own monograph. 

Audience and background 

As I already stated in the forewords of previous editions, the present book 

is meant for the graduate level, and I expect most of those coming to it to have 

had suitable exposure to some algebra in an undergraduate course, or to have 

appropriate mathematical maturity. I expect students taking a graduate course 

to have had some exposure to vector spaces, linear maps, matrices, and they 

will no doubt have seen polynomials at the very least in calculus courses. 

My books Undergraduate Algebra and Linear Algebra provide more than 

enough background for a graduate course. Such elementary texts bring out in 

parallel the two basic aspects of algebra, and are organized differently from the 

present book, where both aspects are deepened. Of course, some aspects of the 

linear algebra in Part III of the present book are more “elementary” than some 

aspects of Part II, which deals with Galois theory and the theory of polynomial 

equations in several variables. Because Part II has gone deeper into the study 

of algebraic equations, of necessity the parallel linear algebra occurs only later 

in the total ordering of the book. Readers should view both parts as running 

simultaneously. 
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Unfortunately, the amount of algebra which one should ideally absorb during 
this first year in order to have a proper background (irrespective of the subject 
in which one eventually specializes) exceeds the amount which can be covered 
physically by a lecturer during a one-year course. Hence more material must be 
included than can actually be handled in class. I find it essential to bring this 
material to the attention of graduate students. 

I hope that the various additions and changes make the book easier to use as 
a text. By these additions, I have tried to expand the general mathematical 
perspective of the reader, insofar as algebra relates to other parts of mathematics. 
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Logical Prerequisites 

We assume that the reader is familiar with sets, and with the symbols fl, U, 
D, C, e. If A, B are sets, we use the symbol A C B to mean that A is contained 
in B but may be equal to B. Similarly for A D B. 

If /: A -> B is a mapping of one set into another, we write 

* »-► /(*) 

to denote the effect of / on an element x of A. We distinguish between the 
arrows -► and i—►. We denote by f(A) the set of all elements/(x), with x e A. 

Let /: A -► B be a mapping (also called a map). We say that / is injective 
if x # y implies /(x) # /(y). We say / is surjective if given b e B there exists 
a e A such that /(a) = b. We say that f is bijective if it is both surjective and 
injective. 

A subset A of a set B is said to be proper if A # B. 
Let /: A -► B be a map, and A' a subset of A. The restriction of / to A' is 

a map of A' into B denoted by /1 A'. 
If f: A ^ B and g : B -* C are maps, then we have a composite map ^o/ 

such that (</ o /)(x) = g(f(x)) for all x e A. 
Let/: -► B be a map, and a subset of B. By f~\B') we mean the subset 

of A consisting of all x e A such that /(x) e B'. We call it the inverse image of 
B'. We call /(A) the image of /. 

A diagram 

C 

is said to be commutative if g 0 f = h. Similarly, a diagram 

/I—-—► B 

<p 9 

C-► D 
* 

ix 
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is said to be commutative if g © / = \j/ © <p. We deal sometimes with more 
complicated diagrams, consisting of arrows between various objects. Such 
diagrams are called commutative if, whenever it is possible to go from one 
object to another by means of two sequences of arrows, say 

A /[ > A h > . . . /"-1 v * 1 * * * An 

and 

then 

ax^b2^~ 
9m— 1 

Bm = An> 

fn-l ° °/l = 9m-1 ° ° 9l> 

in other words, the composite maps are equal. Most of our diagrams are 
composed of triangles or squares as above, and to verify that a diagram con¬ 
sisting of triangles or squares is commutative, it suffices to verify that each 
triangle and square in it is commutative. 

We assume that the reader is acquainted with the integers and rational 
numbers, denoted respectively by Z and Q. For many of our examples, we also 
assume that the reader knows the real and complex numbers, denoted, by R 
and C. 

Let A and / be two sets. By a family of elements of A, indexed by /, one 
means a map /: / -► A. Thus for each i e I we are given an element /(i) e A. 
Although a family does not differ from a map, we think of it as determining a 
collection of objects from A, and write it often as 

or 

iai} iel> 

writing instead of f(i). We call / the indexing set. 
We assume that the reader knows what an equivalence relation is. Let A 

be a set with an equivalence relation, let E be an equivalence class of elements 
of A. We sometimes try to define a map of the equivalence classes into some 
set B. To define such a map / on the class £, we sometimes first give its value 
on an element xeE (called a representative of E), and then show that it is 
independent of the choice of representative x e E. In that case we say that / 
is well defined. 

We have products of sets, say finite products A x B, or Ax x • x An, and 
products of families of sets. 

We shall use Zorn’s lemma, which we describe in Appendix 2. 
We let #(S) denote the number of elements of a set 5, also called the 

cardinality of S. The notation is usually employed when S is finite. We also 
write #(S) = card(S). 
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Part One 

THE BASIC 
OBJECTS OF 

ALGEBRA 

This part introduces the basic notions of algebra, and the main difficulty 
for the beginner is to absorb a reasonable vocabulary in a short time. None 
of the concepts is difficult, but there is an accumulation of new concepts which 
may sometimes seem heavy. 

To understand the next parts of the book, the reader needs to know 
essentially only the basic definitions of this first part. Of course, a theorem 
may be used later for some specific and isolated applications, but on the 
whole, we have avoided making long logical chains of interdependence. 





CHAPTER I 

Groups 

§1. MONOIDS 

Let S be a set. A mapping 

S x S -* S 

is sometimes called a law of composition (of S into itself). If x, y are elements of 
5, the image of the pair (x, y) under this mapping is also called their product 
under the law of composition, and will be denoted by xy. (Sometimes, we also 
write x • y, and in many cases it is also convenient to use an additive notation, 
and thus to write x + y. In that case, we call this element the sum of x and y. 
It is customary to use the notation x + y only when the relation x + y = 
y + x holds.) 

Let S be a set with a law of composition. If x, y, z are elements of S, then we 
may form their product in two ways: (xy)z and x(yz). If (xy)z = x(yz) for all 
x, y, z in S then we say that the law of composition is associative. 

An element e of S such that ex = x = xe for all xe S is called a unit 
element. (When the law of composition is written additively, the unit element 
is denoted by 0, and is called a zero element.) A unit element is unique, for if 
e' is another unit element, we have 

e = ee’ = e 

by assumption. In most cases, the unit element is written simply 1 (instead of e). 
For most of this chapter, however, we shall write e so as to avoid confusion in 
proving the most basic properties. 

A monoid is a set G, with a law of composition which is associative, and 
having a unit element (so that in particular, G is not empty). 

3 
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Let G be a monoid, and xu..., x„ elements of G (where n is an integer > 1). 
We define their product inductively: 

n 

*v = ^n (^1 * * * Xn- 
v= 1 

We then have the following rule: 

m n m + n 

n*,-n*-. = n^v, 
H=l v = 1 v = 1 

which essentially asserts that we can insert parentheses in any manner in our 

product without changing its value. The proof is easy by induction, and we shall 
leave it as an exercise. 

One also writes 

m + n n n*v instead of Yl *m + v 
m + 1 v — 1 

and we define 

o 

n *v = e. 
V = 1 

As a matter of convention, we agree also that the empty product is equal 
to the unit element. 

It would be possible to define more general laws of composition, i.e. maps 
x S3 using arbitrary sets. One can then express associativity and 

commutativity in any setting for which they make sense. For instance, for 
commutativity we need a law of composition 

f:S x S^T 

where the two sets of departure are the same. Commutativity then means 

/(*> y) = /(y» xX °r = yx if we omit the mapping / from the notation. For 
associativity, we leave it to the reader to formulate the most general combination 
of sets under which it will work. We shall meet special cases later, for instance 
arising from maps 

5 x S -► S and 5 x T -► T. 

Then a product (xy)z makes sense with xeS, yeS, and zeT. The product 
x(yz) also makes sense for such elements x, y, z and thus it makes sense to say 
that our law of composition is associative, namely to say that for all x, y, z as 
above we have (xy)z = x(yz). 

If the law of composition of G is commutative, we also say that G is com¬ 
mutative (or abelian). 
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Let G be a commutative monoid, and xu x„ elements of G. Let \j/ be a 
bijection of the set of integers (1,..., n) onto itself Then 

n n 

fk<v> = fk 
V — 1 v=1 

We prove this by induction, it being obvious for n = 1. We assume it for 
n — 1. Let k be an integer such that t^(fc) = n. Then 

n k- 1 n-k 

n x<kv> = n^v) • **(*) ’ rix*(*+v) 
i i i 

k- 1 n-k 

= rw n*. p(k + v) ‘ Xilf(k) 
1 i 

Define a map <p of (1,..., n — 1) into itself by the rule 

cpiy) = i//(v) if v < k, 

<p(v) = ij/(v +1) if v = k. 

Then 

n k- 1 n-k 

n x^(v>= n x<p(v) o x<p(fc -1+v) ■ xn 
i i i 

n- 1 

= 0 *<jp(v) ’ Xm 

1 

which, by induction, is equal to Xj • • xn9 as desired. 
Let G be a commutative monoid, let / be a set, and let /: / -► G be a 

mapping such that /(/) = e for almost all i e I. (Here and thereafter, almost 
all will mean all but a finite number.) Let 70 be the subset of 1 consisting of 
those i such that f(i) # e. By 

n/co 
ieJ 

we shall mean the product 

n/(o 
is/ o 

taken in any order (the value does not depend on the order, according to the 
preceding remark). It is understood that the empty product is equal to e. 

When G is written additively, then instead of a product sign, we write the 
sum sign X. 

There are a number of formal rules for dealing with products which it would 
be tedious to list completely. We give one example. Let /, J be two sets, and 
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/:/ x J -* G a mapping into a commutative monoid which takes the value e 
for almost all pairs (i, j). Then 

n[n /(«./) 1 = n [n /(*.»]• 
ie/ L/gJ J jeJ \_ie I J 

We leave the proof as an exercise. 

As a matter of notation, we sometimes write f] /(i), omitting the signs 
i g /, if the reference to the indexing set is clear. 

Let x be an element of a monoid G. For every integer n ^ 0 we define x" 
to be 

n 

n* 
i 

so that in particular we have x° = e, x1 = x, x2 = xx,.... We obviously have 
x(n + m) _ xnxm an(j _ xnm Furthermore, from our preceding rules of 

associativity and commutativity, if x, y are elements of G such that xy = yx, 
then (xy)” = xnyn. We leave the formal proof as an exercise. 

If S, S' are two subsets of a monoid G, then we define SS' to be the subset 
consisting of all elements xy, with x e S and y e S'. Inductively, we can define 
the product of a finite number of subsets, and we have associativity. For in¬ 
stance, if 5, S\ S" are subsets of G, then (SS')S" = S(S'S''). Observe that GG = G 
(because G has a unit element). If x e G, then we define xS to be {x}S, where 
{x} is the set consisting of the single element x. Thus xS consists of all elements 
xy, with yeS. 

By a submonoid of G, we shall mean a subset H of G containing the unit 
element e, and such that, if x, y e H then xy e H (we say that H is closed under 
the law of composition). It is then clear that H is itself a monoid, under the law 
of composition induced by that of G. 

If x is an element of a monoid G, then the subset of powers x” (n = 0, 1,...) 
is a submonoid of G. 

The set of integers ^ 0 under addition is a monoid. 
Later we shall define rings. If R is a commutative ring, we shall deal with 

multiplicative subsets 5, that is subsets containing the unit element, and such 
that if x, y e S then xy e 5. Such subsets are monoids. 

A routine example. Let N be the natural numbers, i.e. the integers ^ 0. 
Then N is an additive monoid. In some applications, it is useful to deal with a 
multiplicative version. See the definition of polynomials in Chapter II, §3, where 
a higher-dimensional version is also used for polynomials in several variables. 

An interesting example. We assume that the reader is familiar with the 
terminology of elementary topology. Let M be the set of homeomorphism 
classes of compact (connected) surfaces. We shall define an addition in M. 
Let S, S' be compact surfaces. Let D be a small disc in S, and D' a small disc in 
S'. Let C, C’ be the circles which form the boundaries of D and D' respectively. 
Let D09 D'0 be the interiors of D and D' respectively, and glue S—D0 to S'—D'0 by 
identifying C with C'. It can be shown that the resulting surface is independent, 
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up to homeomorphism, of the various choices made in the preceding construc¬ 
tion. If cr, o' denote the homeomorphism classes of S and S' respectively, we 
define cr + cr' to be the class of the surface obtained by the preceding gluing 
process. It can be shown that this addition defines a monoid structure on M, 
whose unit element is the class of the ordinary 2-sphere. Furthermore, if r 
denotes the class of the torus, and n denotes the class of the projective plane, 
then every element cr of M has a unique expression of the form 

cr = m + mn 

where n is an integer ^ 0 and m = 0, 1, or 2. We have 3n = % -F n. 
(The reasons for inserting the preceding example are twofold: First to 

relieve the essential dullness of the section. Second to show the reader that 
monoids exist in nature. Needless to say, the example will not be used in any 
way throughout the rest of the book.) 

Still other examples. At the end of Chapter III, §4, we shall remark that 
isomorphism classes of modules over a ring form a monoid under the direct sum. 
In Chapter XV, § 1, we shall consider a monoid consisting of equivalence classes 
of quadratic forms. 

§2. GROUPS 

A group G is a monoid, such that for every element xeG there exists an 
element yeG such that xy = yx = e. Such an element y is called an inverse for 
x. Such an inverse is unique, because if y' is also an inverse for x, then 

/ = y'e = y'(xy) = (y'x)y = ey = y. 

We denote this inverse by x~l (or by — x when the law of composition is 
written additively). 

For any positive integer n, we let x~n = (x-1)”. Then the usual rules for 
exponentiation hold for all integers, not only for integers ^ 0 (as we pointed out 
for monoids in §1). The trivial proofs are left to the reader. 

In the definitions of unit elements and inverses, we could also define left 
units and left inverses (in the obvious way). One can easily prove that these 
are also units and inverses respectively under suitable conditions. Namely: 

Let G be a set with an associative law of composition, let e be a left unit for 
that law, and assume that every element has a left inverse. Then e is a unit, 
and each left inverse is also an inverse. In particular, G is a group. 

To prove this, let a e G and let b e G be such that ba = e. Then 

bab = eb = b. 

Multiplying on the left by a left inverse for b yields 

ab = e, 

or in other words, b is also a right inverse for a. One sees also that a is a left 
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inverse for b. Furthermore, 

ae = aba = ea = a, 

whence e is a right unit. 

Example. Let G be a group and S a nonempty set. The set of maps Af(S, G) 
is itself a group; namely for two maps /, g of S into G we define fg to be the 
map such that 

(fg)(x) = f(x)g(x), 

and we define/-1 to be the map such that/-1(x) = f(x)~ l. It is then trivial 
to verify that Af(S, G) is a group. If G is commutative, so is M(S, G), and when 
the law of composition in G is written additively, so is the law of composition 
in Af(S, G), so that we would write f + g instead of fg, and —/ instead of /“ L 

Example. Let 5 be a non-empty set. Let G be the set of bijective mappings 
of S onto itself. Then G is a group, the law of composition being ordinary com¬ 
position of mappings. The unit element of G is the identity map of S, and the 
other group properties are trivially verified. The elements of G are called 
permutations of S. We also denote G by Perm(S). For more information on 
Perm(S) when S is finite, see §5 below. 

Example. Let us assume here the basic notions of linear algebra. Let k be 
a field and V a vector space over k. Let GL(V) denote the set of invertible k- 
linear maps of V onto itself. Then GL(V) is a group under composition of 
mappings. Similarly, let k be a field and let GL(n, k) be the set of invertible 
n X n matrices with components in k. Then GL(n, k) is a group under the 
multiplication of matrices. For n ^ 2, this group is not commutative. 

Example. The group of automorphisms. We recommend that the reader 
now refer immediately to §11, where the notion of a category is defined, and 
where several examples are given. For any object A in a category, its auto¬ 
morphisms form a group denoted by Aut(A). Permutations of a set and the linear 
automorphisms of a vector space are merely examples of this more general 
structure. 

Example. The set of rational numbers forms a group under addition. The 
set of non-zero rational numbers forms a group under multiplication. Similar 
statements hold for the real and complex numbers. 

Example. Cyclic groups. The integers Z form an additive group. A group 
is defined to be cyclic if there exists an element a e G such that every element 
of G (written multiplicatively) is of the form an for some integer n. If G is written 
additively, then every element of a cyclic group is of the form na. One calls a 
a cyclic generator. Thus Z is an additive cyclic group with generator 1, and 
also with generator -1. There are no other generators. Given a positive integer 
n, the n-th roots of unity in the complex numbers form a cyclic group of order 
n. In terms of the usual notation, e2irlfn is a generator for this group. So is e2nir/n 
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with r e Z and r prime to n. A generator for this group is called a primitive 
n-th root of unity. 

Example. The direct product. Let G,, G2 be groups. Let Gx x G2 be 
the direct product as sets, so Gl x G2 is the set of all pairs (xu x2) with 
xz e Gz. We define the product componentwise by 

(•*1. *2)01. >2) = UiJi. x2y2). 

Then Gl x G2 is a group, whose unit element is (e1? e2) (where ez is the unit 
element of Gz). Similarly, for n groups we define Gj x • • • x Gn to be the set 
of n-tuples with xz- e Gz (i = 1, ... , n), and componentwise multiplication. 
Even more generally, let / be a set, and for each i e /, let Gz be a group. Let 
G = fl G, be the set-theoretic product of the sets Gz. Then G is the set of all 
families (xz)ze/ with xz e Gz. We can define a group structure on G by compo¬ 
nentwise multiplication, namely, if (xz)ze/ and (yz)ze/ are two elements of G, we 
define their product to be (xzyz)/e/. We define the inverse of (xz)ze/ to be (jcf“1 )fe/. 
It is then obvious that G is a group called the direct product of the family. 

Let G be a group. A subgroup H of G is a subset of G containing the unit 
element, and such that H is closed under the law of composition and inverse 
(i.e. it is a submonoid, such that if xe H then x~1 e H). A subgroup is called 
trivial if it consists of the unit element alone. The intersection of an arbitrary 
non-empty family of subgroups is a subgroup (trivial verification). 

Let G be a group and S a subset of G. We shall say that S generates G, 
or that S is a set of generators for G, if every element of G can be expressed as a 
product of elements of S or inverses of elements of 5, i.e. as a product xt • • • xn 
where each xt or xt~1 is in S. It is clear that the set of all such products is a 
subgroup of G (the empty product is the unit element), and is the smallest sub¬ 
group of G containing 5. Thus 5 generates G if and only if the smallest subgroup 
of G containing S is G itself. If G is generated by 5, then we write G = (S). By 
definition, a cyclic group is a group which has one generator. Given elements 
jcj, ... ,jfflsG, these elements generate a subgroup (xj, . . . , xn), namely the 
set of all elements of G of the form 

xkil ' * * xwith &!,..., kre Z. 

A single element xeG generates a cyclic subgroup. 

Example. There are two non-abelian groups of order 8. One is the group 
of symmetries of the square, generated by two elements o\ r such that 

(T4 = t2 = e and tot-1 = cr3. 

The other is the quaternion group, generated by two elements, i, j such that 
if we put k = ij and m = i2, then 

i4 = j4 = k4 = e, i2 = j2 = k2 = m, ij = mji. 

After you know enough facts about groups, you can easily do Exercise 35. 
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Let G, G' be monoids. A monoid-homomorphism (or simply homomorphism) 
of G into G' is a mapping/: G -> G' such that /(xy) = /(x)/(y) for all x, y e G, 
and mapping the unit element of G into that of G'. If G, G' are groups, a group- 
homomorphism of G into G' is simply a monoid-homomorphism. 

We sometimes say: “Let/:G -► G' be a group-homomorphism” to mean: 
“Let G, G' be groups, and let/be a homomorphism from G into G.” 

Let/: G -► G' be a group-homomorphism. Then 

/(x"1)=/(x)-1 

because if c, e' are the unit elements of G, G' respectively, then 

e' =/(e) = /(xx-1) =/(x)/(x-1)- 

Furthermore, if G, G' are groups and/: G -► G' is a map such that 

/(xy) = /(x)/(y) 

for all x, y in G, then /(c) = c' because /(cc) = /(c) and also = f(e)/(c). 
Multiplying by the inverse off(e) shows that f(e) = e'. 

Let G, G' be monoids. A homomorphism /: G -► G' is called an isomorphism 
if there exists a homomorphism g.G' -> G such that / ° g and g of are the 
identity mappings (in G' and G respectively). It is trivially verified that / is 
an isomorphism if and only if / is bijective. The existence of an isomorphism 
between two groups G and G' is sometimes denoted by G « G'. If G = G', 
we say that isomorphism is an automorphism. A homomorphism of G into 
itself is also called an endomorphism. 

Example. Let G be a monoid and x an element of G. Let N denote the 
(additive) monoid of integers ^ 0. Then the map/: N -► G such that/(n) = x” 
is a homomorphism. If G is a group, we can extend/to a homomorphism of Z 
into G (xw is defined for all ne Z, as pointed out previously). The trivial proofs 
are left to the reader. 

Let n be a fixed integer and let G be a commutative group. Then one verifies 
easily that the map 

x I—► x" 

from G into itself is a homomorphism. So is the map xi—►x”1. The map 
x i—► x" is called the n-th power map. 

Example. Let / = {/} be an indexing set, and let {Gj be a family of groups. 
Let G = \\Gi be their direct product. Let 

Pi: G Gi 

be the projection on the i-th factor. Then pt is a homomorphism. 

Let G be a group, S a set of generators for G, and G' another group. Let 
f:S^>G' be a map. If there exists a homomorphism f of G into G' whose 
restriction to S is f then there is only one. 
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In other words, / has at most one extension to a homomorphism of G 
into G'. This is obvious, but will be used many times in the sequel. 

Let f :G-+G' and g :G' -* G" be two group-homomorphisms. Then the 
composite map # o/is a group-homomorphism. Iff g are isomorphisms then 
so is g o f Furthermore /"1: G' -* G is also an isomorphism. In particular, 
the set of all automorphisms of G is itself a group, denoted by Aut(G). 

Let f:G -* G' be a group-homomorphism. Let e, e' be the respective unit 
elements of G, G'. We define the kernel of / to be the subset of G consisting 
of all x such that /(x) = e'. From the definitions, it follows at once that the 
kernel H of / is a subgroup of G. (Let us prove for instance that H is closed 
under the inverse mapping. Let xe H. Then 

f(x-1)f(x)=f(e) = e\ 

Since /(x) = e\ we have /(x_1) = e\ whence x”1 eH. We leave the other 
verifications to the reader.) 

Let /: G -► G' be a group-homomorphism again. Let H' be the image of/. 
Then H' is a subgroup of G', because it contains e\ and if/(x),/(y) e H\ then 
/(xy) = f{x)f(y) lies also in H'. Furthermore,/(x"*) = /(x)_1 is in H\ and 
hence Hf is a subgroup of G'. 

The kernel and image of/are sometimes denoted by Ker/and Im f 
A homomorphism /: G -► G' which establishes an isomorphism between 

G and its image in G' will also be called an embedding. 

A homomorphism whose kernel is trivial is injective. 

To prove this, suppose that the kernel of /is trivial, and let/(x) = f(y) for 
some x, y e G. Multiplying by f(y~ !) we obtain 

fixy'1) =/W/0;_1) = *'• 
Hence xy~1 lies in the kernel, hence xy“1 = e, and x = y. If in particular /is 
also surjective, then / is an isomorphism. Thus a surjective homomorphism 
whose kernel is trivial must be an isomorphism. We note that an injective 
homomorphism is an embedding. 

An injective homomorphism is often denoted by a special arrow, such as 

/: G <=^G'. 

There is a useful criterion for a group to be a direct product of subgroups: 

Proposition 2.1. Let G be a group and let H, K be two subgroups such that 
H n K = e, HK = G, and such that xy = yxfor all xeH and yeK. Then 
the map 

H x K-G 

such that (x, y) > xy is an isomorphism. 

Proof. It is obviously a homomorphism, which is surjective since HK = G. 
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If (x, y) is in its kernel, then x = y \ whence x lies in both H and K, and x = e, 
so that y = e also, and our map is an isomorphism. 

We observe that Proposition 2.1 generalizes by induction to a finite number 
of subgroups Hu... 9 Hn whose elements commute with each other, such that 

Hl-Hn = G, 

and such that 

In that case, G is isomorphic to the direct product 

Hj x .. x Hn. 

Let G be a group and H a subgroup. A left coset of H in G is a subset of 
G of type aH, for some element a of G. An element of aH is called a coset 
representative of aH. The map x t-> ax induces a bijection of H onto aH. 

Hence any two left cosets have the same cardinality. 
Observe that if a, b are elements of G and aH, bH are cosets having one 

element in common, then they are equal. Indeed, let ax = by with x, ye H. 

Then a = byx~l. But yx_1 eH. Hence aH = b(yx~l)H = bH, because for 
any zeH we have zH = H. 

We conclude that G is the disjoint union of the left cosets of H. A similar 
remark applies to right cosets (i.e. subsets of G of type Ha). The number of left 
cosets of H in G is denoted by (G : H), and is called the (left) index of H in G. 
The index of the trivial subgroup is called the order of G and is written (G: 1). 
From the above conclusion, we get: 

Proposition 2.2. Let G be a group and H a subgroup. Then 

(G: H)(H: 1) = (G: 1), 

in the sense that if two of these indices are finite, so is the third and equality 

holds as stated. If (G : 1) is finite, the order of H divides the order of G. 

More generally, let H, K be subgroups of G and let H => K. Let {xj be a 

set of (left) coset representatives of K in H and let {yj} be a set of coset repre¬ 

sentatives of H in G. Then we contend that {y^x, } is a set of coset representa¬ 
tives of K in G. 

Proof. Note that 

H = (J x(K (disjoint), 
i 

G = U yjH (disjoint). 
j 

Hence 
c = U yjX,K. 

i'j 

We must show that this union is disjoint, i.e. that the y^x, represent distinct 
cosets. Suppose 
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yjXiK = yrxvK 

for a pair of indices (J, i) and (/, i). Multiplying by H on the right, and noting 
that x, , xv are in H, we get 

yjH = yrH, 

whence y} = yr. From this it follows that xtK = xrK and therefore that 
x, = xr, as was to be shown. 

The formula of Proposition 2.2 may therefore be generalized by writing 

(G : K) = (G : H)(H : K), 

with the understanding that if two of the three indices appearing in this formula 
are finite, then so is the third and the formula holds. 

The above results are concerned systematically with left cosets. For the right 
cosets, see Exercise 10. 

Example. A group of prime order is cyclic. Indeed, let G have order p and 
let a e G, a =£ e. Let H be the subgroup generated by a. Then #(//) divides p 

and is ± 1, so #(H) = p and so H = G, which is therefore cyclic. 

Example. Let Jn = {1, ... , n}. Let Sn be the group of permutations of 
Jn. We define a transposition to be a permutation r such that there exist 
two elements r ± s in Jn for which r(r) = 5, 7(5) = r, and r(k) = k for all 
k ± r, s. Note that the transpositions generate Sn. Indeed, say a is a permutation, 
a(n) = k ± n. Let r be the transposition interchanging k, n. Then to-leaves n 

fixed, and by induction, we can write tct as a product of transpositions in 
PermC/*-!), thus proving that transpositions generate Sn. 

Next we note that #(Sn) = nl. Indeed, let H be the subgroup of Sn consisting 
of those elements which leave n fixed. Then H may be identified with Sn-i. If 
07 (/ = 1, .. . , n) is an element of Sn such that v^ri) = i, then it is immediately 
verified that 07, ... , vn are coset representatives of H. Hence by induction 

(Sn : 1) = n(H : 1) = nl. 

Observe that for vi we could have taken the transposition 77, which interchanges 
i and n (except for i = n, where we could take an to be the identity). 

§3. NORMAL SUBGROUPS 

We have already observed that the kernel of a group-homomorphism is a 
subgroup. We now wish to characterize such subgroups. 

Let/: G -► G' be a group-homomorphism, and let H be its kernel. If x is an 
element of G, then xH = Hx, because both are equal to /_1(/(x)). We can 
also rewrite this relation as xHx~1 = H. 
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Conversely, let G be a group, and let H be a subgroup. Assume that for all 
elements x of G we have xH c Hx (or equivalently, xHx~l c= H). If we 
write x_1 instead of x, we get H c x//x_1, whence xHx~1 = H. Thus our 
condition is equivalent to the condition xHx~1 = H for all x e G. A subgroup 
//satisfying this condition will be called normal. We shall now see that a normal 
subgroup is the kernel of a homomorphism. 

Let G' be the set of cosets of H. (By assumption, a left coset is equal to a right 
coset, so we need not distinguish between them.) If xH and yH are cosets, then 
their product (xH)(yH) is also a coset, because 

xHyH = xyHH = xyH. 

By means of this product, we have therefore defined a law of composition on G' 
which is associative. It is clear that the coset H itself is a unit element for this 
law of composition, and that x" 1H is an inverse for the coset xH. Hence G' is a 
group. 

Let f :G-+G' be the mapping such that /(x) is the coset xH. Then / is 
clearly a homomorphism, and (the subgroup) H is contained in its kernel. If 
f{x) = //, then xH = H. Since H contains the unit element, it follows that 
x g H. Thus H is equal to the kernel, and we have obtained our desired homo¬ 
morphism. 

The group of cosets of a normal subgroup H is denoted by G/H (which we 
read G modulo //, or G mod H). The map/ of G onto G/H constructed above 
is called the canonical map, and G/H is called the factor group of G by H. 

Remarks 

1. Let {Hi}ieI be a family of normal subgroups of G. Then the subgroup 

h=n Hi 
i g / 

is a normal subgroup. Indeed, if ye H, and xeG, then xyx~1 lies in each Ht, 
whence in H. 

2. Let S be a subset of G and let N = Ns be the set of all elements xeG 
such that xSx-1 = S. Then N is obviously a subgroup of G, called the 
normalizer of S’. If S consists of one element a> then N is also called the 
centralizer of a. More generally, let Zs be the set of all elements xeG such that 
xyx~l = jforall^e S. Then Zs is called the centralizer of S. The centralizer 
of G itself is called the center of G. It is the subgroup of G consisting of all 
elements of G commuting with all other elements, and is obviously a normal 
subgroup of G. 

Examples. We shall give more examples of normal subgroups later when 
we have more theorems to prove the normality. Here we give only two examples. 

First, from linear algebra, note that the determinant is a homomorphism from 
the multiplicative group of square matrices into the multiplicative group of a 
field. The kernel is called the special linear group, and is normal. 
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Second, let G be the set of all maps Tab: R R such that 
Tab{x) = ax + b, with a 0 and b arbitrary. Then G is a group under composition 
of mappings. Let A be the multiplicative group of maps of the form Ta 0 (iso¬ 
morphic to R*, the non-zero elements of R), and let N be the group of translations 
Tx b with be R. Then the reader will verify at once that Tah a is a homo¬ 
morphism of G onto the multiplicative group, whose kernel is the group of 
translations, which is therefore normal. Furthermore, we have G = AN = NA, 
and N fl A = {id}. In the terminology of Exercise 12, G is the semidirect 
product of A and N. 

Let H be a subgroup of G. Then H is obviously a normal subgroup of its 
normalizer NH. We leave the following statements as exercises: 

If K is any subgroup of G containing H and such that H is normal in K, then 
K a Nh. 

If K is a subgroup of NH, then KH is a group and H is normal in KH. 
The normalizer of H is the largest subgroup of G in which H is normal. 

Let G be a group and H a normal subgroup. Let x,yeG. We shall write 

x = y (mod H) 

if x and y lie in the same coset of H, or equivalently if xy~1 (or y~ lx) lie in H. 
We read this relation “x and y are congruent modulo //.” 

When G is an additive group, then 

x = 0 (mod H) 

means that x lies in //, and 
x = y (mod H) 

means that x — y (or y — x) lies in H. This notation of congruence is used 
mostly for additive groups. 

be a sequence of homomorphisms. We shall say that this sequence is exact if 
Im/ = Ker g. For example, if H is a normal subgroup of G then the sequence 

H-i+G^G/H 

is exact (where j = inclusion and cp = canonical map). A sequence of homo¬ 
morphisms having more than one term, like 

Gf 1 /—' J~ 2 /“■ f n - 1 
l -► o2 -*• (j3 -+-* <j„, 

is called exact if it is exact at each joint, i.e. if. 

Im fi = Ker fi+, 

for each i = 1,..., n — 2. For example to say that 

0 -► G' 4 G 4 G" -> 0 
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is exact means that/ is injective, that Im/ = Ker g, and that g is surjective. If 
H = Ker g then this sequence is essentially the same as the exact sequence 

0 - H - G - G/H - 0. 

More precisely, there exists a commutative diagram 

0-►G'—-—♦ G ——♦ G"-♦ 0 

0-* H-* G-► G/H-♦ 0 

in which the vertical maps are isomorphisms, and the rows are exact. 
Next we describe some homomorphisms, all of which are called canonical. 
(i) Let G, G' be groups and /: G -> G' a homomorphism whose kernel 

is H. Let cp: G -► G/H be the canonical map. Then there exists a unique 
homomorphism/* : G/H -> G' such that f = f*° (p, and /* is injective. 

To define /*, let xH be a coset of H. Since f(xy) = /(x) for all yeH, we 
define fJixH) to be /(x). This value is independent of the choice of coset 
representative x, and it is then trivially verified that /* is a homomorphism, is 
injective, and is the unique homomorphism satisfying our requirements. We 
shall say that /* is induced by / 

Our homomorphism/* induces an isomorphism 

X: G/H -► Im/ 

of G//f onto the image off and thus/can be factored into the following succes¬ 
sion of homomorphisms: 

G^G/H 4 Im/4 G'. 

Here, j is the inclusion of Im / in G'. 
(ii) Let G be a group and H a subgroup. Let N be the intersection of all 

normal subgroups containing H. Then N is normal, and hence is the smallest 
normal subgroup of G containing H. Let/: G -> G' be a homomorphism whose 
kernel contains H. Then the kernel of/ contains N, and there exists a unique 
homomorphism /* : G//V G', said to be induced by /, making the following 
diagram commutative: 

G/N 
As before, <p is the canonical map. 

We can define/* as in (1) by the rule 

U*N) =/(x). 

This is well defined, and is trivially verified to satisfy all our requirements. 
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(iii) Let G be group and H z> K two normal subgroups of G. Then K is normal 
in //, and we can define a map of G/K onto G/H by associating with each coset 
xK the coset xH. It is immediately verified that this map is a homomorphism, 
and that its kernel consists of all cosets xK such that x e //. Thus we have a 
canonical isomorphism 

0G/K)/(H/K) % G/H. 

One could also describe this isomorphism using (i) and (ii). We leave it to the 
reader to show that we have a commutative diagram 

0 -> H -> G -> G/H 

can can id 

0-> H/K-► G/K-> G/H 

0 

0 

where the rows are exact. 
(iv) Let G be a group and let H, K be two subgroups. Assume that H 

is contained in the normalizer of K. Then H n K is obviously a normal 
subgroup of H, and equally obviously HK = KH is a subgroup of G. There 
is a surjective homomorphism 

H - HK/K 

associating with each x e H the coset xK of K in the group HK. The reader 
will verify at once that the kernel of this homomorphism is exactly H n K. 
Thus we have a canonical isomorphism 

H/(H n K) % HK/K. 

(v) Let /: G -> G' be a group homomorphism, let H' be a normal sub¬ 
group of G', and let H = f~\H'). 

G-► G' 

rxm—>h’ 
Then/ “ 1{H’) is normal in G. [Proof: If x e G, then/(xHx~ l) =f(x)f (H) f(x)~1 
is contained in H\ so xHx~1 c= //.] We then obtain a homomorphism 

G - G' -+ G /H' 

composing / with the canonical map of G' onto G'/H', and the kernel of this 
composite is H. Hence we get an injective homomorphism 

j ' G/H -+ G /H' 
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again called canonical, giving rise to the commutative diagram 

If /is surjective, then/is an isomorphism. 
We shall now describe some applications of our homomorphism statements. 
Let G be a group. A sequence of subgroups 

G = G0 ==> Gt => G2 => • => Gm 

is called a tower of subgroups. The tower is said to be normal if each Gi+ x is 
normal in G;(i = 0,... , m — 1). It is said to be abelian (resp. cyclic) if it is 
normal and if each factor group G,/Gi+ x is abelian (resp. cyclic). 

Let/: G -> G' be a homomorphism and let 

G' = G'0 d Gi d • • o G'm 

be a normal tower in G'. Let G, = f~\G'i). Then the G, (i = 0,..., m) form a 
normal tower. If the G\ form an abelian tower (resp. cyclic tower) then the G, 
form an abelian tower (resp. cyclic tower), because we have an injective homo¬ 
morphism 

g,/gi+1 - g;/g;+1 

for each i, and because a subgroup of an abelian group (resp. a cyclic group) is 
abelian (resp. cyclic). 

A refinement of a tower 

G = G0 => Gj =>•••=> Gm 

is a tower which can be obtained by inserting a finite number of subgroups in 
the given tower. A group is said to be solvable if it has an abelian tower, whose 
last element is the trivial subgroup (i.e. Gm = {e} in the above notation). 

Proposition 3.1. Let G be a finite group. An abelian tower of G admits a 
cyclic refinement. Let G be a finite solvable group. Then G admits a cyclic 
tower, whose last element is {e}. 

Proof. The second assertion is an immediate consequence of the first, and 
it clearly suffices to prove that if G is finite, abelian, then G admits a cyclic tower. 
We use induction on the order of G. Let x be an element of G. We may assume 
that x # e. Let X be the cyclic group generated by x. Let G' = G/X. By 
induction, we can find a cyclic tower in G', and its inverse image is a cyclic tower 
in G whose last element is X. If we refine this tower by inserting {e} at the end, 
we obtain the desired cyclic tower. 

Example. In Theorem 6.4 it will be proved that a group whose order is a 
prime power is solvable. 
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Example. One of the major results of group theory is the Feit-Thompson 
theorem that all finite groups of odd order are solvable. Cf. [Go 68]. 

Example. Solvable groups will occur in field theory as the Galois groups 
of solvable extensions. See Chapter VI, Theorem 7.2. 

Example. We assume the reader knows the basic notions of linear algebra. 
Let k be a field. Let G = GL(n, k) be the group of invertible n x n matrices in 
k. Let T = T(n, k) be the upper triangular group; that is, the subgroup of matrices 
which are 0 below the diagonal. Let D be the diagonal group of diagonal matrices 
with non-zero components on the diagonal. Let N be the additive group of matrices 
which are 0 on and below the diagonal, and let U = I + N, where / is the unit 
n x n matrix. Then U is a subgroup of G. (Note that N consists of nilpotent 
matrices, i.e. matrices A such that Am — 0 for some positive integer m. Then 
(/ — A)~l = / + A+i42+...+ Am~x is computed using the geometric series.) 
Given a matrix A e T, let diag(A) be the diagonal matrix which has the same 
diagonal components as A. Then the reader will verify that we get a surjective 

homomorphism r„D given by A „ iiag(A) 

The kernel of this homomorphism is precisely U. More generally, observe that 
for r ^ 2, the set Nr~l consists of all matrices of the form 

/o 0 ••• 0 alr . a ln 

jo 0 • 0 0 02,r+l ' * * a2n 

M 
0 0 

0 0 

0 0 

an-r+l,n 

0 

0 / 
Let Ur = / + Nr. Then JJ\ = U and Ur D Ur+ \. Furthermore, Ur+\ is normal 
in Ur, and the factor group is isomorphic to the additive group (!) kn~r, under the 
the mapping which sends / + M to the n — r-tuple (alr+l, ... , an-r n) e kn~r. 
This n - r-tuple could be called the r-th upper diagonal. Thus we obtain an 
abelian tower 

T D U = Ux d U2D . . . D Un = {/}. 

Theorem 3.2. Let G be a group andH a normal subgroup. Then G is solvable 
if and only if H and G/H are solvable. 

Proof. We prove that G solvable implies that H is solvable. Let 
G = G0 D Gi D ... D Gr = {e} be a tower of groups with G/+1 normal in Gt 
and such that G//G/+1 is abelian. Let = H fl Gz. Then Hi+l is normal in Hh 
and we have an embedding Hi/Hi+l —» Gz/Gz+1, whence //z///z+1 is abelian, 
whence proving that H is solvable. We leave the proofs of the other statements 
to the reader. 
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Let G be a group. A commutator in G is a group element of the form xyx~ xy~1 

with x, y e G. Let Gc be the subgroup of G generated by the commutators. We 
call Gc the commutator subgroup of G. As an exercise, prove that Gc is normal 
in G, and that every homomorphism /: G —» G' into a commutative group G' 
contains Gc in its kernel, and consequently factors through the factor commutator 
group G/Gc. Observe that G/Gc itself is commutative. Indeed, if x denotes the 
image of x in G/Gc, then by definition we have xyx~ly~l = e, so x 

and y commute. In light of the definition of solvability, it is clear that the 
commutator group is at the heart of solvability and non-solvability problems. 

A group G is said to be simple if it is non-trivial, and has no normal subgroups 
other than {e} and G itself. 

Examples. An abelian group is simple if and only if it is cyclic of prime 
order. Indeed, supposed abelian and non-trivial. Let a e A, a e. If a generates 
an infinite cyclic group, then a2 generates a proper subgroup and so A is not 
simple. If a has finite period, and A is simple, then A = (a). Let n be the period 
and suppose n not prime. Write n = rs with r, s > 1. Then ar + e and ar 

generates a proper subgroup, contradicting the simplicity of A, so a has prime 
period and A is cyclic of order p. 

Examples. Using commutators, we shall give examples of simple groups 
in Theorem 5.5 (the alternating group), and in Theorem 9.2 of Chapter XIII 
CPSLn(F), a group of matrices to be defined in that chapter). Since a non-cyclic 
simple group is not solvable, we get thereby examples of non-solvable groups. 

A major program of finite group theory is the classification of all finite 
simple groups. Essentially most of them (if not all) have natural representa¬ 
tions as subgroups of linear maps of suitable vector spaces over suitable fields, 
in a suitably natural way. See [Go 82], [Go 86], [Sol 01] for surveys. Gaps in 
purported proofs have been found. As of 2001, these are still incomplete. 

Next we are concerned with towers of subgroups such that the factor groups 
Gi/Gi+i are simple. The next lemma is for use in the proof of the Jordan-Holder 
and Schreier theorems. 

Lemma 3.3. (Butterfly Lemma.) (Zassenhaus) Let U, V be subgroups 

of a group. Let u, v be normal subgroups ofU and V, respectively. Then 

u(U n v) is normal in u(U n V\ 

(u n V)v is normal in (U n V)v, 

and the factor groups are isomorphic, i.e. 

u(U n V)/u(U n v) « (U n V)v/(u n V)v. 

Proof The combination of groups and factor groups becomes clear if 
one visualizes the following diagram of subgroups (which gives its name to the 
lemma): 
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U V 

In this diagram, we are given U, u, F, v. All the other points in the diagram 
correspond to certain groups which can be determined as follows. The inter¬ 
section of two line segments going downwards represents the intersection of 
groups. Two lines going upwards meet in a point which represents the product 
of two subgroups (i.e. the smallest subgroup containing both of them). 

We consider the two parallelograms representing the wings of the butterfly, 
and we shall give isomorphisms of the factor groups as follows: 

u(u n v) __ u nv ^ (_u_n v)v 
u(u nv) (u n vxu nv) («n V)v * 

In fact, the vertical side common to both parallelograms has U n V as its 
top end point, and (u nV)(U n v) as its bottom end point. We have an iso¬ 
morphism 

(U n V)/(u n V)(U n v) * u(U n V)/u(U n v). 

This is obtained from the isomorphism theorem 

H/(H n Af) « HN/N 

by setting // = t/ fl F and N = m(£/ fl u). This gives us the isomorphism on 
the left. By symmetry we obtain the corresponding isomorphism on the right, 
which proves the Butterfly lemma. 

Let G be a group, and let 

G = Gj => G2 =5 • • => Gr = {c}, 

G = //p//2D..0//s=W 

be normal towers of subgroups, ending with the trivial group. We shall say 
that these towers are equivalent if r = s and if there exists a permutation of the 
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indices i = 1,..., r — 1, written i i—► i\ such that 

GJGi+1 « Hr/Hv+l. 

In other words, the sequences of factor groups in our two towers are the same, 
up to isomorphisms, and a permutation of the indices. 

Theorem 3.4. (Schreier) Let G be a group. Two normal towers of subgroups 

ending with the trivial group have equivalent refinements. 

Proof. Let the two towers be as above. For each i = 1, ..., r — 1 and 
j — 1,..., s we define 

Gij = Gi+1(Hj n Gt). 

Then Gis = Gi+U and we have a refinement of the first tower: 

G = Gn =5 G12 3 • •• 3 GUs_1 zd G2 

= G2i3C22D-oGr_uD-oGr.1(S_1D {e}. 

Similarly, we define 

Hjt = Hj+ i(Gi nHj), 

for j = 1, ..., s — 1 and i = 1, ..., r. This yields a refinement of the second 
tower. By the butterfly lemma, for i = 1, ..., r - 1 and j = 1, ..., s - 1 we 
have isomorphisms 

GiJGi j+ j ~ HjJHj i+ j. 

We view each one of our refined towers as having (r — l)(s — 1) + 1 elements, 
namely Gi} (i = 1,..., r - 1 = 1,..., s — 1) and {e} in the first case, Hji and 
{e} in the second case. The preceding isomorphism for each pair of indices 
(ij) shows that our refined towers are equivalent, as was to be proved. 

A group G is said to be simple if it is non-trivial, and has no normal sub¬ 
groups other than {e} and G itself. 

Theorem 3.5. (Jordan-Holder) Let G be a group, and let 

C = G1DG2D-oGr={e} 

be a normal tower such that each group Gi/Gi+l is simple, and Gf ^ Gi+1 

for i = 1,..., r — 1. Then any other normal tower of G having the same prop- 
erties is equivalent to this one. 

Proof. Given any refinement {G0} as before for our tower, we observe 
that for each i, there exists precisely one index j such that Gj/Gi+ j = Gij/Gij+ 

Thus the sequence of non-trivial factors for the original tower, or the refined 
tower, is the same. This proves our theorem. 
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§4. CYCLIC GROUPS 

The integers Z form an additive group. We shall determine its subgroups. 
Let H be a subgroup of Z. If H is not trivial, let a be the smallest positive integer 
in H. We contend that H consists of all elements na, with ne Z. To prove this, 
let ye FI. There exist integers n, r with 0 ^ r < a such that 

y = na + r. 

Since H is a subgroup and r = y — na, we have reH, whence r = 0, and our 
assertion follows. 

Let G be a group. We shall say that G is cyclic if there exists an element 
a of G such that every element x of G can be written in the form an for some 
ne Z (in other words, if the map /: Z -► G such that / (n) = an is surjective). 
Such an element a of G is then called a generator of G. 

Let G be a group and a e G. The subset of all elements an (n e Z) is 
obviously a subgroup of G, which is cyclic. If m is an integer such that am = e 

and m > 0 then we shall call m an exponent of a. We shall say that m > 0 is 
an exponent of G if x"1 = e for all x e G. 

Let G be a group and aeG. Let/: Z -► G be the homomorphism such that 
f(n) = an and let H be the kernel off Two cases arise: 

1. The kernel is trivial. Then/is an isomorphism of Z onto the cyclic subgroup 
of G generated by a, and this subgroup is infinite cyclic. If a generates G, then 
G is cyclic. We also say that a has infinite period. 

2. The kernel is not trivial. Let d be the smallest positive integer in the 
kernel. Then d is called the period of a. If m is an integer such that am = e then 
m = ds for some integer s. We observe that the elements e, a,.. ., ad~l are 
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distinct. Indeed, if ar = as with 0 ^ r, s ^ d — 1, and say r ^ s, then as~r = 
e. Since 0^is-r<dwe must have s — r = 0. The cyclic subgroup generated 
by a has order d. Hence by Proposition 2.2: 

Proposition 4.1. Let G be a finite group of order n > 1. Let a be an element 

of G, a ^ e. Then the period of a divides n. If the order of G is a prime number 

p, then G is cyclic and the period of any generator is equal to p. 

Furthermore: 

Proposition 4.2. Let G be a cyclic group. Then every subgroup ofG is cyclic. 

If f is a homomorphism ofG, then the image offis cyclic. 

Proof. If G is infinite cyclic, it is isomorphic to Z, and we determined above 
all subgroups of Z, finding that they are all cyclic. If /: G G' is a homo¬ 
morphism, and a is a generator of G, then f(a) is obviously a generator of/(G), 
which is therefore cyclic, so the image of/is cyclic. Next let H be a subgroup 
of G. We want to show H cyclic. Let a be a generator of G. Then we have a 
surjective homomorphism /: Z G such that f(n) = an. The inverse image 
f~l(H) is a subgroup of Z, and therefore equal to mZ for some positive integer 
m. Since /is surjective, we also have a surjective homomorphism mZ —» H. 

Since mZ is cyclic (generated additively by m), it follows that H is cyclic, thus 
proving the proposition. 

We observe that two cyclic groups of the same order m are isomorphic. 
Indeed, if G is cyclic of order m with generator a, then we have a surjective 
homomorphism /: Z —» G such that /(n) = an, and if kZ is the kernel, 
with k positive, then we have an isomorphism Z/kZ ~ G, so k = m. 
If u: Gj —> Z/mZ and v: G2~* Z/mZ are isomorphisms of two cyclic groups 
with Z/mZ, then iT1 oicGj-^ G2 is an isomorphism. 

Proposition 4.3. 

(i) An infinite cyclic group has exactly two generators (if a is a generator, then 

a'1 is the only other generator). 

(ii) Let G be a finite cyclic group of order n, and let xbe a generator. The set 

of generators of G consists of those powers x(iv) v of x such that v is relatively 

prime to n. 

(iii) Let G be a cyclic group, and let a, b be two generators. Then there exists 

an automorphism of G mapping a onto b. Conversely, any automorphism 

of G maps a on some generator of G. 

(iv) Let G be a cyclic group of order n. Let d be a positive integer dividing n. 

Then there exists a unique subgroup of G of order d. 

(v) Let Gj, G2 be cyclic of orders m, n respectively. If m, n are relatively 

prime then Gx x G2 is cyclic. 
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(vi) Let G be a finite abelian group. If G is not cyclic, then there exists a prime 

p and a subgroup of G isomorphic to C x C, where C is cyclic of order 

P- 

Proof. We leave the first three statements to the reader, and prove the others. 
(iv) Let d\n. Let m = n/d. Let/: Z G be a surjective homomorphism. 

Then f{mZ) is a subgroup of G, and from the isomorphism Z/mZ ~ G/f(mZ) 

we conclude that f(mZ) has index m in G, whence/(/wZ) has order d. Conversely, 
let H be a subgroup of order d. Then f~l(H) = mZ for some positive integer 
m, so H = f(mZ), Z/mZ ~ GIH, so n — md, m = n/d and // is uniquely 
determined. 

(v) Let A = (a) and i? = (b) be cyclic groups of orders m, n, relatively prime. 
Consider the homomorphism Z —> A x 5 such that A; i-> (a*, 6*). An element 
in its kernel must be divisible both by m and n, hence by their product since m, 

n are relatively prime. Conversely, it is clear that mnZ is contained in the kernel, 
so the kernel is mnZ. The image of Z —» A x 5 is surjective by the Chinese 
remainder theorem. This proves (v). (A reader who does not know the Chinese 
remainder theorem can see a proof in the more general context of Chapter II, 
Theorem 2.2.) 

(vi) This characterization of cyclic groups is an immediate consequence of 
the structure theorem which will be proved in §8, because if G is not cyclic, 
then by Theorem 8.1 and (v) we are reduced to the case when G is a p-group, 
and by Theorem 8.2 there are at least two factors in the direct product (or sum) 
decomposition, and each contains a cyclic subgroup of order/?, whence G contains 
their direct product (or sum). Statement (vi) is, of course, easier to prove than 
the full structure theorem, and it is a good exercise for the reader to formulate 
the simpler arguments which yield (vi) directly. 

Note. For the group of automorphisms of a cyclic group, see the end of 
Chapter II, §2. 

§5. OPERATIONS OF A GROUP ON A SET 

Let G be a group and let 5 be a set. An operation or an action of G on S 

is a homomorphism 

77 : G —> Perm(S) 

of G into the group of permutations of S. We then call S a G-set. We denote 
the permutation associated with an element x e G by 77*. Thus the homomorphism 
is denoted by x i-» 77*. Given s e 5, the image of 5 under the permutation 77* is 
77*(s). From such an operation we obtain a mapping 

G x S —> S, 
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which to each pair (x, s) with x e G and s e S associates the element 7^(5). We 
often abbreviate the notation and write simply xs instead of 7^(5). With the 
simpler notation, we have the two properties: 

For all x, y e G and s e S, we have x(ys) = (xy)s. 

If e is the unit element of G, then es = s for all s e S. 

Conversely, if we are given a mapping G x S 5, denoted by (x, s) i-» xs, 
satisfying these two properties, then for each x e G the map s i-» xs is permutation 
of S, which we then denote by 77^(5). Then jc 1—^ 7^ is a homomorphism of G 

into Perm(S). So an operation of G on S could also be defined as a mapping 
G x S S satisfying the above two properties. The most important examples 
of representations of G as a group of permutations are the following. 

1. Conjugation. For each xeG, let cx: G G be the map such that 
cx(y) = xyx~l. Then it is immediately verified that the association x ^ cx is a 
homomorphism G —► Aut(G), and so this map gives an operation of G on itself, 
called conjugation. The kernel of the homomorphism x ► cx is a normal sub¬ 
group of G, which consists of all x e G such that x>>x-1 = y for all y e G, i.e. all 
x g G which commute with every element of G. This kernel is called the center 
of G. Automorphisms of G of the form cx are called inner. 

To avoid confusion about the operation on the left, we don’t write xy for 
cx(y). Sometimes, one writes 

Cx-<{y) = x~lyx = yx, 

i.e. one uses an exponential notation, so that we have the rules 

y(*z> = (yx)z and ye = y 

for all x, y, z e G. Similarly, xy = xyx-1 and z(*y) = zxy. 

We note that G also operates by conjugation on the set of subsets of G. 
Indeed, let S be the set of subsets of G, and let A e S be a subset of G. Then 
x^x-1 is also a subset of G which may be denoted by cX{A), and one verifies 
trivially that the map 

(x, A) 1—► xAx~1 

of G x S -+ S is an operation of G on S. We note in addition that if A is a sub¬ 
group of G then xAx-1 is also a subgroup, so that G operates on the set of 
subgroups by conjugation. 

If A, B are two subsets of G, we say that they are conjugate if there exists 
x g G such that B = xAx"l. 

2. Translation. For each x e G we define the translation Tx\ G G by 
Tx(y) = xy. Then the map 

(x, y) h-> xy = Tx(y) 

defines an operation of G on itself. Warning: Tx is not a group-homomorphism! 
Only a permutation of G. 
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Similarly, G operates by translation on the set of subsets, for if A is a 
subset of G, then xA = TX(A) is also a subset. If H is a subgroup of G, then 
TX(H) = xH is in general not a subgroup but a coset of //, and hence we see 
that G operates by translation on the set of cosets of H. We denote the set of 
left cosets of H by G/H. Thus even though H need not be normal, G/H is a 
G-set. It has become customary to denote the set of right cosets by H\G. 

The above two representations of G as a group of permutations will be used 
frequently in the sequel. In particular, the representation by conjugation will be 
used throughout the next section, in the proof of the Sylow theorems. 

3. Example from linear algebra. We assume the reader knows basic 
notions of linear algebra. Let k be a field and let V be a vector space over k. Let 
G = GL(V) be the group of linear automorphisms of V. For A e G and 
v e V, the map (A, v) i-» Av defines an operation of G on V. Of course, G is 
a subgroup of the group of permutations Perm(V0- Similarly, let V = kn be the 
vector space of (vertical) n-tuples of elements of k, and let G be the group of 
invertible n x n matrices with components in k. Then G operates on kn by 
(A, X) h-» AX for A e G and X e kn. 

Let S, S' be two G-sets, and f: SS' a map. We say that/ is a morphism 
of G-sets, or a G-map, if 

f(xs) = xf(s) 

for all x e G and seS. (We shall soon define categories, and see that G-sets form 
a category.) 

We now return to the general situation, and consider a group operating on 
a set S. Let seS. The set of elements xeG such that xs = s is obviously a sub¬ 
group of G, called the isotropy group of s in G, and denoted by Gs. 

When G operates on itself by conjugation, then the isotropy group of an 
element is none other than the normalizer of this element. Similarly, when G 
operates on the set of subgroups by conjugation, the isotropy group of a sub¬ 
group is again its normalizer. 

Let G operate on a set S. Let s, s' be elements of S, and y an element of G 
such that ys = s'. Then 

Gs = yGsy 1 

Indeed, one sees at once that yGsy~l leaves s' fixed. Conversely, if 
x's' = s' then x’ys = ys, so y~lx'y e Gs and xr e yGsy~l. Thus the isotropy 
groups of s and s' are conjugate. 

Let K be the kernel of the representation G —» Perm(S). Then directly from 
the definitions, we obtain that 

K — fl Gs = intersection of all isotropy groups. 
jeS 
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An action or operation of G is said to be faithful if K = {e}\ that is, the kernel 
of G —> Perm(5) is trivial. A fixed point of G is an element s e S such that 
xs = s for all x e G or in other words, G = Gs. 

Let G operate on a set 5. Let seS. The subset of S consisting of all elements 
xs (with x g G) is denoted by Gs, and is called the orbit of s under G. If x and y 

are in the same coset of the subgroup H = Gs, then xs = ys, and conversely 
(obvious). In this manner, we get a mapping 

/: G/H -* S 

given by f(xH) = xs, and it is clear that this map is a morphism of G-sets. In 
fact, one sees at once that it induces a bijection of G/H onto the orbit Gs. 
Consequently: 

Proposition 5.1. If G is a group operating on a set S, and s e S, then the order 

of the orbit Gs is equal to the index (G : Gs). 

In particular, when G operates by conjugation on the set of subgroups, and 
H is a subgroup, then: 

Proposition 5.2. The number of conjugate subgroups to H is equal to the 

index of the normalizer of H. 

Example. Let G be a group and H a subgroup of index 2. Then H is normal 
in G. 

Proof Note that H is contained in its normalizer NHy so the index of NH 

in G is 1 or 2. If it is 1, then we are done. Suppose it is 2. Let G operate by con¬ 
jugation on the set of subgroups. The orbit of H has 2 elements, and G operates 
on this orbit. In this way we get a homomorphism of G into the group of 
permutations of 2 elements. Since there is one conjugate of H unequal to H, 
then the kernel of our homomorphism is normal, of index 2, hence equal to H9 

which is normal, a contradiction which concludes the proof. 

For a generalization and other examples, see Lemma 6.7. 
In general, an operation of G on S is said to be transitive if there is only 

one orbit. 

Examples. The symmetric group Sn operates transitively on {1, 2,. .., n}. 

In Proposition 2.1 of Chapter VII, we shall see a non-trivial example of transitive 
action of a Galois group operating on the primes lying above a given prime in 
the ground ring. In topology, suppose we have a universal covering space 
p: X' —> X, where X is connected. Given x e X, the fundamental group ttx(X) 

operates transitively on the inverse image p~l(x). 
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Example. Let & be the upper half-plane; that is, the set of complex numbers 
z = x + iy such that y > 0. Let G = SL2(R) (2x2 matrices with determinant 
1). For 

(a b\ az + b 
a = I e Gy we let az =--—.. 

\c d cz + d 

Readers will verify by brute force that this defines an operation of G on fa. The 
isotropy group of i is the group of matrices 

/ cos 0 sin O' 

\—sin 0 cos 0, 
with 0 real. 

This group is usually denoted by K. The group G operates transitively. You can 
verify all these statements as easy exercises. 

Let G operate on a set S. Then two orbits of G are either disjoint or are 
equal. Indeed, if Gsj and Gs2 are two orbits with an element s in common, 
thens = xs{ for some x e G, and hence Gs = Gxsj = Gsv Similarly, Gs = Gs2- 

Hence S is the disjoint union of the distinct orbits, and we can write 

S = (J Gsi (disjoint), also denoted S = U Gsh 
IE i 

where / is some indexing set, and the s( are elements of distinct orbits. If S is 
finite, this gives a decomposition of the order of S as a sum of orders of orbits, 
which we call the orbit decomposition formula, namely 

card(S) = £(G:GS(). 
i e I 

Let x, y be elements of a group (or monoid) G. They are said to commute 
if xy = yx. If G is a group, the set of all elements x e G which commute with all 
elements of G is a subgroup of G which we called the center of G. Let G act on 
itself by conjugation. Then x is in the center if and only if the orbit of x is x 
itself, and thus has one element. In general, the order of the orbit of x is equal 
to the index of the normalizer of x. Thus when G is a finite group, the above 
formula reads 

(G : 1) = £(G:Gx) 
xeC 

where C is a set of representatives for the distinct conjugacy classes, and the 
sum is taken over all x e C. This formula is also called the class formula. 
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The class formula and the orbit decomposition formula will be used systematically 
in the next section on Sylow groups, which may be viewed as providing examples 
for these formulas. 

Readers interested in Sylow groups may jump immediately to the next section. 

The rest of this section deals with special properties of the symmetric group, 

which may serve as examples of the general notions we have developed. 

The symmetric group. Let Sn be the group of permutations of a set 
with n elements. This set may be taken to be the set of integers 
Jn = {1, 2,..., n}. Given any cr e Sn, and any integer /, 1 ^ i ^ n9 we may 
form the orbit of i under the cyclic group generated by or. Such an orbit is called 
a cycle for cr, and may be written 

Ulh * * * *r\> so O’O’l) = *2* • • * » O’O’r-l) = ^0’r) = *1- 

Then {1,. .. , n} may be decomposed into a disjoint union of orbits for the cyclic 
group generated by cr, and therefore into disjoint cycles. Thus the effect of cr 

on {1,. . . , n} is represented by a product of disjoint cycles. 

Example. The cycle [132] represents the permutation cr such that 

(7(1) = 3, (7(3) = 2, and (7(2) = 1. 

We have cr2(l) = 2, cr3( 1) = 1. Thus {1, 3, 2} is the orbit of 1 under the cyclic 
group generated by o. 

Example. In Exercise 38, one will see how to generate Sn by special types 
of generators. Perhaps the most important part of that exercise is that if n is 
prime, cr is an n-cycle and r is a transposition, then cr, r generate Sn. As an 
application in Galois theory, if one tries to prove that a Galois group is all 
of Sn (as a group of permutations of the roots), it suffices to prove that the 
Galois group contains an n-cycle and a transposition. See Example 6 of 
Chapter VI, §2. 

We want to associate a sign ±1 to each permutation. We do this in the 
standard way. Let / be a function of n variables, say /: Zn —> Z, so we can 
evaluate/(*!,. . ., xn). Let cr be a permutation of Jn. We define the function 
7r((7)/by 

7r(a)f(xu ..., xn) = /Uo-d), . .., xa(n)). 

Then for cr, r e Sn we have 7t(ot) = 7r(o-)7r(r). Indeed, we use the definition 
applied to the function g = 7r(r)/to get 

ir(cr)ir(T)f(xu . . . , xn) = (^(t)/)^^ . . . , xa{nj) 

~ yC*CTT( 1)> * * * > ■*’CTT(/!)) 

= 7T((TT)f(xly . . . , Xn). 
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Since the identity in Sn operates as the identity on functions, it follows that we 
have obtained an operation of Sn on the set of functions. We shall write more 
simply of instead of 7T(o)f. It is immediately verified that for two functions /, 
g we have 

<*{f + 9) = <rf + *9 and o(fg) = (of)((rg). 

If c is constant, then cr(cf) = co(f). 

Proposition 5.3. There exists a unique homomorphism e: Sn —» {±1} such 

that for every transposition r we have e(r) = — 1. 

Proof. Let A be the function 

A Ui,..., xn) 11 (-^7 X}), 
i<j 

the product being taken for all pairs of integers /, j satisfying 1 ^ / < j ^ n. 

Let r be a transposition, interchanging the two integers r and 5. Say r < s. We 
wish to determine 

tAUi, ..., xn) = n (Xrf,) - XtU}). 

i<j 

For one factor involving j — s, i = r, we see that r changes the factor 
(jt5 - xr) to — (.xs ~ xr). All other factors can be considered in pairs as follows: 

(xk - xs)(xk - xr) if k > 5, 

(xs - — xr) if r < k < s9 

(xs — jc^)(jcr — xk) if k < r. 

Each one of these pairs remains unchanged when we apply r. Hence we see that 
rA = —A. 

Let e(o-) be the sign 1 or -1 such that o-A = e(o)A for a permutation 0. 

Since 7r(o-r) = 7r(o-)7r(r), it follows at once that e is a homomorphism, and the 
proposition is proved. 

In particular, if o = tx • • • Tm is a product of transpositions, then 
e(o) = (— l)m. As a matter of terminology, we call o-even if e{o) = 1, and odd 
if e{cr) = — 1. The even permutations constitute the kernel of s, which is called 
the alternating group An. 

Theorem 5.4. If n^ 5 then Sn is not solvable. 

Proof. We shall first prove that if //, N are two subgroups of Sn such that 
N C H and N is normal in //, if H contains every 3-cycle, and if H/N is abelian, 
then N contains every 3-cycle. To see this, let i9j9 k, r, s be five distinct integers 
in Jn9 and let 0 = [ijk\ and r = [krs]. Then a direct computation gives their 
commutator 

crrcr xt 1 = [rki]. 
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Since the choice of i,j, k, r, s was arbitrary, we see that the cycles [rki] all lie 
in N for all choices of distinct r, k, i, thereby proving what we wanted. 

Now suppose that we have a tower of subgroups 

Sn = H0D HXD H2D - D Hm = {e} 

such that Hv is normal in Hv-X for v = 1,... , m, and Hv/Hv-X is abelian. Since 
Sn contains every 3-cycle, we conclude that Hx contains every 3-cycle. By 
induction, we conclude that Hm = {e} contains every 3-cycle, which is impossible, 
thus proving the theorem. 

Remark concerning the sign e(o). A priori, we defined the sign for a 
given n, so we should write en(oj. However, suppose n < m. Then the restriction 
of em to Sn (viewed as a permutation of Jn leaving the elements of Jm not in Jn 

fixed) gives a homomorphism satisfying the conditions of Proposition 5.3, so 
this restriction is equal to en. Thus Am Pi Sn = An. 

Next we prove some properties of the alternating group. 

(a) An is generated by the 3-cycles. Proof: Consider the product of two trans¬ 
positions [ij][rs]. If they have an element in common, the product is either the 
identity or a 3-cycle. If they have no element in common, then 

Uj][rs] = [ijr][jrs], 

so the product of two transpositions is also a product of 3-cycles. Since an even 
permutation is a product of an even number of transpositions, we are done. 

(b) If n ^ 5, all 3-cycles are conjugate in An. Proof: If y is a permutation, 
then for a cycle [ix ... im] we have 

y[i\ • • • ‘Jr”1 = [rO‘i) • • • Wm)l 

Given 3-cycles [ijk] and [i'j'k'] there is a permutation y such that y(i) = i'9 

y(j) = /, and y(k) = k'. Thus two 3-cycles are conjugate in Sn by some element 
y. If y is even, we are done. Otherwise, by assumption n ^ 5 there exist r, s 

not equal to any one of the three elements i>j, k. Then [rs] commutes with [ijk], 

and we replace y by y[rs] to prove (b). 

Theorem 5.5. If n ^ 5 then the alternating group An is simple. 

Proof. Let N be a non-trivial normal subgroup of An. We prove that N 

contains some 3-cycle, whence the theorem follows by (b). Let ere N, cr =£ id, 

be an element which has the maximal number of fixed points; that is, integers 
i such that cr(/) = i. It will suffice to prove that cr is a 3-cycle or the identity. 
Decompose Jn into disjoint orbits of (a).Then some orbits have more than one 
element. Suppose all orbits have 2 elements (except for the fixed points). Since 
cr is even, there are at least two such orbits. On their union, cr is represented as 
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a product of two transpositions [(/][rs]. Let k i, j, r, s. Let r = [rs/:]. Let 
a' = rar~la~l. Then cr' is a product of a conjugate of cr and a~ \ so cr' E N. 

But or' leaves i, j fixed, and any element t E Jm t 7^ i, j, r, s, k left fixed by cr 
is also fixed by cr', so cr' has more fixed points than a, contradicting our 
hypothesis. 

So we are reduced to the case when at least one orbit of (a) has ^3 elements, 
say i,j,k,... . If cr is not the 3-cycle [ijk], then cr must move at least two other 
elements of Jn, otherwise cr is an odd permutation [ijkr] for some r e Jn, which 
is impossible. Then let cr move r, s other than i, j, k, and let r = [krs]. Let a 

be the commutator as before. Then cr' e. N and cr’(i) = i, and all fixed points 
of cr are also fixed points of & whence & has more fixed points than cr, a 
contradiction which proves the theorem. 

Example. For n = 4, the group A4 is not simple. As an exercise, show 
that A4 contains a unique subgroup of order 4, which is not cyclic, and which 
is normal. This subgroup is also normal in S4. Write down explicitly its elements 
as products of transpositions. 

§6. SYLOW SUBGROUPS 

Let p be a prime number. By a p-group, we mean a finite group whose 
order is a power of p (i.e. pn for some integer n ^ 0). Let G be a finite group 
and H a subgroup. We call H a /7-subgroup of G if H is a /7-group. We call H 

a p-Sylow subgroup if the order of H is pn and if pn is the highest power of p 

dividing the order of G. We shall prove below that such subgroups always 
exist. For this we need a lemma. 

Lemma 6.1. Let G be a finite abelian group of order m, let p be a prime 

number dividing m. Then G has a subgroup of order p. 

Proof. We first prove by induction that if G has exponent n then the 
order of G divides some power of n. Let beG, b # 1, and let H be the cyclic 
subgroup generated by b. Then the order of H divides n since bn = 1, and n 

is an exponent for G/H. Hence the order of G/H divides a power of n by 
induction, and consequently so does the order of G because 

(G: 1) = (G: H)(H: 1). 

Let G have order divisible by p. By what we have just seen, there exists an 
element x in G whose period is divisible by p. Let this period be ps for some 
integer 5. Then xs # 1 and obviously xs has period p, and generates a subgroup 
of order p, as was to be shown. 
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Theorem 6.2. Let G be a finite group and p a prime number dividing the 

order of G. Then there exists a p-Sylow subgroup of G. 

Proof By induction on the order of G. If the order of G is prime, our 
assertion is obvious. We now assume given a finite group G, and assume the 
theorem proved for all groups of order smaller than that of G. If there exists a 
proper subgroup H of G whose index is prime to p, then a p-Sylow subgroup of 
H will also be one of G, and our assertion follows by induction. We may therefore 
assume that every proper subgroup has an index divisible by p. We now let G 
act on itself by conjugation. From the class formula we obtain 

(G:1) = (Z:1) + £(G:Gx). 

Here, Z is the center of G, and the term (Z : 1) corresponds to the orbits having 
one element, namely the elements of Z. The sum on the right is taken over the 
other orbits, and each index (G : Gx) is then > 1, hence divisible by p. Since p 
divides the order of G, it follows that p divides the order of Z, hence in particular 
that G has a non-trivial center. 

Let a be an element of order p in Z, and let H be the cyclic group generated 
by a. Since H is contained in Z, it is normal. Let/: G -► G/H be the canonical 
map. Let pn be the highest power of p dividing (G : 1). Then pn~1 divides the 

order of G/H. Let K' be a p-Sylow subgroup of G/H (by induction) and let 
K = f~l{K'). Then K H and / maps K onto K'. Hence we have an iso¬ 
morphism K/H ^ K'. Hence K has order pn~lp = p", as desired. 

For the rest of the theorems, we systematically use the notion of a fixed point. 
Let G be a group operating on a set S. Recall that a fixed point 5 of G in S is 
an element s of S such that xs — s for all x e G. 

Lemma 6.3. Let H be a p-group acting on a finite set S. Then: 

(a) The number of fixed points of H is = #(S) mod p. 

(b) If H has exactly one fixed point, then #(S) = 1 mod p. 

(c) If p | #(S), then the number of fixed points of H is = 0 mod p. 

Proof. We repeatedly use the orbit formula 

#(S) = 2(H:HSi). 

For each fixed point s, we have Hs. = H. For s, not fixed, the index 
(H : Hs.) is divisible by p, so (a) follows at once. Parts (b) and (c) are special 
cases of (a), thus proving the lemma. 

Remark. In Lemma 6.3(c), if H has one fixed point, then H has at least p 
fixed points. 

Theorem 6.4. Let G be a finite group. 

(i) IfH is a p-subgroup ofG, then H is contained in some p-Sylow subgroup. 
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(ii) All p-Sylow subgroups are conjugate. 

(iii) The number of p-Sylow subgroups of G is =1 mod p. 

Proof. Let P be a p-Sylow subgroup of G. Suppose first that H is contained 
in the normalizer of P. We prove that H C P. Indeed, HP is then a subgroup 
of the normalizer, and P is normal in HP. But 

(iHP : P) = (//:// D P), 

so if HP P, then HP has order a power of p, and the order is larger than #(P), 
contradicting the hypothesis that P is a Sylow group. Hence HP = P and 
HCP. 

Next, let S be the set of all conjugates of P in G. Then G operates on S by 
conjugation. Since the normalizer of P contains P, and has therefore index prime 
to p, it follows that #(S) is not divisible by p. Now let H be any p-subgroup. 
Then H also acts on S by conjugation. By Lemma 6.3(a), we know that// cannot 
have 0 fixed points. Let Q be a fixed point. By definition this means that H is 
contained in the normalizer of Q, and hence by the first part of the proof, that 
H C Q, which proves the first part of the theorem. The second part follows 
immediately by taking H to be a p-Sylow group, so #(//) = #((?), whence 
H = Q. In particular, when H is a p-Sylow group, we see that H has only one 
fixed point, so that (iii) follows from Lemma 6.3(b). This proves the theorem. 

Theorem 6.5. Let G be a finite p-group. Then G is solvable. If its order is 

> 1, then G has a non-trivial center. 

Proof The first assertion follows from the second, since if G has center 
Z, and we have an abelian tower for G/Z by induction, we can lift this abelian 
tower to G to show that G is solvable. To prove the second assertion, we use 
the class equation 

(G : 1) = card(Z) + £ (G: Gx), 

the sum being taken over certain x for which (G: Gx) # 1. Then p divides 
(G : 1) and also divides every term in the sum, so that p divides the order of the 
center, as was to be shown. 

Corollary 6.6. Let G be a p-group which is not of order 1. Then there 

exists a sequence of subgroups 

{f} = GccG,cG2c-c6,= G 

such that Gt is normal in G and G, + i/Gi is cyclic of order p. 

Proof. Since G has a non-trivial center, there exists an element a # e in 
the center of G, and such that a has order p. Let H be the cyclic group generated 
by a. By induction, if G # //, we can find a sequence of subgroups as stated 
above in the factor group G/H. Taking the inverse image of this tower in G 
gives us the desired sequence in G. 
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We now give some examples to show how to put some of the group theory 
together. 

Lemma 6.7. Let G be a finite group and let p be the smallest prime dividing 
the order of G. Let H be a subgroup of index p. Then H is normal. 

Proof. Let N(H) = N be the normalizer of H. Then N = G or N = H. If 
N = G we are done. Suppose N = H. Then the orbit of H under conjugation 
has p = (G : H) elements, and the representation of G on this orbit gives a 
homomorphism of G into the symmetric group on p elements, whose order is 
p\. Let K be the kernel. Then K is the intersection of the isotropy groups, and 
the isotropy group of H is H by assumption, so K C H. If K =£ //, then from 

(G : K) = (G : H)(H : K) = p(H : AT), 

and the fact that only the first power of p divides /?!, we conclude that some 
prime dividing (p - 1)! also divides (H : K), which contradicts the assumption 
that p is the smallest prime dividing the order of G, and proves the lemma. 

Proposition 6.8. Let p, q be distinct primes and let G be a group of order 
pq. Then G is solvable. 

Proof. Say p < q. Let Q be a Sylow subgroup of order q. Then Q has index 
p, so by the lemma, Q is normal and the factor group has order p. But a group 
of prime order is cyclic, whence the proposition follows. 

Example. Let G be a group of order 35. We claim that G is cyclic. 

Proof. Let H1 be the Sylow subgroup of order 7. Then H1 is normal by 
Lemma 6.7. Let H5 be a 5-Sylow subgroup, which is of order 5. Then H5 
operates by conjugation on //7, so we get a homomorphism H5 —> Aut(H7). But 
Aut(H7) is cyclic of order 6, so H5 Aut(H7) is trivial, so every element of 
H5 commutes with elements of Hn. Let H5 = (x) and H1 = (y). Then x,y commute 
with each other and with themselves, so G is abelian, and so G is cyclic by 
Proposition 4.3(v). 

Example. The techniques which have been developed are sufficient to treat 
many cases of the above types. For instance every group of order < 60 is solvable, 
as you will prove in Exercise 27. 

§7. DIRECT SUMS AND FREE ABELIAN GROUPS 

Let {A,}ie/ be a family of abelian groups. We define their direct sum 

a = (Ba, 
ie/ 

to be the subset of the direct product fl consisting of all families with 
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xi e At such that xt = 0 for all but a finite number of indices i. Then it is clear 
that A is a subgroup of the product. For each index j e /, we map 

Xj: Aj -> A 

by letting A/x) be the element whose ;-th component is x, and having all other 
components equal to 0. Then A,- is an injective homomorphism. 

Proposition 7.1. Let {ft: At B} be a family of homomorphisms into an 

abelian group B. Let A — © A(. There exists a unique homomorphism 

f:A-»B , 

such that f° Ay = f for all j. 

Proof. We can define a map /: A —> B by the rule 

/((*.)«=/) = X ftx,). 
iel 

The sum on the right is actually finite since all but a finite number of terms are 0. 
It is immediately verified that our map / is a homomorphism. Furthermore, 
we clearly have /° A/x) = f}(x) for each j and each xeAj. Thus / has the 
desired commutativity property. It is also clear that the map / is uniquely 
determined, as was to be shown. 

The property expressed in Proposition 7.1 is called the universal property 
of the direct sum. Cf. §11. 

Example. Let A be an abelian group, and let {Abe a family of sub¬ 
groups. Then we get a homomorphism 

(J) Ai —» A such that (jq) 2*/- 
ze/ 

Theorem 8.1 will provide an important specific application. 

Let A be an abelian group and B, C subgroups. If B + C = A and 
B fl C = {0} then the map 

B x C -* A 

given by (x, y) > x + y is an isomorphism (as we already noted in the non- 
commutative case). Instead of writing A = B x C we shall write 

A = B® C 

and say that A is the direct sum of B and C. We use a similar notation for the 
direct sum of a finite number of subgroups Bl9..., Bn such that 

Bi + • • • + Bn = A 

and 

&i+ i n (#i + * " + Bt) = 0. 
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In that case we write 

A = Bi © • • • © Bn. 

Let A be an abelian group. Let {et} (i el) be a family of elements of A. We 
say that this family is a basis for A if the family is not empty, and if every 
element of A has a unique expression as a linear combination 

x — ^Jxiei 

with xi e Z and almost all xt = 0. Thus the sum is actually a finite sum. An 
abelian group is said to be free if it has a basis. If that is the case, it is immediate 
that if we let Zz = Z for all /, then A is isomorphic to the direct sum 

A~0Z(, 
ie/ 

Next let 5 be a set. We shall define the free abelian group generated by S as 
follows. Let Z(S) be the set of all maps (p : S —» Z such that <p(x) = 0 for almost 
all x e S. Then Z(S) is an abelian group (addition being the usual addition of 
maps). If k is an integer and x is an element of S, we denote by k • x the map 
<p such that <p(x) = k and <p(y) = 0 if y x. Then it is obvious that every element 
<p of Z(S) can be written in the form 

q> = ki -Xj + ••• + kn-xn 

for some integers kt and elements xteS (i = 1,..., n), all the xt being distinct. 
Furthermore, (p admits a unique such expression, because if we have 

<P= Zkx.x= 
xeS xeS 

then 

0= 

xeS 

whence k'x = kx for all xeS. 

We map 5 into Z<5> by the map fs = f such that /(x) = 1 x. It is 
then clear that / is injective, and that f(S) generates Z<5). If g: S -► B is a 
mapping of S into some abelian group B, then we can define a map 

9* : Z<S> -* B 

such that 

= Z kxg(x). 
\xeS 1 xeS 

This map is a homomorphism (trivial) and we have g* °f = g (also trivial). It 
is the only homomorphism which has this property, for any such homomorphism 
g* must be such that g*(l • x) = g(x). 
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It is customary to identify S in Z<S>, and we sometimes omit the dot when 
we write kxx or a sum £ /cxx. 

If X: S ^ S' is a mapping of sets, r/iere is a unique homomorphism 1 making the 

following diagram commutative: 

s z<s> 

A I 

S'-^Z<S'> 

In fact, 1 is none other than (fs. o A)*, with the notation of the preceding para¬ 
graph. The proof of this statement is left as a trivial exercise. 

We shall denote Z(S) also by Fab(S), and call Fab(S) the free abelian group 
generated by S. We call elements of S its free generators. 

As an exercise, show that every abelian group A is a factor group of a free 
abelian group F. If A is finitely generated, show that one can select F to be 
finitely generated also. 

If the set S above consists of n elements, then we say that the free abelian 
group Fab(S) is the free abelian group on n generators. If S is the set of n 

letters xl5...,x„, we say that Fab(S) is the free abelian group with free 
generators xl5..., x„. 

An abelian group is free if and only if it is isomorphic to a free abelian group 
Fab(S) for some set S. Let A be an abelian group, and let S’ be a basis for A. 

Then it is clear that A is isomorphic to the free abelian group Fab(S). 

As a matter of notation, if A is an abelian group and T a subset of elements 
of A, we denote by (T) the subgroup generated by the elements of T, i.e., the 
smallest subgroup of A containing T. 

Example. The Grothendieck group. Let M be a commutative monoid, 
written additively. There exists a commutative group K(M) and a monoid- 
homomorphism 

y:M -+ K(M) 

having the following universal property. Iff: M —» A is a homomorphism into 
an abelian group A, then there exists a unique homomorphism/*: K(M) —> A 

making the following diagram commutative: 

M —1—* K(M) 

Proof Let Fab(M) be the free abelian group generated by M. We denote 
the generator of Fab(M) corresponding to an element xeMby [x]. Let B be 
the subgroup generated by all elements of type 

lx + y] - M - DO 
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where x, ye M. We let K(M) = Fab(M)/B, and let 

y:Af-> K(M) 

be the map obtained by composing the injection of M into Fab(Af) given by 
x i—► [x], and the canonical map 

Fab(M) - Fab(M)/R 

It is then clear that y is a homomorphism, and satisfies the desired universal 
property. 
The universal group K(M) is called the Grothendieck group. 

We shall say that the cancellation law holds in M if, whenever x, y, z e M, 

and x + z = y + z, we have x = y. 

We then have an important criterion when the universal map y above is 
injective: 

If the cancellation law holds in M, then the canonical map y of M into its 

Grothendieck group is injective. 

Proof This is essentially the same proof as when one constructs the nega¬ 
tive integers from the natural numbers. We consider pairs (x,y) with xjgM 
and say that (x, y) is equivalent to (x', y') if y + x' = x + y'. We define addition 
of pairs componentwise. Then the equivalence classes of pairs form a group, 
whose 0 element is the class of (0,0) [or the class of (x, x) for any x e M]. The 
negative of an element (x, y) is (y, x). We have a homomorphism 

x i—► class of (0, x) 

which is injective, as one sees immediately by applying the cancellation law. 
Thus we have constructed a homomorphism of M into a group, which is 
injective. It follows that the universal homomorphism must also be injective. 

Examples. See the example of projective modules in Chapter III, §4. For 
a relatively fancy context, see: K. Kato, Logarithmic structures of Fontaine- 
Illusie, Algebraic Geometry, Analysis and Number Theory, Proc. JAMI Confer¬ 

ence, J. Igusa (Ed.), Johns Hopkins Press (1989) pp. 195-224. 

Given an abelian group A and a subgroup J5, it is sometimes desirable to 
find a subgroup C such that A = B © C. The next lemma gives us a condition 
under which this is true. 

Lemma 7.2. Let A ^ A' be a surjective homomorphism of abelian groups, 
and assume that A' is free. Let B be the kernel of /. Then there exists a 

subgroup C of A such that the restriction of f to C induces an isomorphism 

of C with A\ and such that A = B © C. 

Proof. Let {x;}ie/ be a basis of A\ and for each i e /, let xt be an element of 
A such that/(xf) = x\. Let C be the subgroup of A generated by all elements 
xi9ie /. If we have a relation 

= 0 
iel 
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with integers nh almost all of which are equal to 0, then applying/yields 

0 = £ «(/(*,) = 
ieJ ieJ 

whence all nt = 0. Hence our family {xf}ie/ is a basis of C. Similarly, one sees 
that if zeC and f(z) = 0 then z = 0. Hence B nC = 0. Let xe A. Since 
/(x) e A' there exist integers nhie /, such that 

/(*) = £ 
i g / 

Applying / to x — £ nfx(, we find that this element lies in the kernel of /, 
i e / 

say 

x — Yjnixi = b e B. 
ie/ 

From this we see that x e 5 + C, and hence finally that /l = B ® C is a direct 
sum, as contended. 

Theorem 7.3. Let A be a free abelian group, and /ct B be a subgroup. Then 

B is also a free abelian group, and r/ic cardinality of a basis of B is ^ the 

cardinality of a basis for A. Any two bases of B have the same cardinality. 

Proof. We shall give the proof only when A is finitely generated, say by a 
basis {x1?..., x„} (n ^ 1), and give the proof by induction on n. We have an 
expression of A as direct sum: 

A = Zxi © • • • © Zxn. 

Let/: A -+ Zxx be the projection, i.e. the homomorphism such that 

f(m1x1 + ••• + mnxn) = mlxl 

whenever mt e Z. Let Bt be the kernel of/| B. Then Bx is contained in the free 
subgroup <x2,..., x„>. By induction, Bx is free and has a basis with ^ n — 1 
elements. By the lemma, there exists a subgroup Cj isomorphic to a subgroup 
of Zxj (namely the image off\B) such that 

B = B{ © Cj. 

Since /(B) is either 0 or infinite cyclic, i.e. free on one generator, this proves 
that B is free. 

(When A is not finitely generated, one can use a similar transfinite argument. 
See Appendix 2, §2, the example after Zorn’s Lemma.) 

We also observe that our proof shows that there exists at least one basis 
of B whose cardinality is ^ n. We shall therefore be finished when we prove 
the last statement, that any two bases of B have the same cardinality. Let S 

be one basis, with a finite number of elements m. Let T be another basis, and 
suppose that T has at least r elements. It will suffice to prove that r ^ m (one 
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can then use symmetry). Let p be a prime number. Then B/pB is a direct 
sum of cyclic groups of order p, with m terms in the sum. Hence its order 
is pm. Using the basis T instead of S, we conclude that B/pB contains an r-fold 
product of cyclic groups of order p, whence pr ^ pm, and r ^ m, as was to 
be shown. (Note that we did not assume a priori that T was finite.) 

The number of elements in a basis of a free abelian group A will be called 
the rank of A. 

§8. FINITELY GENERATED ABELIAN GROUPS 

The groups referred to in the title of this section occur so frequently that it is 
worth while to state a theorem which describes their structure completely. 
Throughout this section we write our abelian groups additively. 

Let A be an abelian group. An element a e A is said to be a torsion element 
if it has finite period. The subset of all torsion elements of A is a subgroup of A 

called the torsion subgroup of A. (If a has period m and b has period n then, 
writing the group law additively, we see that a ± b has a period dividing mn.) 

The torsion subgroup of A is denoted by Ator, or simply At. An abelian 
group is called a torsion group if A = Ator, that is all elements of A are of finite 
order. 

A finitely generated torsion abelian group is obviously finite. We shall begin 

by studying torsion abelian groups. If A is an abelian group and p a prime number, 
we denote by A(p) the subgroup of all elements x e A whose period is a power 
of p. Then A(p) is a torsion group, and is a p-group if it is finite. 

Theorem 8.1 Let A be a torsion abelian group. Then A is the direct sum of 

its subgroups A(p) for all primes p such that A(p) 4= 0. 

Proof. There is a homomorphism 

© Hp) -> ^ 
P 

which to each element (xp) in the direct sum associates the element ^xp in A. 

We prove that this homomorphism is both surjective and injective. Suppose x 

is in the kernel, so ^xp = 0. Let q be a prime. Then 

*„ = 2 (~xp). 
p*q 

Let m be the least common multiple of the periods of elements xp on the right- 
hand side, with xq =£ 0 and p 4 q. Then mxq = 0. But also qrxq = 0 for some 
positive integer r. If d is the greatest common divisor of m, qr then dxq = 0, 
but d = 1, so xq = 0. Hence the kernel is trivial, and the homomorphism is 
injective. 
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As for the surjectivity, for each positive integer m9 denote by Am the kernel 
of multiplication by m, i.e. the subgroup of jc e A such that mx = 0. We prove: 

If m = rs with r, s positive relative prime integers, then Am = Ar + As. 

Indeed, there exist integers u, v such that ur + vs = 1. Then x = urx + vs;c, 
and urx e As while vsx e Ar, and our assertion is proved. Repeating this process 
inductively, we conclude: 

Ifm— FI Pe{p) then Am = 2 Ape{P). 
p\m p\m 

Hence the map (|) A(p) —» A is surjective, and the theorem is proved. 

Example. Let A = Q/Z. Then Q/Z is a torsion abelian group, isomorphic 
to the direct sum of its subgroups (Q/Z)(p). Each (Q/Z)(p) consists of those 
elements which can be represented by a rational number a/pk with a e Z and k 

some positive integer, i.e. a rational number having only a p-power in the 
denominator. See also Chapter IV, Theorem 5.1. 

In what follows we shall deal with finite abelian groups, so only a finite 
number of primes (dividing the order of the group) will come into play. In this 
case, the direct sum is “the same as” the direct product. 

Our next task is to describe the structure of finite abelian p-groups. Let 
r1?..., rs be integers ^ 1. A finite p-group A is said to be of type (pri,... ,pr*) 
if A is isomorphic to the product of cyclic groups of orders pri (i = 1,..., s). 

We shall need the following remark. 

Remark. Let A be a finite abelian p-group. Let b be an element of 
A, b ± 0. Let k be an integer ^ 0 such that pkb ± 0, and let pm be the period 
of pkb. Then b has period p*+m. [Proof. We certainly have pk+mb = 0, and if 
pnb = 0 then first n ^ k9 and second n ^ k +m, otherwise the period of pkb 

would be smaller than pm.] 

Theorem 8.2. Every finite abelian p-group is isomorphic to a product of 

cyclic p-groups. If it is of type (pn, ..., prs) with 

M='2= = rs = 

then the sequence of integers (rx, , rs) is uniquely determined. 

Proof. We shall prove the existence of the desired product by induction. 
Let ax e A be an element of maximal period. We may assume without loss of 
generality that A is not cyclic. Let Ax be the cyclic subgroup generated by ax, 

say of period pn. We need a lemma. 

Lemma 8.3. Let b be an element of A/Ax, of period pr. Then there exists a 

representative a of b in A which also has period pr. 
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Proof, Let b be any representative of h in A. Then prb lies in Au say 
prb = nai with some integer n ^ 0. We note that the period of E is ^ the period 
of b. If n = 0 we are done. Otherwise write n = pkp where p is prime to p. 

Then pxix is also a generator of Ax, and hence has period pr\ We may assume 
k ^ r,. Then pkpa{ has period pri'k. By our previous remarks, the element b 

has period v pr + n-fc 

whence by hypothesis, r 4- r{ — k ^ rt and r ^ k. This proves that there exists 
an element ceA1 such that prb = prc. Let a = b — c. Then a is a representative 
for B in A and pra = 0. Since period (a) ^ pr we conclude that a has period 
equal to pr. 

We return to the main proof. By induction, the factor group A/Ax has a 
product expression 

A/Ax = A2 x • • • x As 

into cyclic subgroups of orders pr\ ..., prs respectively, and we may assume 
r2 ;> • • • ^ rs. Let a{ be a generator for A{ (i = 2,..., s) and let a{ be a 
representative in A of the same period as af. Let A{ be the cyclic subgroup 
generated by a{. We contend that A is the direct sum of . . ., As. 

Given xeA, let x denote its residue class in A/Av There exist integers 
nti ^ 0 (i = 2,..., s) such that 

x = m2a2 + • • • + msas. 

Hence x — m2a2 — • • • - msas lies in Au and there exists an integer mi ^ 0 
such that 

x = Wjflj + m2a2 + • • ■ + msas. 

Hence Ax + • • • + As = A. 

Conversely, suppose that mu ..., ms are integers ^ 0 such that 

0 = mia1 + • • • + msas. 

Since at has period pn (i = 1,..., s), we may suppose that m, < pri. Putting 
a bar on this equation yields 

0 = m2a2 + • • • + msas. 

Since A/Ax is a direct product of A2,..., As we conclude that each mi = 0 for 
i = 2,..., s. But then mx = 0 also, and hence all mt = 0 (i = 1,..., s). From 
this it follows at once that 

(Ax + • • • + At) n Ai+l = 0 

for each i ^ 1, and hence that A is the direct product of Au ..., AS9 as desired. 
We prove uniqueness, by induction. Suppose that A is written in two ways 

as a direct sum of cyclic groups, say of type 

(Pri,...,prs) and 
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with r i = m'' = fs = 1 and m1 ^ - ^ mk ^ 1. Then p,4 is also a p-group, 
of order strictly less than the order of A, and is of type 

(Pri"1,...,prs~1) and (p—1,...^^"1), 

it being understood that if some exponent r, or mj is equal to 1, then the factor 
corresponding to 

pr,_1 or pmj~l 

in pA is simply the trivial group 0. By induction, the subsequence of 

(>*! - 1, ...,rs — 1) 

consisting of those integers ^ 1 is uniquely determined, and is the same as 
the corresponding subsequence of 

(ml - 1,..., mk - 1). 

In other words, we have r, — 1 = m, — 1 for all those integers i such that 
Ti — 1 or mx — 1 ^ 1. Hence r{ = m{ for all these integers i, and the two se¬ 
quences 

(pri,..., prs) and (pmi,..., pmk) 

can differ only in their last components which can be equal to p. These cor¬ 
respond to factors of type (p,..., p) occurring say v times in the first sequences 
and p times in the second sequence. Thus for some integer n, A is of type 

(pri,..., pr", p,. p) and (pri,..., pr", p,..., p). 

v times n times 

Thus the order of A is equal to 
pri+- +r„pV = pn + ‘ +rnpH, 

whence v = p, and our theorem is proved. 

A group G is said to be torsion free, or without torsion, if whenever an 
element x of G has finite period, then x is the unit element. 

Theorem 8.4. Let A be a finitely generated torsion-free abelian group. Then 

A is free. 

Proof Assume A # 0. Let S be a finite set of generators, and let xl9..., xn 

be a maximal subset of S having the property that whenever vl5 ..., vn are 
integers such that 

vixi + • * * + xn = 0, 

then Vy = 0 for all j. (Note that n ^ 1 since A ^ 0). Let B be the subgroup 
generated by xl5 ..., xn. Then B is free. Given ye A there exist integers 
mu ..., mn, m not all zero such that 

my + mlxl + • • • + mnxn = 0, 
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by the assumption of maximality on xl9...,xn. Furthermore, m # 0; other¬ 
wise all rrij = 0. Hence my lies in B. This is true for every one of a finite set of 
generators y of A, whence there exists an integer m # 0 such that mA cz B. 

The map 

xi—► mx 

of A into itself is a homomorphism, having trivial kernel since A is torsion free. 
Hence it is an isomorphism of A onto a subgroup of B. By Theorem7.3 of the 
preceding section, we conclude that mA is free, whence A is free. 

Theorem 8.5. Let A be a finitely generated abelian group, and let Ator be 

the subgroup consisting of all elements of A having finite period. Then Ator is 

finite, andA/Ator is free. There exists a free subgroup B of A such that A is the 

direct sum of AXor and B. 

Proof. We recall that a finitely generated torsion abelian group is obviously 
finite. Let A be finitely generated by n elements, and let F be the free abelian 
group on n generators. By the universal property, there exists a surjective 
homomorphism 

F A 

of F onto A. The subgroup (p~l(Ator) of F is finitely generated by Theorem 7.3. 
Hence Ator itself is finitely generated, hence finite. 

Next, we prove that A/Ator has no torsion. Let x be an element of A/Ator 
such that mx = 0 for some integer m 0. Then for any representative of x of 
x in A, we have mx e Ator, whence qmx = 0 for some integer q ± 0. Then 
x E Ator, so x = 0, and A/Ator is torsion free. By Theorem 8.4, A/Ator is free. 
We now use the lemma of Theorem 7.3 to conclude the proof. 

The rank of A/Ator is also called the rank of A. 

For other contexts concerning Theorem 8.5, see the structure theorem for 
modules over principal rings in Chapter III, §7, and Exercises 5, 6, and 7 of 
Chapter III. 

§9. THE DUAL GROUP 

Let A be an abelian group of exponent m ^ 1. This means that for each 
element xeAwe have mx = 0. Let Zm be a cyclic group of order m. We denote 
by AA, or Hom(A, Zm) the group of homomorphisms of A into Zm, and call it 
the dual of A. 

Let/: A B be a homomorphism of abelian groups, and assume both have 
exponent m. Then /induces a homomorphism 

/A :£A-* A\ 
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Namely, for each i^e5A we define/A(i/0 = °/. It is trivially verified that/A 
is a homomorphism. The properties 

idA = id and (/° g)A = gA ° /A 

are trivially verified. 

Theorem 9.1. If A is a finite abelian group, expressed as a product 

A = B x C, r/zen AA is isomorphic to BA x CA {under the mapping described 

below). A finite abelian group is isomorphic to its own dual. 

Proof. Consider the two projections 

B x C 

£ C 

of B x C on its two components. We get homomorphisms 

{B x C)A 

£A CA 

and we contend that these homomorphisms induce an isomorphism of BA x CA 
onto (Z? x C)A. 

In fact, let t//j, be in Hom(Z?, Zw) and Hom(C, Zm) respectively. Then 
(i/fj, ^2) E A x CA, and we have a corresponding element of (B X C)A by 
defining 

jO = <AiM + 
for (;t, y) e Z? x C. In this way we get a homomorphism 

BA x CA (B x C)A. 

Conversely, let if/ e (B x C)A. Then 

il/(x9y) = il/{x, 0) + <A(0,y). 

The function ^ on 5 such that = z/Kjc, 0) is in Z?A, and similarly the 
function if/2 on C such that z/f2(y) = y) is in CA. Thus we get a homomorphism 

(B x C)A BA x CA, 

which is obviously inverse to the one we defined previously. Hence we obtain 
an isomorphism, thereby proving the first assertion in our theorem. 

We can write any finite abelian group as a product of cyclic groups. Thus 
to prove the second assertion, it will suffice to deal with a cyclic group. 

Let A be cyclic, generated by one element x of period n. Then n\m9 and Zm 
has precisely one subgroup of order n, Z„, which is cyclic (Proposition 4.3(iv)). 
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If ij/: A —> Zm is a homomorphism, and x is a generator for A, then the period 
of x is an exponent for ik(x), so that i/s(x), and hence is contained in Zn. 

Let y be a generator for Zn. We have an isomorphism 

i//l: A -* Zn 

such that ^j(x) = y. For each integer k with 0 ^ k < n we have the homo¬ 
morphism kil/1 such that 

(/ci/^X*) = k • ^i(x) = ^(fcx). 

In this way we get a cyclic subgroup of AA consisting of the n elements kipl 

(0 ^ k < n). Conversely, any element of AA is uniquely determined by its 
effect on the generator x, and must map x on one of the n elements 
lex (0 ^ k < n) of Zn. Hence if/ is equal to one of the maps These maps 

constitute the full group AA, which is therefore cyclic of order n, generated by 
t/q. This proves our theorem. 

In considering the dual group, we take various cyclic groups Zm. There are 
many applications where such groups occur, for instance the group of m-th roots 
of unity in the complex numbers, the subgroup of order m of Q/Z, etc. 

Let A, A' be two abelian groups. A bilinear map of A x A' into an abelian 
group C is a map 

A x A' -> C 

denoted by 

(x, x') i—► <x, x'> 

having the following property. For each xeA the function x'h-><x,x') 
is a homomorphism, and similarly for each x' e A' the function x ► <x, x') is a 
homomorphism. 

As a special case of a bilinear map, we have the one given by 

A x Hom(/l, C) -+ C 

which to each pair (x,/) with xeA and/e Hom(/4, C) associates the element 
/(x) in C. 

A bilinear map is also called a pairing. 
An element xeA is said to be orthogonal (or perpendicular) to a subset S' 

of A' if <x, x'> = 0 for all x' e S'. It is clear that the set of xeA orthogonal to S' 

is a subgroup of A. We make similar definitions for elements of A', orthogonal 
to subsets of A. 

The kernel of our bilinear map on the left is the subgroup of A which is 
orthogonal to all of A'. We define its kernel on the right similarly. 

Given a bilinear map A x A' -► C, let B, B' be the respective kernels of our 
bilinear map on the left and right. An element x' of A' gives rise to an element of 
Hom(/l, C) given by xi—► <x, x'), which we shall denote by ipx>. Since ij/^ 

vanishes on B we see that il/x> is in fact a homomorphism of A/B into C. 
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Furthermore, ipx- = tpf' if x\ y' are elements of A such that 

x' = y' (mod B'). 

Hence ip is in fact a homomorphism 

0 -► A/B' -> Hom(^4/B, C), 

which is injective since we defined B1 to be the group orthogonal to A. 

Similarly, we get an injective homomorphism 

0 -* A/B -> Hom(/4'/B', C). 

Assume that C is cyclic of order m. Then for any x' e A we have 

Wv = <Amx- = 0, 

whence A'/B' has exponent m. Similarly, A/B has exponent m. 

Theorem 9.2. Let A x A -*■ C be a bilinear map of two abelian groups into 

a cyclic group C of order m. Let B, B' be its respective kernels on the left and 

right. Assume that A'/B' is finite. Then A/B is finite, and A'/B' is isomorphic 

to the dual group of A/B (under our map ip). 

Proof. The injection of A/B into Horn (A'/B', C) shows that A/B is finite. 

Furthermore, we get the inequalities 

ord A/B S ord(A'/fl')A = ord A'/B' 

and 

ord A'/B' S ord(A/fi)A = ord A/B. 

From this it follows that our map ip is bijective, hence an isomorphism. 

Corollary 9.3. Let A be a finite abelian group, B a subgroup, AA the dual 

group, and BL the set of <p e AA such that <p(B) = 0. Then we have a natural 

isomorphism of AA/B - with BA. 

Proof. This is a special case of Theorem 9.2. 

§10. INVERSE LIMIT AND COMPLETION 

Consider a sequence of groups {G„} (n = 0, 1, 2,...), and suppose given 
for all n § 1 homomorphisms 

fn'- Gn-\- 

Suppose first that these homomorphisms are surjective. We form infinite 
sequences 

x = (*0, xx, x2,.. .) such that = /„(*„)■ 
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By the assumption of surjectivity, given xn a Gn we can always lift xn to Gn+i 

via fn+ j, so such infinite sequences exist, projecting to any given x0. We can 
define multiplication of such sequences componentwise, and it is then imme¬ 
diately verified that the set of sequences is a group, called the inverse limit 
of the family {(Gn,fn)}. We denote the inverse limit by lim (Gn,fn), or simply 
lim Gn if the reference to fn is clear. 

Example. Let A be an additive abelian group. Let p be a prime number. 
Let A —» A denote multiplication by p. We say that A is /^-divisible if pA is 
surjective. We may then form the inverse limit by taking An= A for all n, and 
fn ~ Pa f°r n- The inverse limit is denoted by Vp{A). We let Tp(A) be the 
subset of Vp(A) consisting of those infinite sequences as above such that 
x0 = 0. Let A[pn] be the kernel of pA. Then 

Tp(A) = lim A[pn+l]. 

The group Tp(A) is called the Tate group associated with the p-divisible group 
A. It arose in fairly sophisticated contexts of algebraic geometry due to Deuring 
and Weil, in the theory of elliptic curves and abelian varieties developed in the 
1940s, which are far afield from this book. Interested readers can consult books 
on those subjects. 

The most common p-divisible groups are obtained as follows. First, let A be 
the subgroup of Q/Z consisting of those rational numbers (mod Z) which can 
be expressed in the form a/pk with some positive integer k, and a a Z. Then A 
is p-divisible. 

Second, let p[pn] be the group ofp"-th roots of unity in the complex numbers. 
Let p[p°°] be the union of all \i[pn] for all n. Then pip00] is p-divisible, and 
isomorphic to the group A of the preceding paragraph. Thus 

Tp(p) = lim p[p*]. 

These groups are quite important in number theory and algebraic geometry. We 
shall make further comments about them in Chapter III, §10, in a broader context. 

Example. Suppose given a group G. Let {Hn} be a sequence of normal 
subgroups such that HnD Hn+l for all n. Let 

fn'- G/Hn -* G/Hn-{ 

be the canonical homomorphisms. Then we may form the inverse limit lim G/Hn. 

Observe that G has a natural homomorphism 

q : G -» lim G/Hn, 

which sends an element x to the sequence where xn = image of 
x in G/Hn. 

Example. Let Gn = Z/pn+1Z for each n ^ 0. Let 

/„: Z/pn+lZ-+ Z/pnZ 

be the canonical homomorphism. Then fn is surjective, and the limit is called 
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the group of p-adic integers, denoted by Zp. We return to this in Chapter III, 
§10, where we shall see that Zp is also a ring. 

After these examples, we want to consider the more general situation when 
one deals not with a sequence but with a more general type of family of groups, 
which may not be commutative. We therefore define inverse limits of groups in 
general. 

Let / be a set of indices. Suppose given a relation of partial ordering in 7, 
namely for some pairs (/, j) we have a relation i ^ j satisfying the conditions: 
For all i,7, k in 7, we have i ^ /; if i g j and j ^ k then i ^ /c; if i ^ j and j ^ i 

then i = j. We say that 7 is directed if given i, j e 7, there exists k such that 

i ^ k and j ^ k. Assume that 7 is directed. By an (inversely) directed family 
of groups, we mean a family {G,}^/ and for each pair i = j a homomorphism 

such that, whenever k ^ i ^ j we have 

/WWi and /j = id. 

Let G = FIg, be the product of the family. Let T be the subset of G consisting 
of all elements (jcf) with xt e G, such that for all i and j ^ i we have 

= xr 

Then T contains the unit element, and is immediately verified to be a subgroup 
of G. We call T the inverse limit of the family, and write 

T = lim Gr 

Example. Let G be a group. Let 5 be the family of normal subgroups of 
finite index. If 77, K are normal of finite index, then so is 77 H K, so J is a 
directed family. We may then form the inverse limit lim G/H with 77 e J. There 
is a variation on this theme. Instead of fF, let p be a prime number, and let $p 

be the family of normal subgroups of finite index equal to a power of p. Then 
the inverse limit with respect to subgroups 77 e $p can also be taken. (Verify 
that if 77, K are normal of finite p-power index, so is their intersection.) 

A group which is an inverse limit of finite groups is called profinite. 

Example from applications. Such inverse limits arise in Galois theory. 
Let k be a field and let A be an infinite Galois extension. For example, k = Q 
and A is an algebraic closure of Q. Let G be the Galois group; that is, the group 
of automorphisms of A over k. Then G is the inverse limit of the factor groups 
G/77, where 77 ranges over the Galois groups of A over K, with K ranging over 
all finite extensions of k contained in A. See the Shafarevich conjecture in the 
chapter on Galois theory, Conjecture 14.2 of Chapter VI. 

Similarly, consider a compact Riemann surface X of genus ^ 2. Let 
p : X' —» X be the universal covering space. Let C(A") = F and C{Xf) = F' be 
the function fields. Then there is an embedding n\(X) c—> Ga\(Ff/F). It is 
shown in complex analysis that n\(X) is a free group with one commutator 
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relation. The full Galois group of F'/F is the inverse limit with respect to the 
subgroups of finite index, as in the above general situation. 

Completion of a group 

Suppose now that we are given a group G, and first, for simplicity, suppose 
given a sequence of normal subgroups {Hr} with Hr D Hr+l for all n, and such 
that these subgroups have finite index. A sequence {*„} in G will be called a 
Cauchy sequence if given Hr there exists N such that for all m, n ^ N we have 
xnx~l e Hr. We say that {xn} is a null sequence if given r there exists N such 
that for all n ^ N we have xn e Hr. As an exercise, prove that the Cauchy 
sequences form a group under termwise product, and that the null sequences 
form a normal subgroup. The factor group is called the completion of G (with 
respect to the sequence of normal subgroups). 

Observe that there is a natural homomorphism of G into its completion; 
namely, an element x e G maps to the sequence (jc, jc, jc,. . .) modulo null 
sequences. The kernel of this homomorphism is the intersection H//r, so if this 
intersection is the unit element of G, then the map of G into its completion is 
an embedding. 

Theorem 10.1. The completion and the inverse limit Jim G/Hr are isomorphic 

under natural mappings. 

Proof. We give the maps. Let x = {jc„} be a Cauchy sequence. Given r, 
for all n sufficiently large, by the definition of Cauchy sequence, the class of xn 

mod Hr is independent of n. Let this class be jc(r). Then the sequence 
(jc(1), jc(2), .. .) defines an element of the inverse limit. Conversely, given an 

element (jtj, x2,. . .) in the inverse limit, with xn e G/Hn, let jc„ be a representa¬ 
tive in G. Then the sequence {jc„} is Cauchy. We leave to the reader to verify 
that the Cauchy sequence {jc„} is well-defined modulo null sequences, and that 
the maps we have defined are inverse isomorphisms between the completion and 
the direct limit. 

We used sequences and denumerability to make the analogy with the con¬ 
struction of the real numbers clearer. In general, given the family ff, one considers 
families {xH}H^<$ of elements xH e G. Then the condition for a Cauchy family 
reads: given H0e. & there exists Hx e such that if K, Kf are contained in Hu 

then xKx^ e H0. In practice, one can work with sequences, because groups that 
arise naturally are such that the set of subgroups of finite index is denumerable. 
This occurs when the group G is countably generated. 

More generally, a family {H,} of normal subgroups of finite index is called 
cofinal if given H e 5 there exists i such that Ht C H. Suppose that there exists 
such a family which is denumerable; that is, / = 1,2,... ranges over the positive 
integers. Then it is an exercise to show that there is an isomorphism 

lim G/Hi « Hm G/H, 
i HeS 
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or equivalently, that the completion of G with respect to the sequence {Ht} is 
“the same” as the completion with respect to the full family . We leave this 
verification to the reader. 

The process of completion is frequent in mathematics. For instance, we shall 
mention completions of rings in Chapter III, §10; and in Chapter XII we shall 
deal with completions of fields. 

§11. CATEGORIES AND FUNCTORS 

Before proceeding further, it will now be convenient to introduce some new 
terminology. We have met already several kinds of objects: sets, monoids, 
groups. We shall meet many more, and for each such kind of objects we define 
special kinds of maps between them (e.g. homomorphisms). Some formal 
behavior will be common to all of these, namely the existence of identity maps 
of an object onto itself, and the associativity of maps when such maps occur in 
succession. We introduce the notion of category to give a general setting for all 
of these. 

A category G consists of a collection of objects Ob(G); and for two objects 
A, Be Ob(G) a set Mor/4, B) called the set of morphisms of A into B; and for 
three objects A, B, C e Ob(G) a law of composition (i.e. a map) 

Mor(£, C) x Mor/4, B) - Mor(A, C) 

satisfying the following axioms: 

CAT 1. Two sets Mor(A, B) and Mor/4', B') are disjoint unless A = A' 

and B = B\ in which case they are equal. 

CAT 2. For each object A of G there is a morphism idx g Mor(A, A) 
which acts as left and right identity for the elements of Mor(A, B) and 
Mor(£, A) respectively, for all objects B e Ob(G). 

CAT 3. The law of composition is associative (when defined), i.e. given 
/g Mor(A, £), g e Mor(£, C) and h e Mor(C, D) then 

(hog)of= ho(gof\ 

for all objects A, £, C, D of G. 
Here we write the composition of an element g in Mor(£, C) and an element 

/in Mor/4, B) as g © f to suggest composition of mappings. In practice, in this 
book we shall see that most of our morphisms are actually mappings, or closely 
related to mappings. 

The collection of all morphisms in a category G will be denoted by Ar(G) 
(“arrows of G”). We shall sometimes use the symbols “/GAr(G)” to mean 
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that / is a morphism of (2, i.e. an element of some set Mor(/l, B) for some 
A, Be Ob((2). 

By abuse of language, we sometimes refer to the collection of objects as the 
category itself, if it is clear what the morphisms are meant to be. 

An element/e Mor(A, B) is also written f: A -► B or 

A morphism / is called an isomorphism if there exists a morphism g: B -* A 

such that g o/and/© g are the identities in Mor(A, A) and Mor(£, B) respec¬ 
tively. If A = B, then we also say that the isomorphism is an automorphism. 

A morphism of an object A into itself is called an endomorphism. The set of 
endomorphisms of A is denoted by End(/4). It follows at once from our axioms 
that End(^) is a monoid. 

Let A be an object of a category (2. We denote by Aut(/4) the set of auto¬ 
morphisms of A. This set is in fact a group, because all of our definitions are 
so adjusted so as to see immediately that the group axioms are satisfied (associa¬ 
tivity, unit element, and existence of inverse). Thus we now begin to see some 
feedback between abstract categories and more concrete ones. 

Examples. Let S be the category whose objects are sets, and whose 
morphisms are maps between sets. We say simply that S is the category of sets. 
The three axioms CAT 1, 2, 3 are trivially satisfied. 

Let Grp be the category of groups, i.e. the category whose objects are groups 

and whose morphisms are group-homomorphisms. Here again the three axioms 
are trivially satisfied. Similarly, we have a category of monoids, denoted by 
Mon. 

Later, when we define rings and modules, it will be clear that rings form a 
category, and so do modules over a ring. 

It is important to emphasize here that there are categories for which the set 
of morphisms is not an abelian group. Some of the most important examples 
are: 

The category (3°, whose objects are open sets in Rn and whose morphisms 
are continuous maps. 

The category C00 with the same objects, but whose morphisms are the C00 
maps. 

The category Hoi, whose objects are open sets in Cn, and whose morphisms 
are holomorphic maps. In each case the axioms of a category are verified, because 
for instance for Hoi, the composite of holomorphic maps is holomorphic, and 
similarly for the other types of maps. Thus a C°-isomorphism is a continuous 
map/: U V which has a continuous inverse g: V —> U. Note that a map may 
be a C°-isomorphism but not a C°°-isomorphism. For instance, jc i—^ jc3 is a C°- 
automorphism of R, but its inverse is not differentiable. 

In mathematics one studies manifolds in any one of the above categories. 
The determination of the group of automorphisms in each category is one of the 
basic problems of the area of mathematics concerned with that category. In 
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complex analysis, one determines early the group of holomorphic automorphisms 
of the unit disc as the group of all maps 

with 6 real and c e C, |c| < 1. 

Next we consider the notion of operation in categories. First, observe that 
if G is a group, then the G-sets form a category, whose morphisms are the maps 
/: S —» S' such that f(xs) = xf(s) for x a G and s e S. 

More generally, we can now define the notion of an operation of a group G 
on an object in any category. Indeed, let (2 be a category and AeOb(G). 
By an operation of G on A we shall mean a homomorphism of G into the group 
Aut(A). In practice, an object A is a set with elements, and an automorphism 
in Aut(A) operates on A as a set, i.e. induces a permutation of A. Thus, if we 
have a homomorphism 

p : G —» Aut(A), 

then for each x e G we have an automorphism p(x) of A which is a permutation 
of A. 

An operation of a group G on an object A is also called a representation of 
G on A, and one then says that G is represented as a group of automorphisms 
of A. 

Examples. One meets representations in many contexts. In this book, we 
shall encounter representations of a group on finite-dimensional vector spaces, 
with the theory pushed to some depth in Chapter XVIII. We shall also deal with 
representations of a group on modules over a ring. In topology and differential 
geometry, one represents groups as acting on various topological spaces, for 
instance spheres. Thus if X is a differential manifold, or a topological manifold, 
and G is a group, one considers all possible homomorphims of G into Aut(X), 
where Aut refers to whatever category is being dealt with. Thus G may be 
represented in the group of C°-automorphims, or C°°-automorphisms, or analytic 
automorphisms. Such topological theories are not independent of the algebraic 
theories, because by functoriality, an action of G on the manifold induces an 
action on various algebraic functors (homology, tf-functor, whatever), so that 
topological or differential problems are to some extent analyzable by the functorial 
action on the associated groups, vector spaces, or modules. 

Let A, B be objects of a category Ct. Let Iso(A, B) be the set of isomorphisms 
of A with B. Then the group Aut(B) operates on Iso(A, B) by composition; 
namely, if u e Iso(A, B) and v e Aut(£), then (vyu)\-^v°u gives the operation. 
If Uo is one element of Iso(A, B), then the orbit of u0 is all of Iso(A, B), so 
v \-> v ° u0 is a bijection Aut(Z?) —» Iso(A, B). The inverse mapping is given by 
u Uq Uq l. This trivial formalism is very basic, and is applied constantly to 
each one of the classical categories mentioned above. Of course, we also have 
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a similar bijection on the other side, but the group Aut(A) operates on the right 

of Iso(A, B) by composition. Furthermore, if u: A —» B is an isomorphism, then 
Aut(A) and Aut(Z?) are isomorphic under conjugation, namely 

w i-» uwu-1 is an isomorphism Aut(A) —> Aut(Z?). 

Two such isomorphisms differ by an inner automorphism. One may visualize 
this system via the following commutative diagram. 

Let p : G —> Aut(A) and p': G —> Aut(A') be representations of a group G 

on two objects A and A' in the same category. A morphism of p into p' is a 
morphism h: A A' such that the following diagram is commutative for all 
x e G: 

It is then clear that representations of a group G in the objects of a category Q. 

themselves form a category. An isomorphism of representations is then an 
isomorphism h : A A' making the above diagram commutative. An isomor¬ 
phism of representations is often called an equivalence, but I don’t like to tamper 
with the general system of categorical terminology. Note that if h is an isomor¬ 
phism of representations, then instead of the above commutative diagram, we 
let [h] be conjugation by h, and we may use the equivalent diagram 

r Aut(A) 

Aut(A') 

Consider next the case where (2 is the category of abelian groups, which we 
may denote by Ab. Let A be an abelian group and G a group. Given an operation 
of G on the abelian group A, i.e. a homomorphism 

p : G —> Aut(A), 

let us denote by x • a the element px(a). Then we see that for all x, y e G, a, 
b e A, we have: 
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x-(y • a) = (xy) •a, x • (a + b) = x • a + x • b, 

e • a = a, x • 0 = 0. 

We observe that when a group G operates on itself by conjugation, then not 
only does G operate on itself as a set but also operates on itself as an object in the 
category of groups, i.e. the permutations induced by the operation are actually 
group-automorphisms. 

Similarly, we shall introduce later other categories (rings, modules, fields) 
and we have given a general definition of what it means for a group to operate 
on an object in any one of these categories. 

Let G be a category. We may take as objects of a new category G the 
morphisms of G. If/: A -+ B and/': A -» B' are two morphisms in G (and 
thus objects of G), then we define a morphism/-*/' (in G) to be a pair of 
morphisms (<p, ip) in G making the following diagram commutative: 

In that way, it is clear that G is a category. Strictly speaking, as with maps of 
sets, we should index (<p, \p) by / and /' (otherwise CAT 1 is not necessarily 
satisfied), but such indexing is omitted in practice. 

There are many variations on this example. For instance, we could restrict 
our attention to morphisms in G which have a fixed object of departure, or those 
which have a fixed object of arrival. 

Thus let A be an object of G, and let GiA be the category whose objects are 
morphisms 

f:X^A 

in G, having A as object of arrival. A morphism in dA from /: X -* A to 
g : Y -► A is simply a morphism 

h: X - Y 

in G such that the diagram is commutative: 

X—'■Y 

Universal objects 

Let G be a category. An object P of G is called universally attracting if there 
exists a unique morphism of each object of G into P9 and is called universally 
repelling if for every object of G there exists a unique morphism of P into this 
object. 
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When the context makes our meaning clear, we shall call objects P as above 
universal. Since a universal object P admits the identity morphism into itself, 
it is clear that if P, P' are two universal objects in C, then there exists a unique 
isomorphism between them. 

Examples. Note that the trivial group consisting only of one element is 
universal (repelling and attracting) in the category of groups. Similarly, in 
Chapter II on rings, you will see that the integers Z are universal in the category 
of rings (universally repelling). 

Next let S be a set. Let G be the category whose objects are mapsf:S-+A 

of S' into abelian groups, and whose morphisms are the obvious ones: If 
/: S A and /': S -> A' are two maps into abelian groups, then a morphism 
of / into /' is a (group) homomorphism g: A -* A' such that the usual dia¬ 
gram is commutative, namely g °f = /'. Then the free abelian group generated 
by S is universal in this category. This is a reformulation of the properties we 
have proved about this group. 

Let M be a commutative monoid and let y: M K(M) be the canonical 
homomorphism of M into its Grothendieck group. Then y is universal in the 
category of homomorphisms of M into abelian groups. 

Throughout this book in numerous situtaions, we define universal objects. 
Aside from products and coproducts which come immediately after these exam¬ 
ples, we have direct and inverse limits; the tensor product in Chapter XVI, §1; 
the alternating product in Chapter XIX, §1; Clifford algebras in Chapter XIX, 
§4; ad lib. 

We now turn to the notion of product in an arbitrary category. 

Products and coproducts 

Let (2 be a category and let A, B be objects of (2. By a product of A, B in (2 
one means a triple (P,/, g) consisting of an object P in (2 and two morphisms 

P 

A B 

satisfying the following condition: Given two morphisms 

cp: C -► A and ij/: C B 

in (2, there exists a unique morphism h : C -+ P which makes the following 
diagram commutative: 

A 

In other words, (p = /© h and ^ = g © h. 
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More generally, given a family of objects {A£}£e/ in G, a product for this 
family consists of (P, {/•},• e/), where P is an object in G and {fi}ieI is a 
family of morphisms 

fi '.P Ai9 

satisfying the following condition: Given a family of morphisms 

Qi-C^> Ai9 

there exists a unique morphism h: C -> P such that /• ° h = g( for all i. 

Example. Let G be the category of sets, and let {Aj/e/ be a family of sets. 

Let A = rU be their cartesian product, and let pt: A At be the projection 
ie/ 

on the /-th factor. Then (A, {pf) clearly satisfies the requirements of a product 
in the category of sets. 

As a matter of notation, we shall usually write A x B for the product of two 
objects in a category, and Y[ A( for the product of an arbitrary family in a 

iel 
category, following the same notation as in the category of sets. 

Example. Let {Gz}ze/ be a family of groups, and let G = Yl Gz be their direct 

product. Let p{ : G —» Gz be the projection homomorphism. Then these constitute 

a product of the family in the category of groups. 

Indeed, if {#, :G' -► GJig/ is a family of homomorphisms, there is a unique 
homomorphism# : G' -► Y[ G, which makes the required diagram commutative. 
It is the homomorphism such that #(x')i = gf*') for *' e G' and each i e I. 

Let A, B be objects of a category G. We note that the product of A, B is 
universal in the category whose objects consist of pairs of morphisms 
/: C A and g: C —> B in G, and whose morphisms are described as follows. 
Let/' : C' —> A and C' —> Z? be another pair. Then a morphism from the 
first pair to the second is a morphism h: C —> G' in G, making the following 
diagram commutative: 

C 

The situation is similar for the product of a family {Az}/e/. 
We shall also meet the dual notion: Let {AJie/ be a family of objects in a 

category G. By their coproduct one means a pair (S, {/}ie/) consisting of an 
object S and a family of morphisms 

{fr.At-s}, 
satisfying the following property. Given a family of morphisms {g(: Ax -> C}, 
there exists a unique morphism h:S ^ C such that h of = gt for all i. 
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In the product and coproduct, the morphism h will be said to be the 
morphism induced by the family {<gJ. 

Examples. Let S be the category of sets. Then coproducts exist. For 
instance, let 5, S' be sets. Let T be a set having the same cardinality as S' and 
disjoint from S. Let : S -► S be the identity, and f2 : S' -► T be a bijection. 
Let U be the union of S and T. Then (U,fuf2) is a coproduct for 5, S', viewing 
fuf2 as maps into U. 

Let S0 be the category of pointed sets. Its objects consist of pairs (S, x) 

where 5 is a set and x is an element of S. A morphism of (S, x) into (5', x') in this 
category is a map g :S -+ S' such that g(x) = x'. Then the coproduct of (S, x) 
and (S', x') exists in this category, and can be constructed as follows. Let T be 
a set whose cardinality is the same as that of S', and such that T fl S = {x}. 
Let U = S U T, and let 

/i: (S, *)-(£/, x) 

be the map which induces the identity on S. Let 

/2:(S', x')^(L, x) 

be a map sending x' to x and inducing a bijection of S' — {x'} on f - {x}. 
Then the triple ((U, x),fx,f2) is a coproduct for (S, x) and (S', x') in the category 
of pointed sets. 

Similar constructions can be made for the coproduct of arbitrary families 
of sets or pointed sets. The category of pointed sets is especially important in 
homotopy theory. 

Coproducts are universal objects. Indeed, let (2 be a category, and let {Aj 
be a family of objects in (2. We now define (2. We let objects of (2 be the families 
of morphisms {f: —» B}ieI and given two such families, 

{f:Ai-^B} and {/J: B'}, 

we define a morphism from the first into the second to be a morphism (p : B -+ B' 

in (2 such that (p° f = f\ for all i. Then a coproduct of {At} is simply a universal 
object in (2. 

The coproduct of {AJ will be denoted by 

IM- 
16/ 

The coproduct of two objects A, B will also be denoted by A II B. 

By the general uniqueness statement, we see that it is uniquely determined, up 
to a unique isomorphism. 

Example. Let R be the category of commutative rings. Given two such 
rings A, B one may form the tensor product, and there are natural ring-homo- 
morphisms A A ® B and B —» A ® B such that 

a a ® 1 and b i-> 1 ® b for a e A and b e B. 

Then the tensor product is a coproduct in the category of commutative rings. 
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Fiber products and coproducts 
Pull-backs and push-outs 

Let G be a category. Let Z be an object of G. Then we have a new category, 
that of objects over Z, denoted by Gz. The objects of Gz are morphisms: 

f:X ->Zin G 

A morphism from / to g : Y -► Z in Gz is merely a morphism h: X ^ Y in G 
which makes the following diagram commutative. 

X—h—+Y 

Z 

A product in Gz is called the fiber product of / and g in G and is denoted 
by X X ZL, together with its natural morphisms on X, Y over Z, which are 
sometimes not denoted by anything, but which we denote by pl9 p2. 

Fibered products and coproducts exist in the category of abelian groups 

The fibered product of two homomorphisms /: X —> Z and g : Y —> Z is the 
subgroup ofXxf consisting of all pairs (jc, y) such that 

/(*) = g(y)- 

The coproduct of two homomorphisms /: Z -+ X and g: Z -* T is the 
factor group (A" © Y)jW where W is the subgroup of X © Y consisting of all 
elements (/(z), —g(z)) with zeZ. 

We leave the simple verification to the reader (see Exercises 50-56). 

In the fiber product diagram, one also calls px the pull-back of g by /, and 
p2 the pull-back of /by g. The fiber product satisfies the following universal 
mapping property: 

Given any object T in G and morphisms making the following diagram 
commutative: 

X 

z 
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there exists a unique morphism T —» X x z Y making the following diagram 

commutative: 
X xzY 

Dually, we have the notion of coproduct in the category of morphisms f\Z-*X 

with a fixed object Z as the object of departure of the morphisms. This category 
could be denoted by Gz. We reverse the arrows in the preceding discussion. 
Given two objects / and g: Z Y in this category, we have the notion of their 
coproduct. It is denoted by X Uz Y, with morphisms quq2, as in the following 
commutative diagram: 

satisfying the dual universal property of the fiber product. We call it the fibered 
coproduct. We call qx the push-out of g by /, and q2 the push-out of /by g. 

Example. Let S be the category of sets. Given two maps /, g as above, 
their product is the set of all pairs (x, y) e X x Y such that f(x) = g(y). 

Functors 

Let G, (B be categories. A covariant functor F of G into (B is a rule which 
to each object A in G associates an object F(A) in (B, and to each morphism 
f.A^B associates a morphism F(f): F{A) -► F(B) such that: 

FUN 1. For all A in G we have F(id^) = idF{A). 

FUN 2. Iff: A B and g : B -+ C are two morphisms of G then 

F(9 °f) ~ F(g) o F(f). 

Example. If to each group G we associate its set (stripped of the group 
structure) we obtain a functor from the category of groups into the category of 
sets, provided that we associate with each group-homomorphism itself, viewed 
only as a set-theoretic map. Such a functor is called a stripping functor or 
forgetful functor. 

We observe that a functor transforms isomorphisms into isomorphisms, 
because/° g = id implies F(f) o F(g) = id also. 

We can define the notion of a contravariant functor from G into (B by using 
essentially the same definition, but reversing all arrows F(/), i.e. to each morph¬ 
ism /: A -► B the contravariant functor associates a morphism 
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F(f): F(B) -+ F(A) 

(going in the opposite direction), such that, if 

f:A-+B and g:B^C 

are morphisms in (2, then 

F(g of) = F(f)oF(g). 

Sometimes a functor is denoted by writing /* instead of F(f) in the case 
of a covariant functor, and by writing /* in the case of a contravariant 
functor. 

Example. The association S i-> Fa5(5) is a covariant functor from the 
category of sets to the category of abelian groups. 

Example. The association which to each group associates its completion 
with respect to the family of subgroups of finite index is a functor from the 
category of groups to the category of groups. 

Example. Let p be a prime number. Let (3 be the category of /^-divisible 
abelian groups. The association A i-» Tp(A) is a covariant functor of <3 into 
abelian groups (actually Z^-modules). 

Example. Exercise 49 will show you an example of the group of auto¬ 
morphisms of a forgetful functor. 

Example. Let Man be the category of compact manifolds. Then the homol¬ 
ogy is a covariant functor from Man into graded abelian groups. The cohomology 
is a contravariant functor into the category of graded algebras (over the ring of 
coefficients). The product is the cup product. If the cohomology is taken with 
coefficients in a field of characteristic 0 (for simplicity), then the cohomology 
commutes with products. Since cohomology is contravariant, this means that the 
cohomology of a product is the coproduct of the cohomology of the factors. It 
turns out that the coproduct is the tensor product, with the graded product, which 
also gives an example of the use of tensor products. See M. Greenberg and 
J. Harper, Algebraic Topology (Benjamin-Addison-Wesley), 1981, Chapter 29. 

Example. Let (3 be the category of pointed topological spaces (satisfying 
some mild conditions), i.e. pairs (X, jc0) consisting of a space X and a point jc0. 
In topology one defines the connected sum of such spaces (X, jt0) and (Y, y0), 
glueing X, Y together at the selected point. This connected sum is a coproduct 
in the category of such pairs, where the morphisms are the continuous maps 
/: X Y such that /(;c0) = y0- Let ttx denote the fundamental group. Then 
(X, jt0) i-» tt1 (X, ;t0) is a covariant functor from (3 into the category of groups, 
commuting with coproducts. (The existence of coproducts in the category of 
groups will be proved in §12.) 
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Example. Suppose we have a morphism /: X —» Y in a category C. By a 
section of /, one means a morphism g: Y X such that g ° f = id. Suppose 
there exists a covariant functor H from this category to groups such that 
H(Y) = {e} and H(X) =£ {e}. Then there is no section of /. This is immediate 
from the formula H(g °f) = id, and H(f) = trivial homomorphism. In topology 
one uses the homology functor to show, for instance, that the unit circle X is 
not a retract of the closed unit disc with respect to the inclusion mapping /. 
(Topologists use the word “retract” instead of “section”.) 

Example. Let (2 be a category and A a fixed object in (2. Then we obtain a 
covariant functor 

Ma : a - S 

by letting MA(X) = Mor(A, X) for any object X of (2. If q>: X -► X' is a mor¬ 
phism, we let 

MA((p): Mor(A, X) - Mor(A, X') 

be the map given by the rule 

g^cpog 

for any g e Mor(A, X), 

A 4 X 4 X'. 

The axioms FUN 1 and FUN 2 are trivially verified. 
Similarly, for each object B of (2, we have a contravariant functor 

MB.a -S 

such that Mb(Y) = Mor(T, B). If i// : Y' Y is a morphism, then 

MB(i//): Mor( Y, B) - Mor( Y', B) 

is the map given by the rule 

for any fe Mor(Y, B), 

r y 4 b. 
The preceding two functors are called the representation functors. 

Example. Let (2 be the category of abelian groups. Fix an abelian group 
A. The association X i-> Hom(A, X) is a covariant functor from (2 into itself. 
The association X i-» Hom(X, A) is a contravariant functor of (2 into itself. 

Example. We assume you know about the tensor product. Let A be a 
commutative ring. Let M be an A-module. The association X i-» M ® X is a 
covariant functor from the category of A-modules into itself. 

Observe that products and coproducts were defined in a way compatible with 
the representation functor into the category of sets. Indeed, given a product P 
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of two objects A and B, then for every object X the set Mor(X, P) is a product 
of the sets Mor(X, A) and Mor(X, B) in the category of sets. This is merely a 
reformulation of the defining property of products in arbitrary categories. The 
system really works. 

Let G, (B be two categories. The functors of G into (B (say covariant, and 
in one variable) can be viewed as the objects of a category, whose morphisms 
are defined as follows. Let L, M be two such functors. A morphism H : L -> M 
(also called a natural transformation) is a rule which to each object X of G 
associates a morphism 

Hx : L(X) M(X) 

such that for any morphism /: X -► Y the following diagram is commutative: 

L(X) Hx >M(X) 

Uf) M(f) 

L(Y) - >M(Y) 
hy 

We can therefore speak of isomorphisms of functors. A functor is representable 
if it is isomorphic to a representation functor as above. 

As Grothendieck pointed out, one can use the representation functor to 
transport the notions of certain structures on sets to arbitrary categories. For 
instance, let G be a category and G an object of G. We say that G is a group 
object in G if for each object X of G we are given a group structure on the set 
Mor(X, G) in such a way that the association 

* h- Mor(X, G) 

is functorial (i.e. is a functor from G into the category of groups). One some¬ 
times denotes the set Mor(X, G) by G(X), and thinks of it as the set of points of 
G in X. To justify this terminology, the reader is referred to Chapter IX, §2. 

Example. Let Var be the category of projective non-singular varieties over 
the complex numbers. To each object X in Var one can associate various groups, 
e.g. Pic(X) (the group of divisor classes for rational equivalence), which is a 
contravariant functor into the category of abelian groups. Let Pic0(X) be the 
subgroup of classes algebraically equivalent to 0. Then Pic0 is representable. 

In the fifties and sixties Grothendieck was the one who emphasized the 
importance of the representation functors, and the possibility of transposing to 
any category notions from more standard categories by means of the representation 
functors. He himself proved that a number of important functors in algebraic 
geometry are representable. 
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§12. FREE GROUPS 

We now turn to the coproduct in the category of groups. First a remark. Let 
G = llG/ be a direct product of groups. 

We observe that each G} admits an injective homomorphism into the 
product, on the y'-th component, namely the map : G} -► f] Gf such that 

i 
for x in Gj9 the i-th component of Xj(x) is the unit element of G, if i # j, and 
is equal to x itself if i = j. This embedding will be called the canonical one. 
But we still don’t have a coproduct of the family, because the factors commute 
with each other. To get a coproduct one has to work somewhat harder. 

Let G be a group and S a subset of G. We recall that G is generated by S 

if every element of G can be written as a finite product of elements of S and their 
inverses (the empty product being always taken as the unit element of G). 
Elements of S are then called generators. If there exists a finite set of generators 
for G we call G finitely generated. If 5 is a set and (p:S -* G is a map, we say 
that cp generates G if its image generates G. 

Let S be a set, and /: S -> F a map into a group. Let g : S -+ G be another 
map. Iff(S) (or as we also say,/) generates F, then it is obvious that there exists 
at most one homomorphism i// of F into G which makes the following diagram 
commutative: 

G 

We now consider the category G whose objects are the maps of S into 
groups. If/: 5 G and f' :S -> G' are two objects in this category, we define 
a morphism from / to f' to be a homomorphism (p:G G' such that (p°f = f\ 

i.e. the diagram is commutative: 

G 

G' 

By a free group determined by 5, we shall mean a universal element in this 
category. 

Proposition 12.1. Let S be a set. Then there exists a free group (F, /) 
determined by S. Furthermore, f is injective, and F is generated by the image 

off 

Proof (I owe this proof to J. Tits.) We begin with a lemma. 
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Lemma 12.2. There exists a set I and a family of groups {Gz}/e/ such that, 
if g'- S G is a map of S into a group G, and g generates G, then G is 

isomorphic to some Gz. 

Proof This is a simple exercise in cardinalities, which we carry out. If S 

is finite, then G is finite or denumerable. If S is infinite, then the cardinality of G 
is ^ the cardinality of S because G consists of finite products of elements of g(S). 

Let T be a set which is infinite denumerable if S is finite, and has the same cardin¬ 
ality as 5 if 5 is infinite. For each non-empty subset H of T, let TH be the set of 
group structures on H. For each y e TH, let Hy be the set H, together with the 
group structure y. Then the family {Hy} for y e TH and H ranging over subsets 
of T is the desired family. 

We return to the proof of the proposition. For each ie I we let M, be the 
set of mappings of S into Gf. For each map <peMt, we let Gi (p be the set- 
theoretic product of G, and the set with one element {</>}, so that Gi (p is the 
“same” group as Gz indexed by cp. We let 

f« = nn Gi., 
iel (peMi 

be the Cartesian product of the groups Git<p. We define a map 

fo'S^F0 

by sending S on the factor Gi <p by means of <p itself. We contend that given a 
map g : S —> G of S into a group G, there exists a homomorphism i/>*: F0 —► G 
making the usual diagram commutative: 

G 

That is, (/^ ofQ = g. To prove this, we may assume that g generates G, simply 
by restricting our attention to the subgroup of G generated by the image of g. 

By the lemma, there exists an isomorphism A: G G, for some i, and A ° g 

is an element i// of We let nitlj/ be the projection on the (i, ij/) factor, and we 
let = A”1 on. Then the map ^ makes the following diagram com¬ 
mutative. 

We let F be the subgroup of F0 generated by the image of/0, and we let / 
simply be equal to /0, viewed as a map of S into F. We let g* be the restriction 
of ij/* to F. In this way, we see at once that the map g* is the unique one making 
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our diagram commutative, and thus that (F,f) is the required free group. 
Furthermore, it is clear that /is injective. 

For each set S we select one free group determined by 5, and denote it 
by (F(S),fs) or briefly by F(S). It is generated by the image of fs. One may 
view S as contained in F(S), and the elements of S are called free generators 
of F(S). If g :S G is a map, we denote by g*: F(S) -> G the homomorphism 
realizing the universality of our free group F(S). 

If X: 5 5' is a map of one set into another, we let F(X): F(S) -► F(S') be 

the mapt/s^A)*. 

S > F(S) 

Then we may regard F as a functor from the category of sets to the category of 
groups (the functorial properties are trivially verified, and will be left to the 
reader). 

//A is surjective, then F(A) is also surjective. 

We again leave the proof to the reader. 
If two sets S, S' have the same cardinality, then they are isomorphic in the 

category of sets (an isomorphism being in this case a bijection!), and hence 
F(S) is isomorphic to F(S'). If S has n elements, we call F(S) the free group 
on n generators. 

Let G be a group, and let S be the same set as G (i.e. G viewed as a set, without 
group structure). We have the identity map g: S -+ G, and hence a surjective 
homomorphism 

0* • F(S) -► G 

which will be called canonical. Thus every group is a factor group of a free 
group. 

One can also construct groups by what is called generators and relations. Let 
5 be a set, and F(S) the free group. We assume that /: 5 -► F(S) is an in¬ 
clusion. Let R be a set of elements of F(S). Each element of R can be written 
as a finite product 

n 

n*. 
V — 1 

where each xv is an element of S or an inverse of an element of 5. Let N be the 
smallest normal subgroup of F(S) containing R, i.e. the intersection of all normal 
subgroups of F(S) containing R. Then F(S)/N will be called the group deter¬ 
mined by the generators S and the relations R. 
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Example. One shows easily that the group determined by one generator 
a, and the relation {a2}, has order 2. 

The canonical homomorphism <p: F(S) —» F(S)/N satisfies the universal map¬ 
ping property for homomorphisms if/ of F(S) into groups G such that = e 

for all x e R. In view of this, one sometimes calls the group F(S)/N the group 
determined by the generators S, and the relations x = e (for all x e R). For 
instance, the group in the preceding example would be called the group determined 
by the generator a, and the relation a2 = e. 

Let G be a group generated by a finite number of elements, and satisfying 
the relation x2 = e for all jt e G. What does G look like? It is easy to show that 
G is commutative. Then one can view G as a vector space over Z/2Z, so G is 
determined by its cardinality, up to isomorphism. 

In Exercises 34 and 35, you will prove that there exist certain groups satisfying 
certain relations and with a given order, so that the group presented with these 
generators and relations can be completely determined. A priori, it is not even 
clear if a group given by generators and relations is finite. Even if it is finite, 
one does not know its order a priori. To show that a group of certain order 
exists, one has to use various means, a common means being to represent the 
group as a group of automorphisms of some object, for instance the symmetries 
of a geometric object. This will be the method suggested for the groups in Exercises 
34 and 35, mentioned above. 

Example. Let G be a group. For x, y e G define [x, y] = xyx~xy~x (the 
commutator) and xy = xyx~x (the conjugate). Then one has the cocycle relation 

lx, yz] = [x9 yV[x9 z]. 

Furthermore, suppose x9 y, z e G and 

[x9 y] = y, [y9 z] = z, [z, x] = x. 

Then x = y = z = e. It is an exercise to prove these assertions, but one sees 
that certain relations imply that a group generated by x, y, z subject to those 
relations is necessarily trivial. 

Next we give a somewhat more sophisticated example. We assume that the 
reader knows the basic terminology of fields and matrices as in Chapter XIII, 
but applied only to 2 x 2 matrices. Thus SL2(F) denotes the group of 2 x 2 
matrices with components in a field F and determinant equal to 1. 

Example. SL2(F). Let F be a field. For b e F and a e F, a 0, we let 

u(b) = and w = 
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Then it is immediately verified that: 

SL 0. 5(a) = wu(a~l)wu(a)wu(a~l). 

SL 1. u is an additive homomorphism. 

SL 2. 5 is a multiplicative homomorphism. 

SL 3. w2 = 5(-l). 

SL 4. s(a)u(b)s(a~l) = u(ba2). 

Now, conversely, suppose that G is an arbitrary group with generators u(b) 

(b e F) and w, such that if we define s(a) for a =£ 0 by SL 0, then the relations 
SL 1 through SL 4 are satisfied. Then SL 3 and SL 4 show that s( — 1) is in the 
center, and w4 = e. In addition, one verifies that: 

SL 5. ws(a) = 5(a_1)w. 

Furthermore, one has the theorem: 

Let G be the free group with generators u(b), w and relations SL 1 through 

SL 4, defining s{a) as in SL 0. Then the natural homomorphism 

G SL2(F) 

is an isomorphism. 

Proofs of all the above statements will be found in my SL2(R), Springer Verlag, 
reprint of Addison-Wesley, 1975, Chapter XI, §2. It takes about a page to carry 
out the proof. 

If F = Qp is the field of p-adic numbers, then Ihara [Ih 66] proved that every 
discrete torsion free subgroup of SL2(Qp) is free. Serre put this theorem in the 
context of a general theory concerning groups acting on trees [Se 80]. 

[Ih 66] Y. Ihara, On discrete subgroups of the two by two projective linear group over 
p-adic fields, J. Math. Soc. Japan 18 (1966) pp. 219-235 

[Se 80] J.-P. Serre, Trees, Springer Verlag 1980 

Further examples. For further examples of free group constructions, see 
Exercises 54 and 56. For examples of free groups occurring (possibly conjec- 
turally) in Galois theory, see Chapter VI, §2, Example 9, and the end of 
Chapter VI, §14. 

Proposition 12.3. Coproducts exist in the category of groups. 

Proof. Let {GJie/ be a family of groups. We let C be the category whose 
objects are families of group-homomorphisms 

idi'-Gi -> G}ieI 
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and whose morphisms are the obvious ones. We must find a universal element 
in this category. For each index i, we let St be the same set as G, if Gt is infinite, 
and we let St be denumerable if G, is finite. We let S be a set having the same 
cardinality as the set-theoretic disjoint union of the sets S( (i.e. their coproduct 
in the category of sets). We let T be the set of group structures on S, and for 
each y e T, we let <I>y be the set of all families of homomorphisms 

V = {Vi- Sy}. 

Each pair (Sy, cp), where (pe<S>y, is then a group, using q> merely as an index. 
We let 

Fo= n n ^ (P\ 
yer (pe<l>y 

and for each i, we define a homomorphism fi: G, -► F0 by prescribing the 
component of fi on each factor (Sy, <p) to be the same as that of <p;. 

Let now g = {gt: G, -> G} be a family of homomorphisms. Replacing G 
if necessary by the subgroup generated by the images of the gh we see that 
card(G) ^ card(S), because each element of G is a finite product of elements 
in these images. Embedding G as a factor in a product G x Sy for some y, we 
may assume that card(G) = card(S). There exists a homomorphism g*: F0^> G 

such that 

9*° ft = Gi 

for all i. Indeed, we may assume without loss of generality that G = Sy for some 
y and that g = \// for some i// e Or We let g* be the projection of F0 on the 
factor (Sy, \j/). 

Let F be the subgroup of F0 generated by the union of the images of 
the maps fi for all i. The restriction of g* to F is the unique homomorphism 
satisfying fi ° g* = gt for all i, and we have thus constructed our universal 
object. 

Example. Let G2 be a cyclic group of order 2 and let G3 be a cyclic group 
of order 3. What is the coproduct? The answer is neat. It can be shown that 
G2 U G3 is the group generated by two elements 5, T with relations S2 = 1, 
(ST)3 = 1. The groups G2 and G3 are embedded in G2 U G3 by sending G2 on 
the cyclic group generated by S and sending G3 on the cyclic group generated 
by ST. This is done by representing the group as follows. Let 

G = SL2(Z)/±1. 
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As we have seen in an example of §5, the group G operates on the upper half¬ 
plane Let S, T be the maps given by 

S(z) = - 1/z and T{z) = z + 1. 

Thus S and T are represented by the matrices 

S = and 

and satisfy the relations S2 = 1, {ST)3, — 1. Readers will find a proof of several 
properties of 5, Tin Serre’s Course in Arithmetic (Springer Verlag, 1973, Chapter 
VII, §1), including the fact that S, T generate G. It is an exercise from there to 
show that G is the coproduct of G2 and G3 as asserted. 

Observe that these procedures go directly from the universal definition and 
construction in the proofs of Proposition 12.1 and Proposition 12.3 to the more 
explicit representation of the free group or the coproduct as the case may be. 
One relies on the following proposition. 

Proposition 12.4. Let G be a group and {G,}te/ a family of subgroups. 

Assume: 

(a) The family generates G. 

(b) If 

x — xix • • • xin with xip E Gip, xiv =£ e and iv ± iv+lfor all v, 

then x =£ e. 

Then the natural homomorphism of the coproduct of the family into G sending 

Gj on itself by the identity mapping is an isomorphism. In other words, simply 

put, G is the coproduct of the family of subgroups. 

Proof. The homomorphism from the coproduct into G is surjective by the 
assumption that the family generates G. Suppose an element is in the kernel. 
Then such an element has a representation 

X: • • • X: 
11 ln 

as in (b), mapping to the identity in G, so all xiv = e and the element itself is 
equal to e, whence the homomorphism from the coproduct into G is injective, 
thereby proving the proposition. 

Exercises 54 and 56 mentioned above give one illustration of the way Prop¬ 
osition 12.4 can be used. We now show another way, which we carry out for 
two subgroups. I am indebted to Eilenberg for the neat arrangement of the proof 
of the next proposition. 
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Proposition 12.5. Let A, B be two groups whose set-theoretic intersection is 

{1}. There exists a group A° B containing A, B as subgroups, such that 

A fl B = {1}, and having the following property. Every element =£ 1 of A ° B 

has a unique expression as a product 

ai • • • an (n ^ 1, at # 1 all i) 

with ate A or a{ e B, and such that if a{ e A then ai+le B and if at e B then 

tfi+i e A. 

Proof Let A © B be the set of sequences 

a = («!, (n ^ 0) 

such that either n = 0, and the sequence is empty or n ^ 1, and then elements 
in the sequence belong to A or B, are # 1, and two consecutive elements of the 
sequence do not belong both to A or both to B. If b = (bx,, bm\ we define 
the product ab to be the sequence 

(ai,..., an,bi,..., bm) 

if aneA,bleB or aneB,bxeA, 

(au...,anbu...,bj 

if an,bxeA or an9bteB9 and anbx # 1, 

(au ...9an_ jXfc2,..., fcj by induction, 

if anib{eA or an9bxeB and anb1 = 1. 

The case when n = 0 or m = 0 is included in the first case, and the empty 
sequence is the unit element of A ° B. Clearly, 

(fli, • • •, an)(a; \ ..., a\!) = unit element, 

so only associativity need be proved. Let c = (cl9..., cr). 

First consider the case m = 0, i.e. b is empty. Then clearly (ab)c = a(bc) 
and similarly if n = 0 or r = 0. Next consider the case m = 1. Let b = (x) 
with xgA, x # 1. We then verify in each possible case that (ab)c = a(bc). 

These cases are as follows: 

(au-- ., an9 x, Ci,. ••.cr) if aneB and c1eB, 

(aw . 9anx, c1#... . cf) if g A, a„x # 1, Cj g B, 

(ai, ■ ■ •>fl«>XCl, ... > <V) if G B, Cj G A, XCj # 1, 

(au.. •.a.-iXCi.- • •, cr) if = x“1 and Cj gB, 
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(a<0(c2,...,cr) if aneB and d=*~\ 

(d, anxc1? c2,..., cr) if an, ci e A, a„xd # 1, 

an_1)(c2,cr) if a„,de^ and a„xd = 1. 

If m > 1, then we proceed by induction. Write b = h'h" with V and b" 

shorter. Then 

(ab)c = (a(b'b"))c = ((ab')b")c = (ab')(b"c\ 

a(bc) = a((b’b")c) = a(b\b"c)) = (ab'){bnc) 

as was to be shown. 
We have obvious injections of A and B into A ° F, and identifying >1, B 

with their images in A © B we obtain a proof of our proposition. 

We can prove the similar result for several factors. In particular, we get the 
following corollary for the free group. 

Corollary 12.6. Let F(S) be the free group on a set S, and let xx,..., xn be 

distinct elements of S. Let vx,... , vr be integers =£ 0 and let i[9... y ir be 

integers, 

1 ^ ii, •••, ir ^ n 

such that ij ^ ij+1 for j = 1,..., r — 1. Then 

x'i} •••*£* i- 

Proo/. Let Gj, ..., Gn be the cyclic groups generated by xi9 ..., x„. Let 
G = G i o • • • o G„. Let 

F(S) G 

be the homomorphism sending each xf on xf, and all other elements of 5 on the 
unit element of G. Our assertion follows at once. 

Corollary 12.7. Let S be a set with n elements xl5..., xn9 n ^ 1. Let Gu 

... ,Gn be the infinite cyclic groups generated by these elements. Then the map 

F(S) -> Gi © . •. o Gn 

sending each xf on itself is an isomorphism. 

Proof. It is obviously surjective and injective. 

Corollary 12.8. Let GX9 ... , Gn be groups with Gt fl Gj = {1} if / =£ j. 
The homomorphism 

GjO •OG„^G1o...oG„ 

of their coproduct into Gx °-oG„ induced by the natural inclusion 
Gi -+ G{ © • • • o Gn is an isomorphism. 

Proof. Again, it is obviously injective and surjective. 
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EXERCISES 

1. Show that every group of order ^ 5 is abelian. 

2. Show that there are two non-isomorphic groups of order 4, namely the cyclic one, 

and the product of two cyclic groups of order 2. 

3. Let G be a group. A commutator in G is an element of the form aba~lb~l with a, 
b E G. Let Gc be the subgroup generated by the commutators. Then Gc is called the 
commutator subgroup. Show that Gc is normal. Show that any homomorphism of 
G into an abelian group factors through G/Gc. 

4. Let H, K be subgroups of a finite group G with K C NH. Show that 

#(//AT) = 
#(//)#(*) 
#(// n K) • 

5. Goursat’s Lemma. Let <7, G' be groups, and let H be a subgroup of G x G' such that the 
two projections p, : H -> G and p2: H -» G' are surjective. Let N be the kernel of p2 
and AT be the kernel of p,. One can identify N as a normal subgroup of G, and AT as a 
normal subgroup of G'. Show that the image of H in G/N x G'/N' is the graph of an 

isomorphism 
G/N ^ G'/N'. 

6. Prove that the group of inner automorphisms of a group G is normal in Aut(G). 

7. Let G be a group such that Aut(G) is cyclic. Prove that G is abelian. 

8. Let G be a group and let //, H' be subgroups. By a double coset of H, H' one means 
a subset of G of the form HxH'. 

(a) Show that G is a disjoint union of double cosets. 
(b) Let {c} be a family of representatives for the double cosets. For each 

a E G denote by [a]H' the conjugate aH'a~x of H'. For each c we have a 
decomposition into ordinary cosets 

H = U xc(H n [c]tf'), 
c 

where {jcc} is a family of elements of H, depending on c. Show that the 
elements {jccc} form a family of left coset representatives for H' in G; that 
is, 

G = U U xccH', 
Xc Xc 

and the union is disjoint. (Double cosets will not emerge further until Chapter 
XVIII.) 

9. (a) Let G be a group and H a subgroup of finite index. Show that there exists a 
normal subgroup N of G contained in H and also of finite index. [Hint: If 
(G : H) = n, find a homomorphism of G into Sn whose kernel is contained in 
H.] 

(b) Let G be a group and let Hx, H2 be subgroups of finite index. Prove that 
//, fl H2 has finite index. 

10. Let G be a group and let H be a subgroup of finite index. Prove that there is only a 
finite number of right cosets of //, and that the number of right cosets is equal to the 
number of left cosets. 
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11. Let G be a group, and A a normal abelian subgroup. Show that G/A operates on A 
by conjugation, and in this manner get a homomorphism of G/A into Aut(A). 

Semidirect product 

12. Let G be a group and let //, N be subgroups with N normal. Let yx be conjugation 

by an element x E G. 
(a) Show that x i-> yx induces a homomorphism/: H i-» Aut(N). 

(b) If H fl N = {e}, show that the map H x N -> HN given by (x, y) i-> xy is 
a bijection, and that this map is an isomorphism if and only if/is trivial, 

i.e. /(;c) = idN for all x E H. 

We define G to be the semidirect product of H and N if G = NH and H fl N = {e}. 

(c) Conversely, let A, H be groups, and let if/: H —» Aut(A) be a given homo¬ 
morphism. Construct a semidirect product as follows. Let G be the set of 
pairs (x, h) with x E A and h E H. Define the composition law 

= (*i***a. M2). 

Show that this is a group law, and yields a semidirect product of A and //, 
identifying A with the set of elements (x, 1) and H with the set of elements 

(1,*). 

13. (a) Let H, N be normal subgroups of a finite group G. Assume that the orders of //, 
N are relatively prime. Prove that xy = yx for all x E H and y E A, and that 
H X N ~ HN. 

(b) Let Hx, . . ., Hr be normal subgroups of G such that the order of //, is relatively 
prime to the order of Hj for i ± j. Prove that 

//, x ... x Hr « H{ • Hr. 

Example. If the Sylow subgroups of a finite group are normal, then G is the 

direct product of its Sylow subgroups. 

14. Let G be a finite group and let A be a normal subgroup such that N and G/N have 

relatively prime orders. 
(a) Let H be a subgroup of G having the same order as G/N. Prove that 

G = HN. 
(b) Let g be an automorphism of G. Prove that g(N) = N. 

Some operations 

15. Let G be a finite group operating on a finite set S with #(S) ^ 2. Assume that there 
is only one orbit. Prove that there exists an element x E G which has no fixed point, 
i.e. xs =£ s for all s E S. 

16. Let H be a proper subgroup of a finite group G. Show that G is not the union of all 
the conjugates of H. (But see Exercise 23 of Chapter XIII.) 

17. Let X, Y be finite sets and let C be a subset of X x Y. For x E X let <p(x) = number 
of elements y E Y such that (x, y) E C. Verify that 

#(C) = X <p(.x). 
. jceX 
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Remark. A subset C as in the above exercise is often called a correspondence, and 
cp(x) is the number of elements in Y which correspond to a given element x E X. 

18. Let S, T be finite sets. Show that #Map(S, T) = (#r)#(5). 

19. Let G be a finite group operating on a finite set S. 
(a) For each s E S show that 

v 1 =, 

(b) For each x e G define f(x) = number of elements s E S such that xs = s. 
Prove that the number of orbits of G in S is equal to 

^ fix). 
#(G) X£G 

Throughout, p is a prime number. 

20. Let P be a p-group. Let A be a normal subgroup of order p. Prove that A is contained 
in the center of P. 

21. Let G be a finite group and H a subgroup. Let Ph be a p-Sylow subgroup of H. Prove 
that there exists a p-Sylow subgroup P of G such that PH = P 0 H. 

22. Let H be a normal subgroup of a finite group G and assume that #(//) = p. Prove 
that H is contained in every p-Sylow subgroup of G. 

23. Let P, P' be p-Sylow subgroups of a finite group G. 
(a) If P' C N(P) (normalizer of P), then P' = P. 
(b) If N(P') = N{P), then P' = P. 
(c) We have N{N(P)) = N(P). 

Explicit determination of groups 

24. Let p be a prime number. Show that a group of order p2 is abelian, and that there are 
only two such groups up to isomorphism. 

25. Let G be a group of order p3, where p is prime, and G is not abelian. Let Z be its center. 

Let C be a cyclic group of order p. 

(a) Show that Z % C and G/Z % C x C. 
(b) Every subgroup of G of order p2 contains Z and is normal. 
(c) Suppose xp = 1 for all xeG. Show that G contains a normal subgroup 

H x C x C. 

26. (a) Let G be a group of order pq, where p, q are primes and p < q. Assume that 
q ^ 1 mod p. Prove that G is cyclic. 

(b) Show that every group of order 15 is cyclic. 

27. Show that every group of order < 60 is solvable. 

28. Let p, q be distinct primes. Prove that a group of order p2q is solvable, and that one 
of its Sylow subgroups is normal. 

29. Let p, q be odd primes. Prove that a group of order 2pq is solvable. 
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30. (a) Prove that one of the Sylow subgroups of a group of order 40 is normal. 
(b) Prove that one of the Sylow subgroups of a group of order 12 is normal. 

31. Determine all groups of order ^ 10 up to isomorphism. In particular, show that a 
non-abelian group of order 6 is isomorphic to S3. 

32. Let Sn be the permutation group on n elements. Determine the p-Sylow subgroups of 

S3, S4, S5 for p = 2 and p = 3. 

33. Let o- be a permutation of a finite set I having n elements. Define e{&) to be (— l)m 
where 

m = n — number of orbits of a. 

If /j,..., Ir are the orbits of o, then m is also equal to the sum 

m = Z [card(/v) - 1]. 
V — 1 

If t is a transposition, show that e(ar) = ~e(cr) be considering the two cases when 
i, j lie in the same orbit of a, or lie in different orbits. In the first case, or has one 
more orbit and in the second case one less orbit than a. In particular, the sign of a 
transposition is —1. Prove that e(a) = e(a) is the sign of the permutation. 

34. (a) Let n be an even positive integer. Show that there exists a group of order In, 
generated by two elements a, r such that an = e = t2, and or = rcrn~]. (Draw 
a picture of a regular n-gon, number the vertices, and use the picture as an 
inspiration to get o’, r.) This group is called the dihedral group. 

(b) Let n be an odd positive integer. Let D4n be the group generated by the matrices 

where f is a primitive n-th root of unity. Show that D4n has order 4n, and give 
the commutation relations between the above generators. 

35. Show that there are exactly two non-isomorphic non-abelian groups of order 8. (One 
of them is given by generators cr, x with the relations 

a4 =1, i2 = 1, tot = (J3. 

The other is the quaternion group.) 

36. Let a = [123 • • • n\ in Sn. Show that the conjugacy class of crhas (n - 1)! elements. 
Show that the centralizer of a is the cyclic group generated by a. 

37. (a) Let a = [i, • • • im] be a cycle. Let y E Sn. Show that yay~x is the cycle 

[yO i) ' * ‘ 70 
(b) Suppose that a permutation o in Sn can be written as a product of r disjoint 

cycles, and let du...,dr be the number of elements in each cycle, in increasing 
order. Let x be another permutation which can be written as a product of 
disjoint cycles, whose cardinalities are d\,..., d's in increasing order. Prove 
that o is conjugate to x in Sn if and only if r = s and d, = d\ for all i = 1,..., r. 

38. (a) Show that Sn is generated by the transpositions [12], [13],... , [In]. 
(b) Show that Sn is generated by the transpositions [12], [23], [34],. .. , [n - 1, n]. 
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(c) Show that Sn is generated by the cycles [12] and [123 ... n\. 

(d) Assume that n is prime. Let a = [123 ... n] and let t = [rs] be any transposition. 
Show that o', r generate Sn. 

Let G be a finite group operating on a set 5. Then G operates in a natural way on 
the Cartesian product S(/l) for each positive integer n. We define the operation on 5 
to be ft-transitive if given n distinct elements (s,,..., sn) and n distinct elements 
($;,..., s'n) of S, there exists a E G such that cry, = s' for all i = 1,. . . , n. 

39. Show that the action of the alternating group An on {1,... , n} is (n - 2)-transitive. 

40. Let An be the alternating group of even permutations of {1,..., n}. For j = 1,. . . , n 
let Hj be the subgroup of An fixing j, so Hj ~ A„_,, and (An : HJ) = n for n ^ 3. 
Let n ^ 3 and let H be a subgroup of index n in An. 

(a) Show that the action of An on cosets of H by left translation gives an iso¬ 
morphism An with the alternating group of permutations of AjH. 

(b) Show that there exists an automorphism of An mapping //, on //, and that 
such an automorphism is induced by an inner automorphism of Sn if and only 
if H = Ht for some i. 

41. Let H be a simple group of order 60. 
(a) Show that the action of H by conjugation on the set of its Sylow subgroups 

gives an imbedding H (Z-+ A6. 
(b) Using the preceding exercise, show that H « A5. 
(c) Show that A6 has an automorphism which is not induced by an inner auto¬ 

morphism of S6. 

Abelian groups 

42. Viewing Z, Q as additive groups, show that Q/Z is a torsion group, which has one and 

only one subgroup of order n for each integer n ^ 1, and that this subgroup is cyclic. 

43. Let H be a subgroup of a finite abelian group G. Show that G has a subgroup that is 

isomorphic to G/H. 

44. Let be a homomorphism of abelian groups. Let B be a subgroup of A. 
Denote by Af and Af the image and kernel of/ in A respectively, and similarly for Bf 
and Bf. Show that (A : B) = (Af: Bf)(Af: Bf), in the sense that if two of these three 
indices are finite, so is the third, and the stated equality holds. 

45. Let G be a finite cyclic group of order «, generated by an element a. Assume that G 
operates on an abelian group A, and let/, g: A -> A be the endomorphisms of A given by 

f(x) = ax - x and g(x) = x + ox + • • • + an~ lx. 

Define the Herbrand quotient by the expression q(A) = (Af: A9)/(Ag: Af\ provided 
both indices are finite. Assume now that B is a subgroup of A such that GB a B. 

(a) Define in a natural way an operation of G on A/B. 
(b) Prove that 

q(A) = q(B)q(A/B) 

in the sense that if two of these quotients are finite, so is the third, and the stated 
equality holds. 

(c) If A is finite, show that q(A) = 1. 
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(This exercise is a special case of the general theory of Euler characteristics discussed 
in Chapter XX, Theorem 3.1. After reading this, the present exercise becomes trivial. 
Why?) 

Primitive groups 

46. Let G operate on a set S. Let S = (J S{ be a partition of S into disjoint subsets. We say 
that the partition is stable under G if G maps each S, onto Sj for some j, and hence G 
induces a permutation of the sets of the partition among themselves. There are two 
partitions of S which are obviously stable: the partition consisting of S itself, and the 
partition consisting of the subsets with one element. Assume that G operates transitively, 
and that S has more than one element. Prove that the following two conditions are 

equivalent: 

PRIM 1. The only partitions of S which are stable are the two partitions mentioned 

above. 

PRIM 2. If H is the isotropy group of an element of S, then H is a maximal subgroup 

of G. 

These two conditions define what is known as a primitive group, or more accurately, a 
primitive operation of G on S. 

Instead of saying that the operation of a group G is 2-transitive, one also says that it is 
doubly transitive. 

47. Let a finite group G operate transitively and faithfully on a set S with at least 2 
elements and let H be the isotropy group of some element s of S. (All the other 
isotropy groups are conjugates of H.) Prove the following: 

(a) G is doubly transitive if and only if H acts transitively on the complement 
of s in S. 

(b) G is doubly transitive if and only if G = HTH, where T is a subgroup of G 
of order 2 not contained in H. 

(c) If G is doubly transitive, and (G : H) = n, then 

#(G) = d(n - 1 )/i, 

where d is the order of the subgroup fixing two elements. Furthermore, H 
is a maximal subgroup of G, i.e. G is primitive. 

48. Let G be a group acting transitively on a set S with at least 2 elements. For each 
x E G let f(x) = number of elements of S fixed by x. Prove: 

(a) 2 m = #(G). 
jceG 

(b) G is doubly transitive if and only if 

2 m2 = 2 #(o. 
jceG 

49. A group as an automorphism group. Let G be a group and let Set(G) be the category 
of G-sets (i.e. sets with a G-operation). Let F: Set(G) —> Set be the forgetful functor, 
which to each G-set assigns the set itself. Show that Aut(F) is naturally isomorphic 
to G. 
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Fiber products and coproducts 
Pull-backs and push-outs 

50. (a) Show that fiber products exist in the category of abelian groups. In fact, if X, Y 
are abelian groups with homomorphisms f: X -+ Z and g: Y -* Z show that 
X x z y is the set of all pairs (x, y) with xe X and ye Y such that /(x) = g(y\ 
The maps /?,, p2 are the projections on the first and second factor respectively. 

(b) Show that the pull-back of a surjective homomorphism is surjective. 

51. (a) Show that fiber products exist in the category of sets. 

(b) In any category G, consider the category G7 of objects over Z. Let h :T-+ Z 
be a fixed object in this category. Let F be the functor such that 

F(X) = Morz(T, X\ 

where X is an object over Z, and Morz denotes morphisms over Z. Show that 

F transforms fiber products over Z into fiber products in the category of sets. 
(Actually, once you have understood the definitions, this is tautological.) 

52. (a) Show that push-outs (i.e. fiber coproducts) exist in the category of abelian groups. 
In this case the fiber coproduct of two homomorphisms /, g as above is denoted 

by X ®z y. Show that it is the factor group 

X ©z y = (x © Y)/W, 

where W is the subgroup consisting of all elements (/(z), -g(z)) with zeZ. 
(b) Show that the push-out of an injective homomorphism is injective. 

Remark. After you have read about modules over rings, you should note that the 
above two exercises apply to modules as well as to abelian groups. 

53. Let H, G, G' be groups, and let 

/://-» G, g :H-> G' 

be two homomorphisms. Define the notion of coproduct of these two homomor¬ 
phisms over H, and show that it exists. 

54. (Tits). Let G be a group and let {G,}ie/ be a family of subgroups generating G. 
Suppose G operates on a set S. For each i e /, suppose given a subset 5, of 5, and 
let s be a point of S - U S(. Assume that for each g E G, — {e}, we have 

i 

gSj C 5, for all j =£ /, and g(s) E 5, for all i. 

Prove that G is the coproduct of the family {Gt}ie/. (Hint: Suppose a product 

9\ ' * * 9m = ^ on S. Apply this product to s, and use Proposition 12.4.) 

55. Let M E GL2(C) (2x2 complex matrices with non-zero determinant). We let 

(a b\ az + b 
), and for z E C we let M(z) = -:. 

c d) cz + a 

If z = -d/c (c =£ 0) then we put M(z) = «. Then you can verify (and you should 
have seen something like this in a course in complex analysis) that GL2(C) thus 
operates on C U {°°}. Let A, A' be the eigenvalues of M viewed as a linear map on 
C2. Let W, W' be the corresponding eigenvectors, 

W = '(w„ w2) and W' = '(w;, w'2). 
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By a fixed point of M on C we mean a complex number z such that M{z) = z. Assume 
that M has two distinct fixed points =£ 00. 

(a) Show that there cannot be more than two fixed points and that these fixed 
points are w = wjw2 and w' = w\/w2. In fact one may take 

W = '(w, 1), W' = '(w\ 1). 

(b) Assume that | A | < |A'|. Given z =£ w, show that 

lim Mk(z) = w'. 
k — cc 

[Hint: Let 5 = (W, W') and consider S_IA/*S(z) = akz where a = A/A'.] 

56. (Tits) Let Mlt..., Mr E GL2(C) be a finite number of matrices. Let A,, A- be the 
eigenvalues of M(. Assume that each M, has two distinct complex fixed points, and 

that |Af| < |A;|. Also assume that the fixed points for Afj,..., Mr are all distinct 
from each other. Prove that there exists a positive integer k such that M*,... , M* 
are the free generators of a free subgroup of GL2{C). [///nr: Let w,, wj be the fixed 
points of M(. Let //, be a small disc centered at w, and f/' a small disc centered at 
w\. Let Si = Ui U U-. Let s be a complex number which does not lie in any 5,. Let 
Gi = (Mk). Show that the conditions of Exercise 54 are satisfied for k sufficiently 
large.]. 

57. Let G be a group acting on a set X. Let Y be a subset of X. Let be the subset of 
G consisting of those elements g such that gY PI Y is not empty. Let GY be the 
subgroup of G generated by_G> Then GyY and (G - Gy)Y are disjoint. [Hint: 
Suppose that there exist g{ G Gy and g2 E G but g2 $ GY> and elements yh y2, E Y 
such that g^x = g^y 2. Then g2 xgxy{ = y2, so giX9\ ^ Gy whence g2 E Gy, contrary 
to assumption.] 

Application. Suppose that X = GT, but that X cannot be expressed as a disjoint 
union as above unless one of the two sets is empty. Then we conclude that G — Gy 
is empty, and therefore GY generates G. 

Example 1. Suppose X is a connected topological space, Y is open, and G acts 
continuously. Then all translates of Y are open, so G is generated by Gy. 

Example 2. Suppose G is a discrete group acting continuously and discretely 
on X. Again suppose X connected and Y closed. Then any union of translates of Y 
by elements of G is closed, so again G — GY is empty, and Gy generates G. 



CHAPTER 

Rings 

§1. RINGS AND HOMOMORPHISMS 

A ring A is a set, together with two laws of composition called multiplica¬ 
tion and addition respectively, and written as a product and as a sum respec¬ 
tively, satisfying the following conditions: 

RI 1. With respect to addition, A is a commutative group. 

RI 2. The multiplication is associative, and has a unit element. 

RI 3. For all x, y, z e A we have 

(x -f y)z = xz + yz and z(x + y) = zx -f zy. 

(This is called distributivity.) 

As usual, we denote the unit element for addition by 0, and the unit 
element for multiplication by 1. We do not assume that 1 # 0. We observe 
that Ox = 0 for all xe A. Proof: We have Ox + x = (0 + l)x = lx = x. 
Hence Ox = 0. In particular, if 1 = 0, then A consists of 0 alone. 

For any x, y e A we have ( — x)y = — (xy). Proof: We have 

xy + (-x)y = (x + (-x))y = 0y = 0, 

so ( —x)y is the additive inverse of xy. 
Other standard laws relating addition and multiplication are easily proved, 

for instance ( — x)( — y) = xy. We leave these as exercises. 
Let A be a ring, and let U be the set of elements of A which have both a 

right and left inverse. Then U is a multiplicative group. Indeed, if a has a 
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right inverse b, so that ab = 1, and a left inverse c, so that ca = 1, then 
cah = b9 whence c = b9 and we see that c (or 6) is a two-sided inverse, and 
that c itself has a two-sided inverse, namely a. Therefore U satisfies all the 
axioms of a multiplicative group, and is called the group of units of A. It is 
sometimes denoted by A*9 and is also called the group of invertible elements 
of A. A ring A such that 1 # 0, and such that every non-zero element is 
invertible is called a division ring. 

Note. The elements of a ring which are left invertible do not necessarily 
form a group. 

Example. (The Shift Operator). Let E be the set of all sequences 

a = (flj, a2i a39...) 

of integers. One can define addition componentwise. Let R be the set of all 
mappings f :E-+E of E into itself such that f(a + b) = f(a) + f(b). The law 
of composition is defined to be composition of mappings. Then R is a ring. 
(Proof?) Let 

T(at, al9 a39...) = (0, al9 al9 a39...). 

Verify that T is left invertible but not right invertible. 

A ring A is said to be commutative if xy = yx for all x9 y e A. A commu¬ 
tative division ring is called a field. We observe that by definition, a field 
contains at least two elements, namely 0 and 1. 

A subset B of a ring A is called a subring if it is an additive subgroup, if 
it contains the multiplicative unit, and if x, y e B implies xy e B. If that is 
the case, then B itself is a ring, the laws of operation in B being the same as 
the laws of operation in A. 

For example, the center of a ring A is the subset of A consisting of all 
elements a e A such that ax = xa for all xe A. One sees immediately that 
the center of A is a subring. 

Just as we proved general associativity from the associativity for three 
factors, one can prove general distributivity. If x, yi9 ..., yn are elements of a 
ring A, then by induction one sees that 

+ ••• + yn) = xyl + ••• + xyn. 

If xt (i = 1,..., n) and yj (j = 1,..., m) are elements of A, then it is also easily 
proved that 

Furthermore, distributivity holds for subtraction, e.g. 

X()>1 - yi) = xy 1 - xy2. 

We leave all the proofs to the reader. 
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Examples. Let S be a set and A a ring. Let Map(S, A) be the set of map¬ 

pings of S into A. Then Map(5, A) is a ring if for f g e Map(S, A) we define 

(fg)(x) = f(x)g(x) and (/ + g)(x) = f(x) + g(x) 

for all x e S. The multiplicative unit is the constant map whose value is the 
multiplicative unit of A. The additive unit is the constant map whose value 
is the additive unit of A, namely 0. The verification that Map(S, A) is a ring 
under the above laws of composition is trivial and left to the reader. 

Let M be an additive abelian group, and let A be the set End(M) of 
group-homomorphisms of M into itself. We define addition in A to be the 
addition of mappings, and we define multiplication to be composition of 
mappings. Then it is trivially verified that A is a ring. Its unit element is of 
course the identity mapping. In general, A is not commutative. 

Readers have no doubt met polynomials over a field previously. These pro¬ 
vide a basic example of a ring, and will be defined officially for this book in §3. 

Let K be a field. The set of n x n matrices with components in K is a 
ring. Its units consist of those matrices which are invertible, or equivalently 
have a non-zero determinant. 

Let S be a set and R the set of real-valued functions on S. Then R is a 
commutative ring. Its units consist of those functions which are nowhere 0. 
This is a special case of the ring Map(S, A) considered above. 

The convolution product. We shall now give examples of rings whose 
product is given by what is called convolution. Let G be a group and let K 

be a field. Denote by K[G] the set of all formal linear combinations 
a = Y, axx with * 6 G and ax e K, such that all but a finite number of ax are 
equal to 0. (See §3, and also Chapter III, §4.) If /? = e X[G], then one 
can define the product 

Z Z axbyxy= X ( X axby]z- 
xeG yeG zeG \xy=z / 

With this product, the group ring X[G] is a ring, which will be studied 
extensively in Chapter XVIII when G is a finite group. Note that X[G] is 
commutative if and only if G is commutative. The second sum on the right 
above defines what is called a convolution product. If f g are two functions 
on a group G, we define their convolution f *g by 

(f*g)(z) = X f(x)g(y). 
xy=z 

Of course this must make sense. If G is infinite, one may restrict this 
definition to functions which are 0 except at a finite number of elements. 
Exercise 12 will give an example (actually on a monoid) when another type 
of restriction allows for a finite sum on the right. 

Example from analysis. In analysis one considers a situation as follows. 
Let L1 = L*(R) be the space of functions which are absolutely integrable. 
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Given functions /, g e L1, one defines their convolution product f *g by 

(/ * 0)M = | /(*- y)0()O 

Then this product satisfies all the axioms of a ring, except that there is no 
unit element. In the case of the group ring or the convolution of Exercise 12, 
there is a unit element. (What is it?) Note that the convolution product in 
the case of L*(R) is commutative, basically because R is a commutative 
additive group. More generally, let G be a locally compact group with a 
Haar measure fi. Then the convolution product is defined by the similar 
formula 

(f*g)(x) = J f(xy~l )g(y) duly). 

After these examples, we return to the general theory of rings. 

A left ideal a in a ring A is a subset of A which is a subgroup of the 
additive group of A, such that Aa c= a (and hence Aa = a since A contains 
1). To define a right ideal, we require a A = a, and a two-sided ideal is a 
subset which is both a left and a right ideal. A two-sided ideal is called 
simply an ideal in this section. Note that (0) and A itself are ideals. 

If A is a ring and a e A, then Aa is a left ideal, called principal. We say 
that a is a generator of a (over A). Similarly, AaA is a principal two-sided 
ideal if we define AaA to be the set of all sums ^x^y* Cf. 
below the definition of the product of ideals. More generally, let al9 ..., an 
be elements of A. We denote by (al9...9 an) the set of elements of A which 
can be written in the form 

xiai +"- + x„an with xf e A. 

Then this set of elements is immediately verified to be a left ideal, and 
an are called generators of the left ideal. 

If {ai}ie/ is a family of ideals, then their intersection 

is also an ideal. Similarly for left ideals. Readers will easily verify that if 
a = (al9..., an\ then a is the intersection of all left ideals containing the 
elements al9..., a„. 

A ring A is said to be commutative if xy = yx for all x, y e A. In that 
case, every left or right ideal is two-sided. 

A commutative ring such that every ideal is principal and such that 1 # 0 
is called a principal ring. 

Examples. The integers Z form a ring, which is commutative. Let a be 
an ideal # Z and ^0. If n e a, then — n e a. Let d be the smallest integer 
> 0 lying in a. If ne a then there exist integers q, r with 0 < d such that 

n = dq + r. 

n 
i g / 
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Since a is an ideal, it follows that r lies in a, hence r = 0. Hence a consists of 
all multiples qd of d, with qe Z, and Z is a principal ring. 

A similar example is the ring of polynomials in one variable over a field, 
as will be proved in Chapter IV, also using the Euclidean algorithm. 

Let R be the ring of algebraic integers in a number field K. (For 
definitions, see Chapter VII.) Then R is not necessarily principal, but let p 
be a prime ideal, and let Rp be the ring of all elements a/b with a, b e R and 
b $ p. Then in algebraic number theory, it is shown that Rp is principal, with 
one prime ideal mp consisting of all elements a/b as above but with aep. 
See Exercises 15, 16, and 17. 

An example from analysis. Let A be the set of entire functions on the 
complex plane. Then A is a commutative ring, and every finitely generated 
ideal is principal. Given a discrete set of complex numbers {zj and integers 
m, ^ 0, there exists an entire function / having zeros at zf of multiplicity 
and no other zeros. Every principal ideal is of the form Af for some such /. 
The group of units A* in A consists of the functions which have no zeros. It 
is a nice exercise in analysis to prove the above statements (using the 
Weierstrass factorization theorem). 

We now return to general notions. Let a, b be ideals of A. We define ab 
to be the set of all sums 

with x, e a and yt e b. Then one verifies immediately that ab is an ideal, and 
that the set of ideals forms a multiplicative monoid, the unit element being 
the ring itself. This unit element is called the unit ideal, and is often written (1). 
If a, b are left ideals, we define their product ab as above. It is also a left ideal, 
and if a, b, c are left ideals, then we again have associativity: (ab)c = a(bc). 

If a, b are left ideals of A, then a + b (the sum being taken as additive 
subgroup of A) is obviously a left ideal. Similarly for right and two-sided 
ideals. Thus ideals also form a monoid under addition. We also have 
distributivity: If al9 ..., a„, b are ideals of A, then clearly 

b^ + • • • -f an) = baj + • • • + ba„, 

and similarly on the other side. (However, the set of ideals does not form a 
ring!) 

Let a be a left ideal. Define aA to be the set of all sums axxx + ••• + anxn 
with at e a and x, e A. Then aA is an ideal (two-sided). 

Suppose that A is commutative. Let a, b be ideals. Then trivially 

abcanb, 

but equality does not necessarily hold. However, as an exercise, prove that if 
a + b = A then ab = a n b. 

As should be known to the reader, the integers Z satisfy another property 
besides every ideal being principal, namely unique factorization into primes. 
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We shall discuss the general phenomenon in §4. Be it noted here only that if 
a ring A has the property of unique factorization into prime elements, and p 
is a prime element, then the ideal (p) is prime, and the ring R{p) (defined as 
above) is principal. See Exercise 6. Thus principal rings may be obtained in 
a natural way from rings which are not principal. 

As Dedekind found out, some form of unique factorization can be re¬ 
covered in some cases, replacing unique factorization into prime elements by 
unique factorization of (non-zero) ideals into prime ideals. 

Example. There are cases when the non-zero ideals give rise to a group. 
Let o be a subring of a field K such that every element of K is a quotient of 
elements of o; that is, of the form a/b with a, b e o and b # 0. By a fractional 
ideal a we mean a non-zero additive subgroup of K such that oa a a (and 
therefore oa = a since o contains the unit element); and such that there exists 
an element c e o, c ^ 0, such that ca <= o. We might say that a fractional 
ideal has bounded denominator. A Dedekind ring is a ring o as above such 
that the fractional ideals form a group under multiplication. As proved in 
books on algebraic number theory, the ring of algebraic integers in a number 
field is a Dedekind ring. Do Exercise 14 to get the property of unique 
factorization into prime ideals. See Exercise 7 of Chapter VII for a sketch of 
this proof. 

If ae K, a ^ 0, then oa is a fractional ideal, and such ideals are called 
principal. The principal fractional ideals form a subgroup. The factor group 
is called the ideal class group, or Picard group of o, and is denoted by Pic(o). 
See Exercises 13-19 for some elementary facts about Dedekind rings. It is 
a basic problem to determine Pic(o) for various Dedekind rings arising in 
algebraic number theory and function theory. See my book Algebraic Num¬ 
ber Theory for the beginnings of the theory in number fields. In the case of 
function theory, one is led to questions in algebraic geometry, notably the 
study of groups of divisor classes on algebraic varieties and all that this 
entails. The property that the fractional ideals form a group is essentially 
associated with the ring having “dimension 1” (which we do not define 
here). In general one is led into the study of modules under various equiva¬ 
lence relations; see for instance the comments at the end of Chapter III, §4. 

We return to the general theory of rings. 
By a ring-homomorphism one means a mapping f.A^B where A, B are 

rings, and such that / is a monoid-homomorphism for the multiplicative 
structures on A and £, and also a monoid-homomorphism for the additive 
structure. In other words, / must satisfy: 

f(a + a') = f(a) + /(*'), f(aa') = f(a)f(a'\ 

m = i m = 0, 

for all a, a! e A. Its kernel is defined to be the kernel of / viewed as additive 
homomorphism. 
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The kernel of a ring-homomorphism is an ideal of A, as one 
verifies at once. 

Conversely, let a be an ideal of the ring A. We can construct the factor 
ring A/a as follows. Viewing A and a as additive groups, let A/a be the 
factor group. We define a multiplicative law of composition on A/a: If 
x 4- a and y + a are two cosets of a, we define (x + a)(y + a) to be the coset 
(xy + a). This coset is well defined, for if xl9 yt are in the same coset as x, y 
respectively, then one verifies at once that xtyt is in the same coset as xy. 
Our multiplicative law of composition is then obviously associative, has a 
unit element, namely the coset 1 + a, and the distributive law is satisfied 
since it is satisfied for coset representatives. We have therefore defined a ring 
structure on A/a,, and the canonical map 

f:A^ A/a 

is then clearly a ring-homomorphism. 

If g: A -+ A' is a ring-homomorphism whose kernel contains a, then there 
exists a unique ring-homomorphism gA/a^> A' making the following dia¬ 
gram commutative: 

A—-—► A 

A/a 

Indeed, viewing f g as group-homomorphisms (for the additive struc¬ 
tures), there is a unique group-homomorphism g* making our diagram 
commutative. We contend that g* is in fact a ring-homomorphism. We 
could leave the trivial proof to the reader, but we carry it out in full. If 
x g A, then g(x) = g*f(x). Hence for x, y e A, 

9*(f(x)f(y)) = 9*{f{xy)) = g{xy) = g(x)g{y) 

= g*f(x)g*f(y). 

Given £, rj e A/a, there exist x, y e A such that £ = /(x) and rj = f(y). Since 
/(1) = 1, we get 0*/(l) = #(1) = 1, and hence the two conditions that g* be a 
multiplicative monoid-homomorphism are satisfied, as was to be shown. 

The statement we have just proved is equivalent to saying that the 
canonical map /: A -> A/a is universal in the category of homomorphisms 
whose kernel contains a. 

Let A be a ring, and denote its unit element by e for the moment. The 
map 

kZ-+A 

such that A(n) — ne is a ring-homomorphism (obvious), and its kernel is an 
ideal (n), generated by an integer n ^ 0. We have a canonical injective homo¬ 
morphism Z/nZ -> A, which is a (ring) isomorphism between Z/nZ and a 
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subring of A. If nZ is a prime ideal, then n = 0 or n = p for some prime number 
p. In the first case, A contains as a subring a ring which is isomorphic to Z, and 
which is often identified with Z. In that case, we say that A has characteristic 
0. If on the other hand n = p9 then we say that A has characteristic p9 and A 
contains (an isomorphic image of) Z/pZ as a subring. We abbreviate Z/pZ by 

If K is a field, then K has characteristic 0 or p > 0. In the first case, K 
contains as a subfield an isomorphic image of the rational numbers, and in 
the second case, it contains an isomorphic image of Fp. In either case, this 
subfield will be called the prime field (contained in K). Since this prime field 
is the smallest subfield of K containing 1 and has no automorphism except 
the identity, it is customary to identify it with Q or Fp as the case may be. 
By the prime ring (in K) we shall mean either the integers Z if K has 
characteristic 0, or Fp if K has characteristic p. 

Let A be a subring of a ring B. Let 5 be a subset of B commuting with 
A; in other words we have as = sa for all a e A and se S. We denote by 
A [5] the set of all elements 

X aix -inSl * * ’ sn”> 

the sum ranging over a finite number of n-tuples (il9..., in) of integers ^ 0, 
and air..ineA, sl9..., sne S. If B = A[S], we say that 5 is a set of 
generators (or more precisely, ring generators) for B over A, or that B is 
generated by 5 over A. If 5 is finite, we say that B is finitely generated 
as a ring over A. One might say that A [5] consists of all not-necessarily- 
commutative polynomials in elements of S with coefficients in A. Note that 
elements of S may not commute with each other. 

Example. The ring of matrices over a field is finitely generated over that 
field, but matrices don’t necessarily commute. 

As with groups, we observe that a homomorphism is uniquely determined 
by its effect on generators. In other words, let /: A -* A be a ring- 
homomorphism, and let B = A [S] as above. Then there exists at most one 
extension of / to a ring-homomorphism of B having prescribed values on S. 

Let A be a ring, a an ideal, and S a subset of A. We write 

5 = 0 (mod a) 

if 5 c= a. If x9 y e A9 we write 

x = y (mod a) 

if x — y e a. If a is principal, equal to (a)9 then we also write 

x == y (mod a). 

If /: A -► A/a is the canonical homomorphism, then x = y (mod a) means 
that f(x) = f(y). The congruence notation is sometimes convenient when we 
want to avoid writing explicitly the canonical map /. 
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The factor ring A/a is also called a residue class ring. Cosets of a in A 
are called residue classes modulo a, and if x e A, then the coset x + a is 
called the residue class of x modulo a. 

We have defined the notion of an isomorphism in any category, and so a 
ring-isomorphism is a ring-homomorphism which has a two-sided inverse. 
As usual we have the criterion: 

A ring-homomorphism f:A^B which is bijective is an isomorphism. 

Indeed, there exists a set-theoretic inverse g: B -► A, and it is trivial to verify 
that g is a ring-homomorphism. 

Instead of saying “ring-homomorphism” we sometimes say simply 
“homomorphism” if the reference to rings is clear. We note that rings form 
a category (the morphisms being the homomorphisms). 

Let f:A-+B be a ring-homomorphism. Then the image f(A) of f is a 
subring of B. Proof obvious. 

It is clear that an injective ring-homomorphism f:A-^B establishes a 
ring-isomorphism between A and its image. Such a homomorphism will be 
called an embedding (of rings). 

Let f:A^A be a ring-homomorphism, and let a' be an ideal of A. 
Then /_1(a/) is an ideal a in A, and we have an induced injective homo¬ 
morphism 

A/a -+ A/a'. 

The trivial proof is left to the reader. 

Proposition 1.1. Products exist in the category of rings. 

In fact, let {Ajie/ be a family of rings, and let A = f] At be their product 
as additive abelian groups. We define a multiplication in A in the obvious 
way: If (xf)ie/ and (yf)ie/ are two elements of A, we define their product to 
be (xfyf)ie/, i.e. we define multiplication componentwise, just as we did for 
addition. The multiplicative unit is simply the element of the product whose 
i-th component is the unit element of At. It is then clear that we obtain a 
ring structure on A, and that the projection on the i-th factor is a ring- 
homomorphism. Furthermore, A together with these projections clearly 
satisfies the required universal property. 

Note that the usual inclusion of At on the i-th factor is not a ring- 
homomorphism because it does not map the unit element ex of A{ on the unit 
element of A. Indeed, it maps e, on the element of A having e( as i-th 
component, and 0 (= 0f) as all other components. 

Let A be a ring. Elements x, y of A are said to be zero divisors if x # 0, 
y # 0, and xy = 0. Most of the rings without zero divisors which we con¬ 
sider will be commutative. In view of this, we define a ring A to be entire if 
1 # 0, if A is commutative, and if there are no zero divisors in the ring. 
(Entire rings are also called integral domains. However, linguistically, I feel 
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the need for an adjective. “Integral” would do, except that in English, 
“integral” has been used for “integral over a ring” as in Chapter VII, §1. In 
French, as in English, two words exist with similar roots: “integral” and 
“entire”. The French have used both words. Why not do the same in 
English? There is a slight psychological impediment, in that it would have 
been better if the use of “integral” and “entire” were reversed to fit the 
long-standing French use. I don’t know what to do about this.) 

Examples. The ring of integers Z is without zero divisors, and is there¬ 
fore entire. If S is a set with more than 2 elements, and A is a ring with 
1 # 0, then the ring of mappings Map(S, A) has zero divisors. (Proof?) 

Let m be a positive integer # 1. The ring Z/mZ has zero divisors if and 
only if m is not a prime number. (Proof left as an exercise.) The ring of 
n x n matrices over a field has zero divisors if n ^ 2. (Proof?) 

The next criterion is used very frequently. 

Let A be an entire ring, and let a, b be non-zero elements of A. Then a, b 
generate the same ideal if and only if there exists a unit u of A such that 
b = au. 

Proof If such a unit exists we have Ab = Aua = Aa. Conversely, 
assume Aa = Ab. Then we can write a = be and b = ad with some elements 
c, d s A. Hence a = adc, whence a( 1 — dc) = 0, and therefore dc = 1. Hence 
c is a unit. 

§2. COMMUTATIVE RINGS 

Throughout this section, we let A denote a commutative ring. 

A prime ideal in A is an ideal p # A such that A/p is entire. Equiva¬ 
lently, we could say that it is an ideal p # A such that, whenever x, y e A 
and xy e p, then x e p or y e p. A prime ideal is often called simply a prime. 

Let m be an ideal. We say that m is a maximal ideal if m # A and if 
there is no ideal a # A containing m and # m. 

Every maximal ideal is prime. 

Proof. Let m be maximal and let x, y e A be such that xy e m. Suppose 
x £ m. Then m + Ax is an ideal properly containing m, hence equal to A. 
Hence we can write 

1 = u + ax 

with u e m and as A. Multiplying by y we find 
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y = yu + axy, 

whence ye m and m is therefore prime. 

Let a be an ideal # A. Then a is contained in some maximal ideal m. 

Proof. The set of ideals containing a and # A is inductively ordered by 
ascending inclusion. Indeed, if {bj is a totally ordered set of such ideals, 
then 1 ^ b, for any i, and hence 1 does not lie in the ideal b = (J b„ which 
dominates all bf. If m is a maximal element in our set, then m # A and m is 
a maximal ideal, as desired. 

The ideal {0} is a prime ideal of A if and only if A is entire. 

(Proof obvious.) 
We defined a field A' to be a commutative ring such that 1 =£ 0, and such 

that the multiplicative monoid of non-zero elements of A’ is a group (i.e. such 
that whenever x e K and x ^ 0 then there exists an inverse for x). We note that 
the only ideals of a field K are K and the zero ideal. 

If m is a maximal ideal of A, then A/m is a field. 

Proof. If x e A, we denote by x its residue class mod m. Since m # A 
we note that A/m has a unit element # 0. Any non-zero element of A/m can 
be written as x for some x e A, x m. To find its inverse, note that m + Ax 
is an ideal of A ^ m and hence equal to A. Hence we can write 

1 = u + yx 

with uem and y e A. This means that yx = 1 (i.e. = I) and hence that x has 
an inverse, as desired. 

Conversely, we leave it as an exercise to the reader to prove that: 

If m is an ideal of A such that A/m is a field, then m is maximal. 

Let f: A -► A' be a homomorphism of commutative rings. Let p' be a prime 
ideal of A\ and let p = /_1(p'). Then p is prime. 

To prove this, let x, y e A, and xy e p. Suppose x £ p. Then /(x) ^ p'. 
But f(x)f(y) = /(xy) e p'. Hence f(y) e p', as desired. 

As an exercise, prove that if / is surjective, and if m' is maximal in A', 
then /_1(m') is maximal in A. 

Example. Let Z be the ring of integers. Since an ideal is also an additive 
subgroup of Z, every ideal ¥= {0} is principal, of the form nZ for some integer 
n > 0 (uniquely determined by the ideal). Let p be a prime ideal =£ {0}, 
p = nZ. Then n must be a prime number, as follows essentially directly from 
the definition of a prime ideal. Conversely, if p is a prime number, then pZ is 
a prime ideal (trivial exercise). Furthermore, pZ is a maximal ideal. Indeed, 
suppose pZ contained in some ideal nZ. Then p = nm for some integer m, whence 
n = p or n = 1, thereby proving pZ maximal. 
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If n is an integer, the factor ring Z/nZ is called the ring of integers 
modulo n. We also denote 

Z/nZ = Z(n). 

If n is a prime number p, then the ring of integers modulo p is in fact a field, 
denoted by Fp. In particular, the multiplicative group of Fp is called the 
group of non-zero integers modulo p. From the elementary properties of 
groups, we get a standard fact of elementary number theory: If x is an 
integer # 0 (mod p), then xp~l = 1 (mod p). (For simplicity, it is customary 
to write mod p instead of mod pZ, and similarly to write mod n instead of 
mod nZ for any integer n.) Similarly, given an integer n > 1, the units in the 
ring Z/nZ consist of those residue classes mod nZ which are represented by 
integers m # 0 and prime to n. The order of the group of units in Z/nZ is 
called by definition (p(n) (where <p is known as the Euler phi-function). 
Consequently, if x is an integer prime to n, then x9(n) = 1 (mod n). 

Theorem 2.1. (Chinese Remainder Theorem). Let al9 ..., a„ be ideals of 
A such that a, + a;- = A for all i i=- j. Given elements xl9 ..., xne A, there 
exists x g A such that x = xf (mod af) for all i. 

Proof If n = 2, we have an expression 

1 = + a2 

for some elements a( e ah and we let x = x2av+ xva2. 
For each i ^ 2 we can find elements ate a v and bt e at such that 

at + bt= 1, i ^ 2. 

n 

The product J] (at + b{) is equal to 1, and lies in 
i=2 

n 

°i + n a<> 
i= 2 

i.e. in al + a2 * * * a„. Hence 
n 

<»! + na.=a- 
i = 2 

By the theorem for n = 2, we can find an element y{ e A such that 

yi = 1 (mod aj, 

We find similarly elements y2> •••> yn such that 

yj = 1 (mod cij) and yj = 0 (mod at) for i # j. 

Then x = xxyx H-+ xnyn satisfies our requirements. 
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In the same vein as above, we observe that if al9 
ring A such that 

ai + •• + an = A, 

and if vj,..., vn are positive integers, then 

a?+ ■•• + «* = ,4. 

The proof is trivial, and is left as an exercise. 

..., an are ideals of a 

Corollary 2.2. Let al9 ..., a„ be ideals of A. Assume that af + a,- = A for 
i # j. Let 

I A/di = {A/aJ X • • • x {A/a„) 
i=1 

be the map of A into the product induced by the canonical map of A onto 
n 

A/at for each factor. Then the kernel of f is Q a„ and f is surjective, 
thus giving an isomorphism 1=1 

a/c\ “i s n A/*i- 

Proof That the kernel of / is what we said it is, is obvious. The 
surjectivity follows from the theorem. 

The theorem and its corollary are frequently applied to the ring of 
integers Z and to distinct prime ideals (pj, ..., (pn). These satisfy the 
hypothesis of the theorem since they are maximal. Similarly, one could take 
integers mu ..., mn which are relatively prime in pairs, and apply the theorem 
to the principal ideals (mt) = mtZ,..., (mn) = mnZ. This is the ultraclassical 
case of the Chinese remainder theorem. 

In particular, let m be an integer > 1, and let 

m = n P? 
i 

be a factorization of m into primes, with exponents rj ^ 1. Then we have a 
ring-isomorphism: 

Z/mZ % n z/PiiZ• 
i 

If /I is a ring, we denote as usual by A* the multiplicative group of invertible 
elements of A. We leave the following assertions as exercises: 

The preceding ring-isomorphism of Z/mZ onto the product induces a group- 
isomorphism 

(Z/mZ)* * ft (Z/P?Z)*. 
i 

In view of our isomorphism, we have 

<p(m) = n <?(?.")• 
i 
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If p is a prime number and r an integer ^ 1, then 

<P(pr) = (P~ 1 )Pr_1- 

One proves this last formula by induction. If r = 1, then Z/pZ is a field, and 
the multiplicative group of that field has order p — 1. Let r be ^ 1, and 
consider the canonical ring-homomorphism 

Z/pr+1Z-Z/prZ, 

arising from the inclusion of ideals (pr+1) <= (pr). We get an induced group- 
homomorphism 

X: (Z/pr+1 Z)* -► (Z/prZ)*, 

which is surjective because any integer a which represents an element of 
Z/prZ and is prime to p will represent an element of (Z/pr+1Z)*. Let a be an 
integer representing an element of (Z/pr+1Z)*, such that X(a) = 1. Then 

a = 1 (mod prZ), 

and hence we can write 

a = 1 + xpr (mod pr+1 Z) 

for some xeZ. Letting x = 0, 1, ..., p — 1 gives rise to p distinct elements of 
(Z/pr+1Z)*, all of which are in the kernel of X. Furthermore, the element x 
above can be selected to be one of these p integers because every integer is 
congruent to one of these p integers modulo (p). Hence the kernel of X has 
order p, and our formula is proved. 

Note that the kernel of X is isomorphic to Z/pZ. (Proof?) 

Application: The ring of endomorphisms of a cyclic group. One of the 
first examples of a ring is the ring of endomorphisms of an abelian group. In 
the case of a cyclic group, we have the following complete determination. 

Theorem 2.3. Let A be a cyclic group of order n. For each k e Z let 
fk: A —> A be the endomorphism x i-» kx (writing A additively). Then k i—» fk 
induces a ring isomorphism Z/nZ ~ End(A), and a group isomorphism 
(Z/nZ)* « Aut(A). 

Proof Recall that the additive group structure on End(A) is simply 
addition of mappings, and the multiplication is composition of mappings. 
The fact that k i—► /* is a ring-homomorphism is then a restatement of the 
formulas 

1 a = a, (k + k')a = ka + k'a, and (kk')a = k(kfa) 

for /c, k! eZ and ae A. If a is a generator of A, then ka = 0 if and only if 
k = 0 mod n, so Z/nZ is embedded in End (A). On the other hand, let 
/: A -► A be an endomorphism. Again for a generator a, we have f(a) = ka 
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for some k, whence / = fk since every xe A is of the form ma for some 
me Z, and 

f(x) = f(ma) = mf(a) = mka = kma = kx. 

This proves the isomorphism Z/nZ % End(A). Furthermore, if ke(Z/nZ)* 
then there exists k' such that kk' = 1 mod n, so fk has the inverse fk. and /fc is 
an automorphism. Conversely, given any automorphism / with inverse g, we 
know from the first part of the proof that / = /*, g = gk> for some k, k\ and 
f o g = id means that kk' = 1 mod «, so k, k' e (Z/nZ)*. This proves the 
isomorphism (ZlnZ)* ~ Aut(A). 

Note that if /I is written as a multiplicative group C, then the map /k is 
given by x (—►**. For instance, let \in be the group of n-th roots of unity in C. 
Then all automorphisms of p„ are given by 

with k e (Z/nZ)*. 

§3. POLYNOMIALS AND GROUP RINGS 

Although all readers will have met polynomial functions, this section lays 
the ground work for polynomials in general. One needs polynomials over 
arbitrary rings in many contexts. For one thing, there are polynomials over 
a finite field which cannot be identified with polynomial functions in that 
field. One needs polynomials with integer coefficients, and one needs to 
reduce these polynomials mod p for primes p. One needs polynomials over 
arbitrary commutative rings, both in algebraic geometry and in analysis, for 
instance the ring of polynomial differential operators. We also have seen the 
example of a ring B = A[S] generated by a set of elements over a ring A. 
We now give a systematic account of the basic definitions of polynomials 
over a commutative ring A. 

We want to give a meaning to an expression such as 

a0 + ciiX + - •’ + anXn, 

where ate A and X is a “variable”. There are several devices for doing so, 
and we pick one of them. (I picked another in my Undergraduate Algebra.) 
Consider an infinite cyclic group generated by an element X. We let 5 be the 
subset consisting of powers Xr with r ^ 0. Then S is a monoid. We define 
the set of polynomials A [X] to be the set of functions 5 -► A which are equal 
to 0 except for a finite number of elements of S. For each element a e A we 
denote by aXn the function which has the value a on Xn and the value 0 for 
all other elements of 5. Then it is immediate that a polynomial can be 
written uniquely as a finite sum 
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a0X° + --- + anXn 

for some integer ne N and a{ e A. Such a polynomial is denoted by f(X). 
The elements ate A are called the coefficients of /. We define the product 
according to the convolution rule. Thus, given polynomials 

f(X) = X «,*' and g(X) « £ bjX' 
i=0 j=0 

we define the product to be 

f(X)g(X)= £ I 
k=0 \i+j=k J 

It is immediately verified that this product is associative and distributive. 
We shall give the details of associativity in the more general context of a 
monoid ring below. Observe that there is a unit element, namely IX 
There is also an embedding 

A-> A [A"] given by a^aX °. 

One usually does not distinguish a from its image in A [A"], and one writes a 
instead of aX°. Note that for c e A we have then c/(x) = 

Observe that by our definition, we have an equality of polynomials 

X OiX1 = X bixi 

if and only if at = bt for all i. 
Let A be a subring of a commutative ring B. Let x e B. If / e A [A"] is a 

polynomial, we may then define the associated polynomial function 

fB: B -+ B 

by letting 

/*(*) = /(*) = a0 + atx + • • • + anxn. 

Given an element b e £, directly from the definition of multiplication of 
polynomials, we find: 

77ie association 

is a ring homomorphism of A [Ar] into B. 

This homomorphism is called the evaluation homomorphism, and is also said 
to be obtained by substituting b for X in the polynomial. (Cf. Proposition 
3.1 below.) 

Let x e B. We now see that the subring A [x] of B generated by x over A 
is the ring of all polynomial values /(x), for / e A[X~\. If the evaluation map 
//(x) gives an isomorphism of A [A"] with A[x], then we say that x is 
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transcendental over A, or that x is a variable over A. In particular, A" is a 
variable over A. 

Example. Let a = y/l. Then the set of all real numbers of the form 
a + ba, with a, b e Z, is a subring of the real numbers, generated by Jl. 
Note that a is not transcendental over Z, because the polynomial X2 — 2 lies 
in the kernel of the evaluation map /f—► /(^/2). On the other hand, it can be 
shown that e = 2.718... and n are transcendental over Q. See Appendix 1. 

Example. Let p be a prime number and let K = Z/pZ. Then K is a 
field. Let f(X) = Xp — X e K[X~\. Then / is not the zero polynomial. But 
fK is the zero function. Indeed, fK(0) = 0. If x e K, x # 0, then since the 
multiplicative group of K has order p — 1, it follows that xp~l = 1, whence 
xp = x, so /(x) = 0. Thus a non-zero polynomial gives rise to the zero 
function on K. 

There is another homomorphism of the polynomial ring having to do 
with the coefficients. Let 

<p: A -> B 

be a homomorphism of commutative rings. Then there is an associated 
homomorphism of the polynomial rings A[X] -► B\_X\ such that 

f(X) = X a.X^Y. <P(<*i)xi = («0W 

The verification that this mapping is a homomorphism is immediate, and 
further details will be given below in Proposition 3.2, in a more general 
context. We call f ► cpf the reduction map. 

Examples. In some applications the map <p may be an isomorphism. 
For instance, if f(X) has complex coefficients, then its complex conju¬ 
gate f(X) = Ya&iXi is obtained by applying complex conjugation to its 
coefficients. 

Let p be a prime ideal of A. Let (p:A-^A' be the canonical homo¬ 
morphism of A onto A/p. If f(X) is a polynomial in A[X\ then cpf will 
sometimes be called the reduction of / modulo p. 

For example, taking A = Z and p = (p) where p is a prime number, we 
can speak of the polynomial 3X4 — X + 2 as a polynomial mod 5, viewing 
the coefficients 3, — 1, 2 as integers mod 5, i.e. elements of Z/5Z. 

We may now combine the evaluation map and the reduction map to 
generalize the evaluation map. 

Let 9: A —» B be a homomorphism of commutative rings. 

Let x e B. There is a unique homomorphism extending 9 

A [2f] -* B such that X\—>x, 

and for this homomorphism, ►^<p(«i)xI. 
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The homomorphism of the above statement may be viewed as the composite 

A[X\- 

where the first map applies cp to the coefficients of a polynomial, and the 
second map is the evaluation at x previously discussed. 

Example. In Chapter IX, §2 and §3, we shall discuss such a situation in 
several variables, when ((pf) (x) = 0, in which case x is called a zero of the 
polynomial /. 

n 

When writing a polynomial f(X) = £ 0fXl, if an^0 then we define n 
i=1 

to be the degree of /. Thus the degree of / is the smallest integer n such 
that ar = 0 for r > n. If / = 0 (i.e. / is the zero polynomial), then by con¬ 
vention we define the degree of / to be — oo. We agree to the convention 
that 

—oo H-oo = —oo, —oo + n = —oo, —oo < n, 

for all ne Z, and no other operation with — oo is defined. A polynomial of 
degree 1 is also called a linear polynomial. If / # 0 and deg/ = n, then we 
call an the leading coefficient of /. We call a0 its constant term. 

Let 

g(X) = b0 + --- + bmXm 

be a polynomial in A[X\ of degree m, and assume g # 0. Then 

f(X)g(X) = a0b0 + --- + anbmXm+n. 

Therefore: 

If we assume that at least one of the leading coefficients an or bm is not a 
divisor of 0 in A, then 

deg(fg) = deg / + deg g 

and the leading coefficient of fg is anbm. This holds in particular when an or 
bm is a unit in A, or when A is entire. Consequently, when A is entire, 
A [X] is also entire. 

If / or g = 0, then we still have 

deg(/0) = deg / + deg g 

if we agree that —oo + m = —oo for any integer m. 
One verifies trivially that for any polynomial f g e A[X~\ we have 

deg(/ + 0) g max(deg f deg g\ 

again agreeing that — oo < m for every integer m. 
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Polynomials in several variables 

We now go to polynomials in several variables. Let A be a subring of 
a commutative ring B. Let xj,...,xneB. For each n-tuple of integers 
(vj,..., v„) = (v) e N", we use vector notation, letting (x) = (xt,..., x„), and 

Mw(x) = xl'-x;\ 

The set of such elements forms a monoid under multiplication. Let 
A[x] = A[xl9..., x„] be the subring of B generated by x1,...,xn over A. 
Then every element of A [x] can be written as a finite sum 

X «,v)M,v)W with a(v) e A. 

Using the construction of polynomials in one variable repeatedly, we may 
form the ring 

A[X1,...,Xn] = A[X1][X2]---[Xnl 

selecting Xn to be a variable over A[Xi9..., Xn_^. Then every element / of 
A[Xl9..., Xn~\ = A[X~\ has a unique expression as a finite sum 

f=difj(X l9...9Xn^)Xi with fjeAlXl9...9Xn_ll 
j=o 

Therefore by induction we can write / uniquely as a sum 

/= i ( x avi...v*r•••«)*;” 
v„ = 0 \vj > • •., vn_ i / 

= Zfl(v)M(v)(x) = z«,v,^r 

with elements a{v) e A, which are called the coefficients of /. The products 

M(v)(X) = xr ■■■Xt" 

will be called primitive monomials. Elements of A [A"] are called polynomials 
(in n variables). We call a(x) its coefficients. 

Just as in the one-variable case, we have an evaluation map. Given (x) = 
(xx,..., x„) and / as above, we define 

f(x) = X «(v)A*(v)M = X aMXl' • ■' *«”• 

Then the evaluation map 

ev(x): ^[A"] -► B such that /1—► /(x) 

is a ring-homomorphism. It may be viewed as the composite of the suc¬ 
cessive evaluation maps in one variable Xt\—>xf for i = n,..., 1, because 

Just as for one variable, if f(X)eA\_X] is a polynomial in n variables, 
then we obtain a function 
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fB'- Bn -> B by (x) i ► f(x). 

We say that /(x) is obtained by substituting (x) for (X) in /, or by specializing 
(X) to (x). As for one variable, if K is a finite field, and / e K\_X~] one may 
have / # 0 but fK = 0. Cf. Chapter IV, Theorem 1.4 and its corollaries. 

Next let (p: A -> B be a homomorphism of commutative rings. Then we 
have the reduction map (generalized in Proposition 3.2 below) 

f(X) = £ a(v)M(v)(X)^X 0 = (<*>/)(*)• 

We can also compose the evaluation and reduction. An element (x) e Bn is 
called a zero of / if (</>/) (x) = 0. Such zeros will be studied in Chapter IX. 

Go back to A as a subring of B. Elements xl9 ...9 xne B are called 
algebraically independent over A if the evaluation map 

/WM 
is injective. Equivalently, we could say that if / e A[X] is a polynomial and 
/(x) = 0, then / = 0; in other words, there are no non-trivial polynomial 
relations among xlf ..., xn over A. 

Example. It is not known if e and n are algebraically independent over 
the rationals. It is not even known if e + n is rational. 

We now come to the notion of degree for several variables. By the degree 
of a primitive monomial 

MM(X) = xi'-x? 

we shall mean the integer Iv^Vj+'-’ + v,, (which is ^ 0). 
A polynomial 

ax;1 ••• X„v" (as A) 

will be called a monomial (not necessarily primitive). 
If f(X) is a polynomial in /4[X] written as 

then either / = 0, in which case we say that its degree is — oo, or / # 0, and 
then we define the degree of / to be the maximum of the degrees of the 
monomials M{V)(X) such that a(v) # 0. (Such monomials are said to occur in 
the polynomial.) We note that the degree of / is 0 if and only if 

f(X) = a0X? ■■■ X? 

for some a0 e A9 a0 # 0. We also write this polynomial simply f(X) = a09 i.e. 
writing 1 instead of 

in other words, we identify the polynomial with the constant a0. 
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Note that a polynomial f(Xl9..., Xn) in n variables can be viewed as a 
polynomial in Xn with coefficients in A[Xi9..., Xn_j] (if n ^ 2). Indeed, we 
can write 

nx)= d£fj(x 
j=0 

where f is an element of A[XU ..., Arn_1]. By the degree of fin Xn we shall 
mean its degree when viewed as a polynomial in Xn with coefficients in 
A[Xi9..., Xn_1f One sees easily that if this degree is d, then d is the largest 
integer occurring as an exponent of Xn in a monomial 

with a{v) # 0. Similarly, we define the degree of / in each variable Xt 
(i = 1,..., n). 

The degree of / in each variable is of course usually different from its 
degree (which is sometimes called the total degree if there is need to prevent 
ambiguity). For instance, 

X\X2 + Xl 

has total degree 4, and has degree 3 in Xx and 2 in X2. 
As a matter of notation, we shall often abbreviate “degree” by “deg.” 
For each integer d ^ 0, given a polynomial f let f(d) be the sum of all 

monomials occurring in / and having degree d. Then 

/ = L/“,,. 
d 

Suppose / ^ 0. We say that / is homogeneous of degree d if / = f{d); thus / 
can be written in the form 

f(X) = X «<v)-X? • • • xn" with Vt + • • • + v„ = d if a(v) # 0. 

We shall leave it as an exercise to prove that a non-zero polynomial f in n 
variables over A is homogeneous of degree d if and only if for every set of 
n + 1 algebraically independent elements u9ti9...9tn over A we have 

f(utu...,utn) = u4f(tu...,tn). 

We note that if f g are homogeneous of degree d, e respectively, and 
fg # 0, then fg is homogeneous of degree d + e. If d = e and / + g # 0, then 
/ + g is homogeneous of degree d. 

Remark. In view of the isomorphism 

A[Xi,..., Xf\ ~ A[tl9..., tf] 

between the polynomial ring in n variables and a ring generated over A by n 
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algebraically independent elements, we can apply all the terminology we have 
defined for polynomials, to elements of A[tu..., tn]. Thus we can speak of 
the degree of an element in Alt'], and the rules for the degree of a product or 
sum hold. In fact, we shall also call elements of Alt] polynomials in (t). 
Algebraically independent elements will also be called variables (or indepen¬ 
dent variables), and any distinction which we make between AIX] and Alt] 
is more psychological than mathematical. 

Suppose next that A is entire. By what we know of polynomials in one 
variable and induction, it follows that AlXx,..., Xn] is entire. In particular, 
suppose / has degree d and g has degree e. Write 

/ = fW + terms of lower degree, 

g = g{e) + terms of lower degree. 

Then fg = fid)g{e) + terms of lower degree, and if fg # 0 then f{d)g{e) # 0. 
Thus we find: 

deg(/0) = deg / + deg g, 

deg(/ + g)£ max(deg /, deg g). 

We are now finished with the basic terminology of polynomials. We end 
this section by indicating how the construction of polynomials is actually a 
special case of another construction which is used in other contexts. Inter¬ 
ested readers can skip immediately to Chapter IV, giving further important 
properties of polynomials. See also Exercise 33 of Chapter XIII for har¬ 
monic polynomials. 

The group ring or monoid ring 

Let A be a commutative ring. Let G be a monoid, written multiplica- 
tively. 

Let AIG] be the set of all maps a: G -* A such that a(x) = 0 for almost 
all xeG. We define addition in AIG] to be the ordinary addition of 
mappings into an abelian (additive) group. If a, fi e AIG], we define their 
product a/? by the rule 

(a/S)(z)= £ a(x)f}(y). 
xy=z 

The sum is taken over all pairs (x, y) with x, y e G such that xy = z. This 
sum is actually finite, because there is only a finite number of pairs of 
elements (x, y) e G x G such that a(x)/?(y) # 0. We also see that (a/?)(f) = 0 
for almost all t, and thus belongs to our set AIG]. 

The axioms for a ring are trivially verified. We shall carry out the proof 
of associativity as an example. Let a, /?, y e AIG]. Then 
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((aP)y)(z)= Z (<*P)(x)y(y) 
xy=z 

= Z f Z *(“)/*(»)]y(30 
xy=z Lut?=JC J 

= z I" Z *(«)«*My)l 
xy=z |_uy=JC J 

= Z <*(u)P(v)y(y)> 
(u,v,y) 
uvy—z 

this last sum being taken over all triples (u v, y) whose product is z. This 
last sum is now symmetric, and if we had computed (a(/3y))(z), we would 
have found this sum also. This proves associativity. 

The unit element of A [G] is the function S such that 5(e) = 1 and 
<5(x) = 0 for all x e G, x # e. It is trivial to verify that a = 5a = a5 for all 
a e A[G]. 

We shall now adopt a notation which will make the structure of A[G] 
clearer. Let ae A and xe G. We denote by a x (and sometimes also by ax) 
the function whose value at x is a, and whose value at y is 0 if y # x. Then 
an element ae A[G] can be written as a sum 

a = Z «(*)•*• 
xgG 

Indeed, if is a set of elements of A almost all of which are 0, and we 
set 

p= z 
xgG 

then for any y e G we have /?(y) = (directly from the definitions). This also 
shows that a given element a admits a unique expression as a sum £ • x. 

With our present notation, multiplication can be written 

and addition can be written 

Z Z V*= Z (ax + bx)-x, 
x g G xgG xgG 

which looks the way we want it to look. Note that the unit element of A[G] 
is simply 1 • e. 

We shall now see that we can embed both A and G in a natural way in 
Aid 

Let (p0: G ^ A[G] be the map given by <p0(x) = 1 x. It is immediately 
verified that cp0 is a multiplicative monoid-homomorphism, and is in fact 
injective, i.e. an embedding. 

Let /0: A -► A[G~\ be the map given by 

fo(a) = a-e. 
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It is immediately verified that /0 is a ring-homomorphism, and is also an 
embedding. Thus we view A as a subring of A[G~\. One calls A[G~\ the 
monoid ring or monoid algebra of G over A, or the group algebra if G is a 
group. 

Examples. When G is a finite group and A = k is a field, then the group 
ring k[G~\ will be studied in Chapter XVIII. 

Polynomial rings are special cases of the above construction. In n vari¬ 
ables, consider a multiplicative free abelian group of rank n. Let Xl9 ..., Xn 
be generators. Let G be the multiplicative subset consisting of elements 
X\l • • • X*n with v, ^ 0 for all i. Then G is a monoid, and the reader can 
verify at once that ,4[G] is just A[XU ..., Xn]. 

As a matter of notation we usually omit the dot in writing an element of 
the ring A[G\ so we write simply £ axx for such an element. 

More generally, let / = {i} be an infinite family of indices, and let S be 
the free abelian group with free generators Xh written multiplicatively. Then we 
can form the polynomial ring A [X] by taking the monoid to consist of products 

m{v)(x)=n xr, 
is I 

where of course all but a finite number of exponents vf are equal to 0. If A is 
a subring of the commutative ring £, and S is a subset of B, then we shall 
also use the following notation. Let v: S -+ N be a mapping which is 0 except 
for a finite number of elements of S. We write 

Mas) = n *v<x)- 
xeS 

Thus we get polynomials in infinitely many variables. One interesting exam¬ 
ple of the use of such polynomials will occur in Artin’s proof of the existence 
of the algebraic closure of a field, cf. Chapter V, Theorem 2.5. 

We now consider the evaluation and reduction homomorphisms in the 
present context of monoids. 

Proposition 3.1. Let cp: G -+ G' be a homomorphism of monoids. Then 
there exists a unique homomorphism h: A[G~\ -► A[G’~\ such that h(x) = 
<p(x) for all x e G and h(a) = a for all a e A. 

Proof In fact, let a = Y^axx G >4[G]. Define 

h(a) = X <*x<P(x)- 

Then h is immediately verified to be a homomorphism of abelian groups, and 

h(x) = cp(x). Let P = Yj byy- Then 

= Z “xb^)<P(z)- 
z \xy=z J 

We get h(ocfi) = h(oc)h(P) immediately from the hypothesis that (p(xy) = 



LOCALIZATION 107 II. §4 

cp(x)(p(y). If e is the unit element of G, then by definition (p(e) = e\ so 
Proposition 3.1 follows. 

Proposition 3.2. Let G be a monoid and let f: A -> B be a homomorphism 
of commutative rings. Then there is a unique homomorphism 

h:A[_G-]-+B[G] 
such that 

h( E a**) = E /(«*)*• 
\xgG / xeG 

Proof. Since every element of /1[G] has a unique expression as a sum 
Y,axx> the formula giving h gives a well-defined map from A\G] into £[G]. 
This map is obviously a homomorphism of abelian groups. As for multipli¬ 
cation, let 

« = E and P = £ byy- 
Then 

h(aP) = E /( E 
zgG \xy=z / 

= E 2 /(aj/(^)z 
ZG G xy=z 

= Mf(p). 

We have trivially /i(l) = 1, so /i is a ring-homomorphism, as was to be 
shown. 

Observe that viewing A as a subring of A[G\ the restriction of h to A is 
the homomorphism / itself. In other words, if e is the unit element of G, 
then 

h(ae) = f(a)e. 

§4. LOCALIZATION 

We continue to let A be a commutative ring. 

By a multiplicative subset of A we shall mean a submonoid of A (viewed 
as a multiplicative monoid according to RI 2). In other words, it is a subset 
S containing 1, and such that, if x, y e S, then xy e S. 

We shall now construct the quotient ring of A by S, also known as the 
ring of fractions of A by S. 

We consider pairs (a, s) with a e A and s e S. We define a relation 

(ta, s) - {a\ s') 

between such pairs, by the condition that there exists an element sl e S such 
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that 

s^s'a — sa') = 0. 

It is then trivially verified that this is an equivalence relation, and the 
equivalence class containing a pair (a, s) is denoted by a/s. The set of 
equivalence classes is denoted by S'1 A. 

Note that if 0 e S, then S'1 A has precisely one element, namely 0/1. 
We define a multiplication in S~lA by the rule 

(a/s)(a'/s') = aa'/ssf. 

It is trivially verified that this is well defined. This multiplication has a unit 
element, namely 1/1, and is clearly associative. 

We define an addition in S~l A by the rule 

a a' s'a + sa' 
—I—- =--—. 

s s ss 

It is trivially verified that this is well defined. As an example, we give the 
proof in detail. Let a1/sl = a/s, and let a[/s[ = a'/s'. We must show that 

(s'^j -f SjfliVsjSi = (s'a + sa')/ss'. 

There exist s2, s3 e S such that 

s2(sa i — sta) = 0, 

s3(s'a[ - s\a') = 0. 

We multiply the first equation by s3s'si and the second by s2ssY. We then 
add, and obtain 

s2s3[s'si(sfli — s1a) + ss^s'a^ — si a')] = 0. 

By definition, this amounts to what we want to show, namely that there 
exists an element of S (e.g. s2s3) which when multiplied with 

ss'(s'lal + Sjfli) — sls'1(s'a + sa') 

yields 0. 
We observe that given a e A and s, s' e S we have 

a/s = s'a/s's. 

Thus this aspect of the elementary properties of fractions still remains true in 
our present general context. 

Finally, it is also trivially verified that our two laws of composition on 
S'1 A define a ring structure. 

We let 
(p$\ A —► S * A 

be the map such that <ps(a) = ci/\. Then one sees at once that cps is a 
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ring-homomorphism. Furthermore, every element of (ps(S) is invertible in 
(the inverse of s/1 is 1/s). 

Let G be the category whose objects are ring-homomorphisms 

such that for every seS, the element /(s) is invertible in B. If /: A -► B and 
f'.A^B' are two objects of G, a morphism g of f into /' is a homo¬ 
morphism 

g-B^B' 

making the diagram commutative: 

B 

We contend that <ps is a universal object in this category G. 

Proof. Suppose that a/s = a'/s\ or in other words that the pairs (a, s) 
and (a\ s') are equivalent. There exists sx e S such that 

sfs'a — sfl') = 0. 

Let /: A -► B be an object of G. Then 

f(s1)U(s,)na)-f(s)f(a'n=0. 

Multiplying by and then by /(s')-1 and /(s)-1, we obtain 

=f(a')f(sr 

Consequently, we can define a map 

h:S~xA^B 

such that h(a/s) = /(a)/(s)_1, for all a/seS~lA. It is trivially verified that h 
is a homomorphism, and makes the usual diagram commutative. It is also 
trivially verified that such a map h is unique, and hence that cps is the 
required universal object. 

Let A be an entire ring, and let S be a multiplicative subset which does not 
contain 0. Then 

cps: A -* S'1 A 

is injective. 

Indeed, by definition, if a/1 = 0 then there exists s e S such that sa = 0, 
and hence a — 0. 

The most important cases of a multiplicative set S are the following: 

1. Let A be a commutative ring, and let S be the set of invertible 
elements of A (i.e. the set of units). Then S is obviously multiplicative, and is 
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denoted frequently by A*. If A is a field, then A* is the multiplicative group 
of non-zero elements of A. In that case, S'1 A is simply A itself. 

2. Let A be an entire ring, and let S be the set of non-zero elements of A. 
Then 5 is a multiplicative set, and S'1 A is then a field, called the quotient 
field or the field of fractions, of A. It is then customary to identify A as a 
subset of S~iA, and we can write 

a/s = s~la 
for a e A and se S. 

We have seen in §3 that when A is an entire ring, then A[Xt,..., Xn~\ is 
also entire. If K is the quotient field of A, the quotient field of A[XU ...,Xn~\ 
is denoted by K(Xl9..., Xn). An element of K(X{,..., X„) is called a rational 
function. A rational function can be written as a quotient f(X)/g(X) where 
/, g are polynomials. If (bl9..., bn) is in K{n\ and a rational function admits 
an expression as a quotient f/g such that g(b) # 0, then we say that the 
rational function is defined at (b). From general localization properties, we 
see that when this is the case, we can substitute (b) in the rational function to 
get a value f(b)/g(b). 

3. A ring A is called a local ring if it is commutative and has a unique 
maximal ideal. If A is a local ring and m is its maximal ideal, and x e A, 
x $ m, then x is a unit (otherwise x generates a proper ideal, not contained in m, 
which is impossible). Let A be a ring and p a prime ideal. Let S be the com¬ 
plement of p in A. Then S is a multiplicative subset of A, and S~x A is denoted 
by Ap. It is a local ring (cf. Exercise 3) and is called the local ring of A at p. Cf. 
the examples of principal rings, and Exercises 15, 16. 

Let S be a multiplicative subset of A. Denote by J(A) the set of ideals of 
A. Then we can define a map 

il/s:J(A)-+J(S-lA); 

namely we let ij/s(a) = S~la be the subset of S~lA consisting of all fractions 
a/s with aea and seS. The reader will easily verify that S_1a is an 
S-1/1-ideal, and that \j/s is a homomorphism for both the additive and 
multiplicative monoid structures on the set of ideals J(A). Furthermore, ips 
also preserves intersections and inclusions; in other words, for ideals a, b of 
A we have: 

S~l(a + b) = S~la + S~lb, ^(ab) = (S^a^S^b), 

S“1(anb) = S'1anS'1b. 

As an example, we prove this last relation. Let xeanb. Then x/s is in 
S-1a and also in S_1b, so the inclusion is trivial. Conversely, suppose we 
have an element of S_1/l which can be written as a/s = b/s' with ae a, b eb, 
and s, s' e S. Then there exists sx e S such that 

s{s'a = slsb, 
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and this element lies in both a and b. Hence 

a/s = sls'a/s1s's 

lies in S-1(a n b), as was to be shown. 

§5. PRINCIPAL AND FACTORIAL RINGS 

Let A be an entire ring. An element a # 0 is called irreducible if it is not a 
unit, and if whenever one can write a = be with b e A and c e A then b or c 
is a unit. 

Let a 7^ 0 be an element of A and assume that the principal ideal (a) is 
prime. Then a is irreducible. Indeed, if we write a = be, then b or c lies in 
(a), say b. Then we can write b = ad with some d e A, and hence a = acd. 
Since A is entire, it follows that cd = 1, in other words, that c is a unit. 

The converse of the preceding assertion is not always true. We shall 
discuss under which conditions it is true. An element a e A, a # 0, is said to 
have a unique factorization into irreducible elements if there exists a unit u 
and there exist irreducible elements pt (i = 1,..., r) in A such that 

r 

a — u Y[ Pi’ 
1=1 

and if given two factorizations into irreducible elements, 

r s 

a=u n Pi=w n % 
i=i j=i 

we have r = s, and after a permutation of the indices i, we have pt = u& for 
some unit u{ in A, i = 1, ..., r. 

We note that if p is irreducible and u is a unit, then up is also irreducible, 
so we must allow multiplication by units in a factorization. In the ring 
of integers Z, the ordering allows us to select a representative irreducible 
element (a prime number) out of two possible ones differing by a unit, 
namely ±p, by selecting the positive one. This is, of course, impossible in 
more general rings. 

Taking r = 0 above, we adopt the convention that a unit of A has a 
factorization into irreducible elements. 

A ring is called factorial (or a unique factorization ring) if it is entire and if 
every element ^ 0 has a unique factorization into irreducible elements. We 
shall prove below that a principal entire ring is factorial. 

Let A be an entire ring and a, b e A, ab # 0. We say that a divides b and 
write a\b if there exists c e A such that ac = b. We say that d e A, d # 0, is a 
greatest common divisor (g.c.d.) of a and b if d\a, d\b, and if any element e 
of A, e =£ 0, which divides both a and b also divides d. 
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Proposition 5.1. Let A be a principal entire ring and a, b e A, a, b # 0. 
Let (a, b) = (c). Then c is a greatest common divisor of a and b. 

Proof. Since b lies in the ideal (c), we can write b = xc for some xe A, 
so that c\b. Similarly, c\a. Let d divide both a and h, and write a = dy, 
b = dz with y, z e A. Since c lies in (a, b) we can write 

c = wa + tb 

with some w, t e A. Then c = w dy + t dz = d(wy + tz\ whence d\c, and our 
proposition is proved. 

Theorem 5.2. Let A be a principal entire ring. Then A is factorial. 

Proof. We first prove that every non-zero element of A has a factoriza¬ 
tion into irreducible elements. Let S be the set of principal ideals # 0 whose 
generators do not have a factorization into irreducible elements, and suppose 
S is not empty. Let (at) be in S. Consider an ascending chain 

of ideals in S. We contend that such a chain cannot be infinite. Indeed, the 
union of such a chain is an ideal of A, which is principal, say equal to (a). 
The generator a must already lie in some element of the chain, say (an), and 
then we see that (.an) <= (a) <= (an), whence the chain stops at (an). Hence S is 
inductively ordered, and has a maximal element (a). Therefore any ideal of A 
containing (a) and (a) has a generator admitting a factorization. 

We note that an cannot be irreducible (otherwise it has a factorization), 
and hence we can write a = be with neither b nor c equal to a unit. But then 
(b) 7^ (a) and (c) (a) and hence both b, c admit factorizations into irreducible 
elements. The product of these factorizations is a factorization for a, contra¬ 
dicting the assumption that S is not empty. 

To prove uniqueness, we first remark that if p is an irreducible element of 
A and a, b e A, p\ab, then p\a or p\b. Proof: If p\a, then the g.c.d. of p, a 
is 1 and hence we can write 

1 = xp + ya 

with some x, y e A. Then b = bxp + yah, and since p\ab we conclude that 
p\b. 

Suppose that a has two factorizations 

a = Pi *** pr = q\ ••• qs 

into irreducible elements. Since px divides the product farthest to the right, 
Pj divides one of the factors, which we may assume to be qx after renum¬ 
bering these factors. Then there exists a unit u1 such that q1 = ulpl. We 
can now cancel p{ from both factorizations and get 
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P2mmmPr = ui<h • • <?s* 

The argument is completed by induction. 

We could call two elements a, be A equivalent if there exists a unit u 
such that a = bu. Let us select one irreducible element p out of each 
equivalence class belonging to such an irreducible element, and let us denote 
by P the set of such representatives. Let a e A, a # 0. Then there exists a 
unit u and integers v(p) ^ 0, equal to 0 for almost all p e P such that 

a = u Y\ Pv{p)• 
peP 

Furthermore, the unit u and the integers v(p) are uniquely determined by a. 
We call v(p) the order of a at p, also written ordp a. 

If A is a factorial ring, then an irreducible element p generates a prime 
ideal (p). Thus in a factorial ring, an irreducible element will also be called a 
prime element, or simply a prime. 

We observe that one can define the notion of least common multiple 
(l.c.m.) of a finite number of non-zero elements of A in the usual manner: If 

au ..., aneA 

are such elements, we define a l.c.m. for these elements to be any ce A such 
that for all primes p of A we have 

ordp c = max ordp a{. 
i 

This element c is well defined up to a unit. 
If a, b e A are non-zero elements, we say that a, b are relaively prime if 

the g.c.d. of a and b is a unit. 

Example. The ring of integers Z is factorial. Its group of units consists 
of 1 and —1. It is natural to take as representative prime element the 
positive prime element (what is called a prime number) p from the two 
possible choices p and — p. Similarly, we shall show later that the ring of 
polynomials in one variable over a field is factorial, and one selects represen¬ 
tatives for the prime elements to be the irreducible polynomials with leading 
coefficient 1. 

Examples. It will be proved in Chapter IV that if R is a factorial ring, 
then the polynomial ring R [A^,..., Xn~\ in n variables is factorial. In partic¬ 
ular, if k is a field, then the polynomial ring k\_Xu..., Xn~\ is factorial. Note 
that fcCA^] is a principal ring, but for n ^ 2, the ring k[Xl9..., Xn~\ is not 
principal. 

In Exercise 5 you will prove that the localization of a factorial ring is 
factorial. 

In Chapter IV, §9 we shall prove that the power series ring 
fc[[Xl9..., A"n]] is factorial. This result is a special case of the more general 
statement that a regular local ring is factorial, but we do not define regular 
local rings in this book. You can look them up in books on commutative 
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algebra. I recommend: 

H. Matsumura, Commutative Algebra, second edition, Benjamin-Cummings, New 
York, 1980 

H. Matsumura, Commutative Rings, Cambridge University Press, Cambridge, 
UK, 1986 

Examples from algebraic and complex geometry. Roughly speaking, reg¬ 
ular local rings arise in the following context of algebraic or complex geom¬ 
etry. Consider the ring of regular functions in the neighborhood of some 
point on a complex or algebraic manifold. This ring is regular. A typical 
example is the ring of convergent power series in a neighborhood of 0 in C". 
In Chapter IV, we shall prove some results on power series which give some 
algebraic background for those analytic theories, and which are used in 
proving the factoriality of rings of power series, convergent or not. 

Conversely to the above examples, singularities in geometric theories may 
give rise to examples of non-factoriality. We give examples using notions 
which are sufficiently basic so that readers should have encountered them in 
more elementary courses. 

Examples of non-factorial rings. Let k be a field, and let x be a variable 
over k. Let R = fc[x2, x3]. Then R is not factorial (proof?). The ring R may 
be viewed as the ring of regular functions on the curve y2 = x3, which has a 
singularity at the origin, as you can see by drawing its real graph. 

Let R be the set of all numbers of the form a + 5, where a, be Z. 
Then the only units of R are ±1, and the elements 3, 2 + 2 — yf—S 
are irreducible elements, giving rise to a non-Unique factorization 

32 = (2 + v/r5)(2 - 7^5). 

(Do Exercise 10.) Here the non-factoriality is not due to singularities but 
due to a non-trivial ideal class group of R, which is a Dedekind ring. For a 
definition see the exercises of Chapter III, or go straight to my book 
Algebraic Number Theory, for instance. 

As Trotter once pointed out (Math. Monthly, April 1988), the relation 

sin2 x = (1 + cos x)(l — cos x) 

may be viewed as a non-unique factorization in the ring of trigonometric 
polynomials R[sin x, cos x], generated over R by the functions sin x and 
cos x. This ring is a subring of the ring of all functions, or of all differenti¬ 
able functions. See Exercise 11. 

EXERCISES 

We let A denote a commutative ring. 

1. Suppose that 1 # 0 in A. Let S be a multiplicative subset of A not containing 0. 
Let p be a maximal element in the set of ideals of A whose intersection with S is 
empty. Show that p is prime. 
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2. Let /: A -> A be a surjective homomorphism of rings, and assume that A is local, 
A # 0. Show that A is local. 

3. Let p be a prime ideal of A. Show that Ap has a unique maximal ideal, consisting 
of all elements a/s with a e p and s $ p. 

4. Let A be a principal ring and S a multiplicative subset with 0 $ S. Show that S~XA is 
principal. 

5. Let A be a factorial ring and S a multiplicative subset with 0 $ S. Show that is 
factorial, and that the prime elements of S~XA are those primes p of A such that 

(р) n S is empty. 

6. Let A be a factorial ring and p a prime element. Show that the local ring A(p) is 
principal. 

7. Let A be a principal ring and al9...,aH non-zero elements of A. Let 
(au..., an) = (d). Show that d is a greatest common divisor for the a{ 

(i = 1 

8. Let p be a prime number, and let A be the ring Z/prZ (r = integer ^ 1). Let G be 
the group of units in A, i.e. the group of integers prime to p, modulo pr. Show 
that G is cyclic, except in the case when 

p = 2, r ^ 3, 

in which case it is of type (2, 2r_2). [Hint: In the general case, show that G is 

the product of a cyclic group generated by 1 + p, and a cyclic group of order 
p — 1. In the exceptional case, show that G is the product of the group {±1} 
with the cyclic group generated by the residue class of 5 mod 2r.] 

9. Let i be the complex number y/—A- Show that the ring Z[i] is principal, and 
hence factorial. What are the units? 

10. Let D be an integer ^ 1, and let R be the set of all element a + byf—D with 

a, b e Z. 
(a) Show that R is a ring. 
(b) Using the fact that complex conjugation is an automorphism of C, show 

that complex conjugation induces an automorphism of R. 
(с) Show that if D ^ 2 then the only units in R are ±1. 

(d) Show that 3, 2 4- 5, 2 — y/^-5 are irreducible elements in Z[%/^5]. 

11. Let R be the ring of trigonometric polynomials as defined in the text. Show that 
R consists of all functions / on R which have an expression of the form 

n 
f(x) = a0+ Yj (am cos mx + bm sin mx), 

m=l 

where a0, am, bm are real numbers. Define the trigonometric degree degtr(/) to be 
the maximum of the integers r, s such that ar, b5 # 0. Prove that 

deg tr(fg) = deg tr(/) + degjgr). 

Deduce from this that R has no divisors of 0, and also deduce that the functions 
sin x and 1 — cos x are irreducible elements in that ring. 
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12. Let P be the set of positive integers and R the set of functions defined on P with 
values in a commutative ring K. Define the sum in R to be the ordinary addition 
of functions, and define the convolution product by the formula 

(f*g)(m) = £ f(x)g(y), 
xy=m 

where the sum is taken over all pairs (x, y) of positive integers such that xy = m. 
(a) Show that R is a commutative ring, whose unit element is the function S such 

that <5(1)=1 and S(x) = Oifx# 1. 
(b) A function / is said to be multiplicative if f(mn) = f(m)f(n) whenever m, n are 

relatively prime. If /, g are multiplicative, show that f *g is multiplicative. 

(c) Let g be the Mobius function such that //(l) = 1, g(pt • * * pr) = (— l)r if Pu • • • > Pr 
are distinct primes, and g(m) = 0 if m is divisible by p2 for some prime p. 
Show that g*(pt = <5, where (p{ denotes the constant function having value 
1. [Hint: Show first that g is multiplicative, and then prove the assertion 
for prime powers.] The Mobius inversion formula of elementary number 

theory is then nothing else but the relation g*(Pi*f = f. 

Dedekind rings 

Prove the following statements about a Dedekind ring o. To simplify terminology, 
by an ideal we shall mean non-zero ideal unless otherwise specified. We let K 
denote the quotient field of o. 

13. Every ideal is finitely generated. [Hint: Given an ideal a, let b be the fractional 
ideal such that ab = o. Write with atea and bt e b. Show that 
a = (fl1,...,fl„).] 

14. Every ideal has a factorization as a product of prime ideals, uniquely determined 

up to permutation. 

15. Suppose o has only one prime ideal p. Let tep and t 4 P2- Then p = (t) is 
principal. 

16. Let o be any Dedekind ring. Let p be a prime ideal. Let op be the local ring at 
p. Then op is Dedekind and has only one prime ideal. 

17. As for the integers, we say that a|b (a divides b) if there exists an ideal c such that 
b = ac. Prove: 
(a) a|b if and only if b c= a. 

(b) Let a, b be ideals. Then a + b is their greatest common divisor. In particular, 
a, b are relatively prime if and only if a + b = o. 

18. Every prime ideal p is maximal. (Remember, p ^ 0 by convention.) In particular, 
if p1? ..., p„ are distinct primes, then the Chinese remainder theorem applies to 
their powers p\\ ..., p'". Use this to prove: 

19. Let a, b be ideals. Show that there exists an element c e K (the quotient field of 
o) such that ca is an ideal relatively prime to b. In particular, every ideal class in 
Pic(o) contains representative ideals prime to a given ideal. 

For a continuation, see Exercise 7 of Chapter VII. 



CHAPTER III 
Modules 

Although this chapter is logically self-contained and prepares for future topics, 
in practice readers will have had some acquaintance with vector spaces over a 
field. We generalize this notion here to modules over rings. It is a standard fact 
(to be reproved) that a vector space has a basis, but for modules this is not always 
the case. Sometimes they do; most often they do not. We shall look into cases 
where they do. 

For examples of modules and their relations to those which have a basis, the 
reader should look at the comments made at the end of §4. 

§1. BASIC DEFINITIONS 

Let A be a ring. A left module over A, or a left /4-module M is an abelian 
group, usually written additively, together with an operation of A on M (viewing 
A as a multiplicative monoid by RI 2), such that, for all a, be A and x, ye M 
we have 

(a 4- b)x = ax + bx and a(x + y) = ax + ay. 

We leave it as an exercise to prove that a( — x) = -(ax) and that Ox = 0. By 
definition of an operation, we have lx = x. 

In a similar way, one defines a right /4-module. We shall deal only with left 
^-modules, unless otherwise specified, and hence call these simply /4-modules, 
or even modules if the reference is clear. 

117 
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Let M be an 4-module. By a submodule N of M we mean an additive sub¬ 
group such that AN a N. Then N is a module (with the operation induced by 
that of A on M). 

Examples 
We note that A is a module over itself. 
Any commutative group is a Z-module. 
An additive group consisting of 0 alone is a module over any ring. 
Any left ideal of A is a module over A. 

Let J be a two-sided ideal of A. Then the factor ring A/J is actually a module 
over A. If a e A and a + J is a coset of J in A, then one defines the operation 
to be a(x + J) = ax + J. The reader can verify at once that this defines a module 
structure on A/J. More general, if M is a module and N a submodule, we shall 
define the factor module below. Thus if L is a left ideal of A, then A/L is also 
a module. For more examples in this vein, see §4. 

A module over a field is called a vector space. Even starting with vector 
spaces, one is led to consider modules over rings. Indeed, let V be a vector space 
over the field K. The reader no doubt already knows about linear maps (which 
will be recalled below systematically). Let R be the ring of all linear maps of V 
into itself. Then V is a module over R. Similarly, if V = Kn denotes the vector 
space of (vertical) w-tuples of elements of K, and R is the ring of n X n matrices 
with components in K, then V is a module over R. For more comments along 
these lines, see the examples at the end of §2. 

Let S be a non-empty set and M an A-module. Then the set of maps 
Map(S, M) is an A-module. We have already noted previously that it is a com¬ 
mutative group, and for / e Map(S, M), a e A we define af to be the map 
such that = af(s). The axioms for a module are then trivially verified. 

For further examples, see the end of this section. 

For the rest of this section, we deal with a fixed ring A, and hence may omit 
the prefix A-. 

Let A be an entire ring and let M be an A-module. We define the torsion 
submodule Mtor to be the subset of elements x e M such that there exists 
a e A, a =£ 0 such that ax = 0. It is immediately verified that Mtor is a submodule. 
Its structure in an important case will be determined in §7. 

Let a be a left ideal, and M a module. We define aM to be the set of all 
elements 

^1*1 + * • • + anxn 

with ax g a and x, e M. It is obviously a submodule of M. If a, b are left ideals, 
then we have associativity, namely 

a(b M) = (ab)M. 
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We also have some obvious distributivities, like (a + b)M = aM + bM. If 
N, N' are submodules of M, then a(N + N') = aN + aAT. 

Let M be an /1-module, and N a submodule. We shall define a module 
structure on the factor group M/N (for the additive group structure). Let 
x + N be a coset of N in M, and let a e A. We define a(x + N) to be the 
coset ax + N. It is trivial to verify that this is well defined (i.e. if y is in the 
same coset as x, then ay is in the same coset as ax), and that this is an opera¬ 
tion of A on M/N satisfying the required condition, making M/N into a 
module, called the factor module of M by N. 

By a module-homomorphism one means a map 

of one module into another (over the same ring A), which is an additive group- 
homomorphism, and such that 

f(ax) = af(x) 

for all a e A and xe M. It is then clear that the collection of /1-modules is a 
category, whose morphisms are the module-homomorphisms usually also 
called homomorphisms for simplicity, if no confusion is possible. If we wish 
to refer to the ring A, we also say that / is an ^-homomorphism, or also that 
it is an ,4-linear map. 

If M is a module, then the identity map is a homomorphism. For any 
module M\ the map f: M -> M' such that £(x) = 0 for all x e M is a homo¬ 
morphism, called zero. 

In the next section, we shall discuss the homomorphisms of a module into 
itself, and as a result we shall give further examples of modules which arise in 
practice. Here we continue to tabulate the translation of basic properties of groups 
to modules. 

Let M be a module and N a submodule. We have the canonical additive 
group-homomorphism 

f:M-+ M/N 

and one verifies trivially that it is a module-homomorphism. 
Equally trivially, one verifies that / is universal in the category of homo¬ 

morphisms of M whose kernel contains N. 

If f .M^M' is a module-homomorphism, then its kernel and image are 
submodules of M and M' respectively (trivial verification). 

Let/: M —> M' be a homomorphism. By the cokernel of/we mean the factor 
module M'/Im/ = Mf//(M). One may also mean the canonical homomorphism 
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M' M'/f(M) rather than the module itself. The context should make clear 
which is meant. Thus the cokernel is a factor module of M'. 

Canonical homomorphisms discussed in Chapter I, §3 apply to modules 
mutatis mutandis. For the convenience of the reader, we summarise these 

homomorphisms: 

Let N, AT be two submodules of a module M. Then N + AT is also a sub- 
module,, and we have an isomorphism 

N/(N n AT) « (N + AT)/AT. 

//M => M' => M" are modules, t/ien 

(M/M")/(M'/M") % M/M'. 

///\M ^ M' is a module-homomorphism, and AT is a submodule of M', t/ien 
/ ” ^AT) is a submodule of M and we /iai>e a canonical injective homomorphism 

f :M/f~ 1(Nt) -► M'/N\ 

Iff is surjective, t/icn / is a module-isomorphism. 

The proofs are obtained by verifying that all homomorphisms which ap¬ 
peared when dealing with abelian groups are now /1-homomorphisms of 
modules. We leave the verification to the reader. 

As with groups, we observe that a module-homomorphism which is bijective 
is a module-isomorphism. Here again, the proof is the same as for groups, 
adding only the observation that the inverse map, which we know is a group- 
isomorphism, actually is a module-isomorphism. Again, we leave the verifica¬ 
tion to the reader. 

As with abelian groups, we define a sequence of module-homomorphisms 

M' 4 M 4 M" 

to be exact if Im / = Ker g. We have an exact sequence associated with a 
submodule Af of a module M, namely 

0-^iV^M^ M/N - 0, 

the map of N into M being the inclusion, and the subsequent map being the 
canonical map. The notion of exactness is due to Eilenberg-Steenrod. 

If a homomorphism u : N -> M is such that 

0-4 A/4M 

is exact, then we also say that u is a monomorphism or an embedding. Dually, 

is exact, we say that u is an epimorphism. 
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Algebras 

There are some things in mathematics which satisfy all the axioms of a ring 
except for the existence of a unit element. We gave the example of L!(R) in 
Chapter II, §1. There are also some things which do not satisfy associativity, 
but satisfy distributivity. For instance let R be a ring, and for x, y e R define 
the bracket product 

[x, y] = xy - yx. 

Then this bracket product is not associative in most cases when R is not com¬ 
mutative, but it satisfies the distributive law. 

Examples. A typical example is the ring of differential operators with C00 
coefficients, operating on the ring of C00 functions on an open set in R". The 
bracket product 

[Dj, D2] = Dl 0 D2 — D2 ° Dx 

of two differential operators is again a differential operator. In the theory of Lie 
groups, the tangent space at the origin also has such a bracket product. 

Such considerations lead us to define a more general notion than a ring. Let 
A be a commutative ring. Let E, F be modules. By a bilinear map 

g : E x E-* F 

we mean a map such that given x e £, the map y i-> g(x, y) is A-linear, and 
given y e £, the map x i-» g(x, y) is A-linear. By an A-algebra we mean a 
module together with a bilinear map g: E x E —> E. We view such a map as a 
law of composition on E. But in this book, unless otherwise specified, we shall 
assume that our algebras are associative and have a unit element. 

Aside from the examples already mentioned, we note that the group ring 
A[G] (or monoid ring when G is a monoid) is an A-algebra, also called the group 
(or monoid) algebra. Actually the group algebra can be viewed as a special 
case of the following situation. 

Let /: A —» B be a ring-homomorphism such that /(A) is contained in the 
center of B, i.e.,/(a) commutes with every element of B for every a e A. Then 
we may view B as an A-module, defining the operation of A on B by the map 

(a, b) i-+f{a)b 

for all a e A and b e B. The axioms for a module are trivially satisfied, and the 
multiplicative law of composition B x B —» B is clearly bilinear (i.e., A-bilinear). 
In this book, unless otherwise specified, by an algebra over A, we shall always 
mean a ring-homomorphism as above. We say that the algebra is finitely gen¬ 
erated if B is finitely generated as a ring over /(A). 

Several examples of modules over a polynomial algebra or a group algebra 
will be given in the next section, where we also establish the language of 
representations. 
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§2. THE GROUP OF HOMOMORPHISMS 

Let A be a ring, and let A, X' be /4-modules. We denote by Horn^A', X) 
the set of /1-homomorphisms of X' into X. Then Hom^A', X) is an abelian 
group, the law of addition being that of addition for mappings into an abelian 
group. 

If A is commutative then we can make Horn^A', X) into an /1-module, by 
defining af for a e A and fe Horn^A', X) to be the map such that 

= af (x). 

The verification that the axioms for an /1-module are satisfied is trivial. However, 
if A is not commutative, then we view Hom^A', A) simply as an abelian group: 

We also view Hom^ as a functor. It is actually a functor of two variables, 
contravariant in the first and covariant in the second. Indeed, let Y be an 
/1-module, and let 

be an /1-homomorphism. Then we get an induced homomorphism 

Hom,(/, Y): Hom^A, Y) - Horn^A', Y) 

(reversing the arrow!) given by 

g^g°f 

This is illustrated by the following sequence of maps: 

X' 4 A 4 Y. 

The fact that HomA(f Y) is a homomorphism is simply a rephrasing of the 

property + g2) °f = £i °f + gi °f which is trivially verified. If / = id, 
then composition with/acts as an identity mapping on g9 i.e. g ° id = g. 

If we have a sequence of /1-homomorphisms 

A' - A - A", 

then we get an induced sequence 

HomA(X\ Y) «- Hom^A, Y)«- Hom^A", Y). 

Proposition 2.1. A sequence 

x’ 4 x x" ->• o 

is exact if and only if the sequence 

HomA(X\ Y) «- Hom^A, Y)«- Hom^A", Y) <- 0 

is exact for all Y. 



Ill, §2 THE GROUP OF HOMOMORPHISMS 123 

Proof. This is an important fact, whose proof is easy. For instance, 
suppose the first sequence is exact. If g: X" Y is an ^-homomorphism, its 
image in Horn^X, Y) is obtained by composing g with the surjective map of 
X on X". If this composition is 0, it follows that g = 0 because X -► X” is 
surjective. As another example, consider a homomorphism g: X -► Y such 
that the composition 

X' 4 X 4 Y 

is 0. Then g vanishes on the image of A. Hence we can factor g through the 
factor module, 

X/lmk 

X g ► Y 

Since X -► X" is surjective, we have an isomorphism 

X/lm A <-► X". 

Hence we can factor g through X", thereby showing that the kernel of 

HomA(X\ Y) «- HomA(X9 Y) 

is contained in the image of 

HomA(X, Y) *— Hom^X", Y). 

The other conditions needed to verify exactness are left to the reader. So is the 
converse. 

We have a similar situation with respect to the second variable, but then 
the functor is covariant. Thus if X is fixed, and we have a sequence of A- 
homomorphisms 

y'-+y-+ y", 

then we get an induced sequence 

Hom^*, Y') - HomA(X9 Y) - HomA(X9 Y"). 

Proposition 2.2. A sequence 

o -> y’ y -► y", 

is exact if and only if 

0 —► HomA(X9 y') - Hom^(I, Y) -► UomA(X9 Y") 

is exact for all X. 
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The verification will be left to the reader. It follows at once from the defini¬ 
tions. 

We note that to say that 

0 T Y 

is exact means that Y' is embedded in Y, i.e. is isomorphic to a submodule of 
Y. A homomorphism into T can be viewed as a homomorphism into Y if we 
have Y' a Y. This corresponds to the injection 

0 -► Hom^A, Y') -> Hom^A, Y). 

Let Mod(A) and Mod(B) be the categories of modules over rings A and B, 
and let F: Mod(A) Mod(2?) be a functor. One says that F is exact if F 
transforms exact sequences into exact sequences. We see that the Horn 
functor in either variable need not be exact if the other variable is kept fixed. 
In a later section, we define conditions under which exactness is preserved. 

Endomorphisms. Let M be an A-module. From the relations 

(0i + Gi)°f = 0i °f + 02 °f 

and its analogue on the right, namely 

0 ° (/i fi) = 0 °/i + 0 °fl> 

and the fact that there is an identity for composition, namely idM, we conclude 
that Hom^M, M) is a ring, the multiplication being defined as composition 
of mappings. If n is an integer ^ 1, we can write fn to mean the iteration 
of / with itself n times, and define f° to be id. According to the general 
definition of endomorphisms in a category, we also write EndA(M) instead of 
Horna(M, M), and we call EndA(M) the ring of endomorphisms. 

Since an A-module M is an abelian group, we see that Homz(M, M) (= set 
of group-homomorphisms of M into itself) is a ring, and that we could have 
defined an operation of A on M to be a ring-homomorphism A HornZ(M, M). 

Let A be commutative. Then M is a module over EndA{M). If R is a subring 
of EndA(M) then M is a fortiori a module over R. More generally, let R be a 
ring and let p: R EndA{M) be a ring homomorphism. Then p is called a 
representation of R on M. This occurs especially if A = K is a field. The linear 
algebra of representations of a ring will be discussed in Part III, in several 
contexts, mostly finite-dimensional. Infinite-dimensional examples occur in anal¬ 
ysis, but then the representation theory mixes algebra with analysis, and thus 
goes beyond the level of this course. 

Example. Let A' be a field and let V be a vector space over K. Let 
D: V —* V be an endomorphism (A-linear map). For every polynomial 
P(X) e K[X], P(X) = 2 atXl with at e A, we can define 
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P(D) = 2 V-* V 

as an endomorphism of V. The association P(X) \—> P(D) gives a representation 

p: K[X] End*(V), 

which makes V into a A^XJ-module. It will be shown in Chapter IV that K[X] 
is a principal ring. In §7 we shall give a general structure theorem for modules 
over principal rings, which will be applied to the above example in the context 
of linear algebra for finite-dimensional vector spaces in Chapter XIV, §3. Readers 
acquainted with basic linear algebra from an undergraduate course may wish to 
read Chapter XIV already at this point. 

Examples for infinite-dimensional vector spaces occur in analysis. For 
instance, let V be the vector space of complex-valued C00 functions on R. Let 
D = d/dt be the derivative (if t is the variable). Then D: VV is a linear map, 
and C[X] has the representation p: C[X] —» Endc(V) given by P i-» P(D). A 
similar situation exists in several variables, when we let V be the vector space 
of C00 functions in n variables on an open set of R". Then we let Dt = d/dtt be 
the partial derivative with respect to the i-th variable (/ = 1,..., ri). We obtain 
a representation 

p: C[Xj,..., Xn] —» Endc(V) 

such that p(Xi) = Dt. 

Example. Let H be a Hilbert space and let A be a bounded hermitian oper¬ 
ator on A. Then one considers the homomorphism R[X] —> R[A] C End(//), 
from the polynomial ring into the algebra of endomorphisms of H, and one 
extends this homomorphism to the algebra of continuous functions on the spec¬ 
trum of A. Cf. my Real and Functional Analysis, Springer Verlag, 1993. 

Representations form a category as follows. We define a morphism of a 
representation p: R —> EndA(M) into a representation p': R —> EndA(M')9 or in 
other words a homomorphism of one representation of R to another, to be 
an A-module homomorphism h: M —> M' such that the following diagram is 
commutative for every a e R: 

M ——► M1 

p(a) p'(ot) 

M—Mf 

In the case when h is an isomorphism, then we may replace the above diagram 
by the commutative diagram 

EndA(A/) 
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where the symbol [h] denotes conjugation by h, i.e. for/e End^fA/ ) we have 

[h]f= h o/o h~l. 

Representations: from a monoid to the monoid algebra. Let G be a 
monoid. By a representation of G on an A-module M, we mean a homomor¬ 
phism p: G —* End^M) of G into the multiplicative monoid of End^M). Then 
we may extend p to a homomorphism of the monoid algebra 

A[G] End^Af), 

by letting 

p( 2 axx) = 2 axp(x). 
\JteC / JteG 

It is immediately verified that this extension of pioA[G] is a ring homomorphism, 
coinciding with the given p on elements of G. 

Examples: modules over a group ring. The next examples will follow a 
certain pattern associated with groups of automorphisms. Quite generally, sup¬ 
pose we have some category of objects, and to each object K there is associated 
an abelian group F(K), functorially with respect to isomorphisms. This means 
that if a: K —» K' is an isomorphism, then there is an associated isomorphism 
F(a) : F(K') F(K') such that F(id) = id and F(ctt) = F{cr) ° F(t). Then the 
group of automorphisms Aut(/Q of an object operates on F(K)\ that is, we have 
a natural homomorphism 

Aut(tf) —> AutCfXA')) given by a i-> F(cr). 

Let G = Aut(^). Then F(K) (written additively) can be made into a module 
over the group ring Z[G] as above. Given an element a = 2 e Z[G], with 
aa e Z, and an element x e F{K), we define 

(XX = 2 CLq-F^O^X. 

The conditions defining a module are trivially satisfied. We list several concrete 
cases from mathematics at large, so there are no holds barred on the terminology. 

Let K be a number field (i.e. a finite extension of the rational numbers). Let 
G be its group of automorphisms. Associated with K we have the following 
objects: 

the ring of algebraic integers o^; 

the group of units o£; 

the group of ideal classes C(Ar); 

the group of roots of unity p,(^). 

Then G operates on each of those objects, and one problem is to determine the 
structure of these objects as Z[G]-modules. Already for cyclotomic fields this 
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determination gives rise to substantial theories and to a number of unsolved 
problems. 

Suppose that K is a Galois extension of k with Galois group G (see Chapter 
VI). Then we may view K itself as a module over the group ring k[G]. In Chapter 
VI, §13 we shall prove that K is isomorphic to k[G] as module over k[G] itself. 

In topology, one considers a spaceX0 and a finite covering^. Then Aut(X/X0) 
operates on the homology of X, so this homology is a module over the group 
ring. 

With more structure, suppose thatX is a projective non-singular variety, say 
over the complex numbers. Then to X we can associate: 

the group of divisor classes (Picard group) Pic(X); 

in a given dimension, the group of cycle classes or Chow group CFP(X); 

the ordinary homology of X\ 

the sheaf cohomology in general. 

If X is defined over a field K finitely generated over the rationals, we can 
associate a fancier cohomology defined algebraically by Grothendieck, and func- 
torial with respect to the operation of Galois groups. 

Then again all these objects can be viewed as modules over the group ring 
of automorphism groups, and major problems of mathematics consist in deter¬ 
mining their structure. I direct the reader here to two surveys, which contain 
extensive bibliographies. 

[CCFT 91] P. Cassou-Nogues, T. Chinburg, A. FrOhlich, M. J. Taylor, 
L-functions and Galois modules, in L-functions and Arithmetic J. Coates 
and M. J. Taylor (eds.), Proceedings of the Durham Symposium July 1989, 
London Math, Soc. Lecture Note Series 153, Cambridge University Press 
(1991), pp. 75-139 

[La 82] S. Lang, Units and class groups in number theory and algebraic geometry, 
Bull. AMS Vol. 6 No. 3 (1982), pp. 253-316 

§3. DIRECT PRODUCTS AND 
SUMS OF MODULES 

Let A be a ring. Let {Mj/e/ be a family of modules. We defined their direct 
product as abelian groups in Chapter I, §9. Given an element U/)/e/ of the direct 
product, and a e A, we define a(x() = (axt). In other words, we multiply by an 
element a componentwise. Then the direct product ITm, is an A-module. The 
reader will verify at once that it is also a direct product in the category of 
A-modules. 
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Similarly, let 

M = © M, 
i G / 

be their direct sum as abelian groups. We define on M a structure of /I-module: 
If (Xi)iG/ is an element of M, i.e. a family of elements xt e such that xf = 0 
for almost all i, and if a e A, then we define 

that is we define multiplication by a componentwise. It is trivially verified that 
this is an operation of A on M which makes M into an ,4-module. If one refers 
back to the proof given for the existence of direct sums in the category of abelian 
groups, one sees immediately that this proof now extends in the same way to 
show that M is a direct sum of the family {Mf}ie/ as /1-modules. (For instance, 
the map 

Xj: Mj M 

such that Xj(x) has j-th component equal to x and i-th component equal to 0 
for i # j is now seen to be an /1-homomorphism.) 

This direct sum is a coproduct in the category of A-modules. Indeed, 
the reader can verify at once that given a family of A-homomorphisms 
{fj \ —> N}, the map / defined as in the proof for abelian groups is also an A- 
isomorphism and has the required properties. See Proposition 7.1 of Chapter I. 

When I is a finite set, there is a useful criterion for a module to be a direct 
product. 

Proposition 3.1. Let M be an A-module and n an integer ^ 1. For each 

i = 1,..., n let cpi'. M -+ M be an A-homomorphism such that 

n 

X (Pi = id and (Pi ° (pj = 0 if i # j. 
i = 1 

Then (pf = cpifor all i. Let M, = <p,(M), and let cp\ M -► f] ^such ^at 

<p(x) = (<Pl(x), ..., <pn(x)\ 

Then cp is an A-isomorphism of M onto the direct product f] Mf. 

Proof For each j, we have 

n 

(pj = (Pj ° id = <Pj ° X (Pi = (Pj ° (Pj = (P)> 
i = 1 

thereby proving the first assertion. It is clear that cp is an A-homomorphism. 
Let x be in its kernel. Since 

n 

X = id(x) = X (PiM 
i= 1 
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we conclude that x = 0, so (p is injective. Given elements e Mt for each 
i = 1, ..., n, let x = + • • • + yn. We obviously have tp/yi) = 0 if i # j. 
Hence 

<P/M = yj 

for each; = 1,..., n. This proves that (p is surjective, and concludes the proof 
of our proposition. 

We observe that when / is a finite set, the direct sum and the direct product 
are equal. 

Just as with abelian groups, we use the symbol © to denote direct sum. 
Let M be a module over a ring A and let S be a subset of M. By a linear 

combination of elements of S (with coefficients in A) one means a sum 

Xa*x 
xeS 

where {ax} is a set of elements of A, almost all of which are equal to 0. These 
elements ax are called the coefficients of the linear combination. Let N be 
the set of all linear combinations of elements of S. Then N is a submodule of 
A/, for if 

X axx and £ bxx 
xeS xeS 

are two linear combinations, then their sum is equal to 

X (ax + bx)x, 
xeS 

and if ce A, then 

c XX* I = ZcaxX, 
\xeS / x eS 

and these elements are again linear combinations of elements of 5. We shall call 
N the submodule generated by S, and we call 5 a set of generators for N. We 
sometimes write N = A(S). If 5 consists of one element x, the module generated 
by x is also written Ax, or simply (x), and sometimes we say that (x) is a principal 
module. 

A module M is said to be finitely generated, or of finite type, or finite over 
A, if it has a finite number of generators. 

A subset 5 of a module M is said to be linearly independent (over A) if when¬ 
ever we have a linear combination 

X a*x 

xeS 
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which is equal to 0, then ax = 0 for all xeS. If S is linearly independent and if 
two linear combinations 

X axx and X b*x 

are equal, then ax = bx for all xe S. Indeed, subtracting one from the other 
yields £ (ax — bx)x = 0, whence ax - bx = 0 for all x. If S is linearly indepen¬ 
dent we shall also say that its elements are linearly independent. Similarly, a 
family {xjie/ of elements of M is said to be linearly independent if whenever we 
have a linear combination 

Zaixi = o, 
ieJ 

then at = 0 for all i. A subset S (resp. a family (xj) is called linearly dependent 
if it is not linearly independent, i.e. if there exists a relation 

X axx = 0 resp. X a.xi = 0 
xeS ie I 

with not all ax (resp. at) = 0. Warning. Let x be a single element of M which 
is linearly independent. Then the family {xj1 = 1.„ such that x, = x for all i 
is linearly dependent if n > 1, but the set consisting of x itself is linearly inde¬ 
pendent. 

Let M be an ^-module, and let {Mf}ie/ be a family of submodules. Since 
we have inclusion-homomorphisms 

A,-! Mj —► M 

we have an induced homomorphism 

which is such that for any family of elements (x;);e/, all but a finite number of 
which are 0, we have 

'Ufo)) = X xi- 
i g / 

If A* is an isomorphism, then we say that the family {Aff}ig/ is a direct sum 
decomposition of M. This is obviously equivalent to saying that every element 
of M has a unique expression as a sum 

I*. 
with Xi e Mi, and almost all xf = 0. By abuse of notation, we also write 

M = © Mt 

in this case. 
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If the family {MJ is such that every element of M has some expression as a 
sum Y,xi (not necessarily unique), then we write M = £ Mt. In any case, if 
{MJ is an arbitrary family of submodules, the image of the homomorphism A* 
above is a submodule of M, which will be denoted by M,. 

If M is a module and N, N' are two submodules such that N + AT = M 
and N n N' = 0, then we have a module-isomorphism 

M w N 0 AT, 

just as with abelian groups, and similarly with a finite number of submodules. 
We note, of course, that our discussion of abelian groups is a special case 

of our discussion of modules, simply by viewing abelian groups as modules 
over Z. However, it seems usually desirable (albeit inefficient) to develop first 

some statements for abelian groups, and then point out that they are valid 
(obviously) for modules in general. 

Let M, M\ N be modules. Then we have an isomorphism of abelian groups 

Horn^M ® M', N) A HornA(M, N) x HornA(M\ N\ 

and similarly 

Horna(N9 M x M') A Homj4(Ar, M) x HornA(N, Af'). 

The first one is obtained as follows. If/: M © M' -+ N is a homomorphism, 
then /induces a homomorphism fx : M -+ N and a homomorphism f2 : M' -► N 
by composing / with the injections of M and M' into their direct sum re¬ 
spectively: 

M'->{0}©M'cM®M'i N. 

We leave it to the reader to verify that the association 

gives an isomorphism as in the first box. The isomorphism in the second box 
is obtained in a similar way. Given homomorphisms 

/i: N ^ M 

and 

f2:N^M' 
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we have a homomorphism /: N -► M x M' defined by 

/(*) = (/i(x),/2(x)). 

It is trivial to verify that the association 

(/1J2W 

gives an isomorphism as in the second box. 
Of course, the direct sum and direct product of two modules are isomorphic, 

but we distinguished them in the notation for the sake of functoriality, and to 
fit the infinite case, see Exercise 22. 

Proposition 3.2. Let 0 -> M' -4 M -4 M" -*0 be an exact sequence of 

modules. The following conditions are equivalent: 

1. There exists a homomorphism cp: M" -* M such that g ° cp = id. 
2. There exists a homomorphism \j/ \M -> M' such that \j/ of = id. 

If these conditions are satisfied, then we have isomorphisms: 

M = Im/® Ker 1j/, M = Ker g © Im q>, 

M % M' 0 M". 

Proo/ Let us write the homomorphisms on the right: 

M b- M" -» 0. 
<P 

Let xeM. Then 

x - p(0(x)) 

is in the kernel of and hence M = Ker g + Im cp. 

This sum is direct, for if 

x = y + z 

with yeKer g and zelm cp, z = <p(w) with weM", and applying 0 yields 
#(x) = w. Thus w is uniquely determined by x, and therefore z is uniquely 
determined by x. Hence so is y, thereby proving the sum is direct. 

The arguments concerning the other side of the sequence are similar and 
will be left as exercises, as well as the equivalence between our conditions. When 
these conditions are satisfied, the exact sequence of Proposition 3.2 is said to 
split. One also says that (// splits / and <p splits g. 
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Abelian categories 

Much in the theory of modules over a ring is arrow-theoretic. In fact, one 
needs only the notion of kernel and cokernel (factor modules). One can axi- 
omatize the special notion of a category in which many of the arguments are 
valid, especially the arguments used in this chapter. Thus we give this axi- 
omatization now, although for concreteness, at the beginning of the chapter, 
we continue to use the language of modules. Readers should strike their own 
balance when they want to slide into the more general framework. 

Consider first a category (2 such that Mor(£, F) is an abelian group for 
each pair of objects £, F of (2, satisfying the following two conditions: 

AB 1. The law of composition of morphisms is bilinear, and there exists 
a zero object 0, i.e. such that Mor(0, E) and Mor(£, 0) have precisely 
one element for each object E. 

AB 2. Finite products and finite coproducts exist in the category. 

Then we say that (2 is an additive category. 
Given a morphism E -4 F in (2, we define a kernel of/ to be a morphism 

E' E such that for all objects X in the category, the following sequence is 
exact: 

0 - Mor(*, E') -► Mor(X, E) - Mor(*, F). 

We define a cokernel for / to be a morphism F -> F" such that for all objects X 

in the category, the following sequence is exact: 

0 Mor(F", X) Mor(F, X) Mor(£, X). 

It is immediately verified that kernels and cokernels are universal in a suitable 
category, and hence uniquely determined up to a unique isomorphism if they 
exist. 

AB 3. Kernels and cokernels exist. 

AB 4. If j: E -► F is a morphism whose kernel is 0, then j is the kernel 
of its cokernel. If /: E -* F is a morphism whose cokernel is 0, 
then / is the cokernel of its kernel. A morphism whose kernel 
and cokernel are 0 is an isomorphism. 

A category (2 satisfying the above four axioms is called an abelian category. 

In an abelian caegory, the group of morphisms is usually denoted by Horn, 
so for two objects £, F we write 

Mor(£, F) = Horn(£, F). 

The morphisms are usually called homomorphisms. Given an exact sequence 

0 -► M' -> Af, 
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we say that M' is a subobject of M, or that the homomorphism of M' into M is a 
monomorphism. Dually, in an exact sequence 

M - M" - 0, 

we say that M" is a quotient object of M, or that the homomorphism of M to 
M" is an epimorphism, instead of saying that it is surjective as in the category of 
modules. Although it is convenient to think of modules and abelian groups to 
construct proofs, usually such proofs will involve only arrow-theoretic argu¬ 
ments, and will therefore apply to any abelian category. However, all the abelian 
categories we shall meet in this book will have elements, and the kernels and 
cokernels will be defined in a natural fashion, close to those for modules, so 
readers may restrict their attention to these concrete cases. 

Examples of abelian categories. Of course, modules over a ring form an 
abelian category, the most common one. Finitely generated modules over a 
Noetherian ring form an abelian category, to be studied in Chapter X. 

Let it be a field. We consider pairs (V, A) consisting of a finite-dimensional 
vector space V over k, and an endomorphism A: V —» V. By a homomorphism 
(morphism) of such pairs /: (V, A) -» (W, B) we mean a ^-homomorphism 
/: V W such that the following diagram is commutative: 

It is routinely verified that such pairs and the above defined morphisms form an 
abelian category. Its elements will be studied in Chapter XIV. 

Let k be a field and let G be a group. Let Mod*(G) be the category of finite¬ 
dimensional vector spaces V over k, with an operation of G on V, i.e. a homo¬ 
morphism G —» Aut*(V). A homomorphism (morphism) in that category is a k- 

homomorphism /: V —» W such that f{ax) = af(x) for all x e V and a e G. It 
is immediate that Mod*(G) is an abelian category. This category will be studied 
especially in Chapter XVIII. 

In Chapter XX, §1 we shall consider the category of complexes of modules 
over a ring. This category of complexes is an abelian category. 

In topology and differential geometry, the category of vector bundles over 
a topological space is an abelian category. 

Sheaves of abelian groups over a topological space form an abelian category, 
which will be defined in Chapter XX, §6. 
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§4. FREE MODULES 

Let M be a module over a ring A and let 5 be a subset of Af. We shall say that 
5 is a basis of M if S is not empty, if S generates M, and if S is linearly independent. 
If S is a basis of M, then in particular M # {0} if A # {0} and every element of 
M has a unique expression as a linear combination of elements of S. Similarly, 
let {xjle/ be a non-empty family of elements of M. We say that it is a basis of 
M if it is linearly independent and generates M. 

If A is a ring, then as a module over itself, A admits a basis, consisting of the 
unit element 1. 

Let / be a non-empty set, and for each i £ /, let — A, viewed as an ,4- 
module. Let 

F=®Ai. 
i€l 

Then F admits a basis, which consists of the elements et of F whose i-th com¬ 
ponent is the unit element of Ait and having all other components equal to 0. 

By a free module we shall mean a module which admits a basis, or the zero 
module. 

Theorem 4.1. Let A be a ring and M a module over A. Let I be a non-empty 

set, and let {xjie/ be a basis of M. Let N be an A-module, and let {yf}ie/ 
be a family of elements of N. Then there exists a unique homomorphism 

f:M-*N such that f(xt) = yt for all i. 

Proof Let x be an element of M. There exists a unique family {a,}ie/ of 
elements of A such that 

X = £ a.Xj. 

ie/ 

We define 

f(x) = 

It is then clear that / is a homomorphism satisfying our requirements, and 
that it is the unique such, because we must have 

/(x) = X 

Corollary 4.2. Let the notation be as in the theorem, and assume that {y,}ie/ 
is a basis of N. Then the homomorphism f is an isomorphism, i.e. a module- 

isomorphism. 

Proof By symmetry, there exists a unique homomorphism 

g : N -> M 
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such that g(yi) = xf for all i, and fog and g of are the respective identity map¬ 
pings. 

Corollary 4.3. Two modules having bases whose cardinalities are equal are 
isomorphic. 

Proof Clear. 

We shall leave the proofs of the following statements as exercises. 

Let M be a free module over A, with basis {x,}ie/, so that 

M = @ Axt. 
i g / 

Let a be a two sided ideal of A. Then aM is a submodule of M. Each ox, is a 
submodule of Ax{. We have an isomorphism (of A-modules) 

M/aM « 0) Axi/axi. 
i e I 

Furthermore, each Ax/ax, is isomorphic to A/a, as /1-module. 

Suppose in addition that A is commutative. Then A/a is a ring. Furthermore 
M/aM is a free module over A/a, and each Ax,/axt is free over A/a. //x, is the 
image of xt under the canonical homomorphism 

Axi -► AxJaXi, 

then the single element x, is a basis of AxJaxi over A/a. 

All of these statements should be easily verified by the reader. Now let A be 
an arbitrary commutative ring. A module M is called principal if there exists 
an element x e M such that M = Ax. The map 

a i—» ax (for a e A) 

is an A-module homomorphism of A onto M, whose kernel is a left ideal a, and 
inducing an isomorphism of A-modules 

A/a « M. 

Let M be a finitely generated module, with generators {vx,. . . , vn}. Let F 
be a free module with basis {ex,.. ., en}. Then there is a unique surjective 
homomorphism f:F-*M such that/(ez) = vt. The kernel of/ is a submodule 
Mx. Under certain conditions, Mx is finitely generated (cf. Chapter X, §1 on 
Noetherian rings), and the process can be continued. The systematic study of 
this process will be carried out in the chapters on resolutions of modules and 
homology. 
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Of course, even if M is not finitely generated, one can carry out a similar 
construction, by using an arbitrary indexing set. Indeed, let {vt} (/ e /) be a family 
of generators. For each /, let Ft be free with basis consisting of a single element 
ei9 so Ft ~ A. Let F be the direct sum of the modules Ft (i e /), as in Proposi¬ 
tion 3.1. Then we obtain a surjective homomorphism/: F M such that 
f(e{) = vt. Thus every module is a factor module of a free module. 

Just as we did for abelian groups in Chapter I, §7, we can also define the 
free module over a ring A generated by a non-empty set S. We let A(S) be the 
set of functions (p : S —> A such that <p(x) = 0 for almost all x e S. If a e A and 
x e 5, we denote by ax the map cp such that <p(x) = a and <p(y) = 0 for y =£ x. 
Then as for abelian groups, given <p e A(S) there exist elements a{ e A and 
xi e S such that 

<p = axxx + • • • + anxn. 

It is immediately verified that the family of functions {&J (x e S) such that 
8*(jc) = 1 and ^(y) = 0 fory ¥= x form a basis for A(S). In other words, the ex¬ 
pression of <p as 2 Gi*i above is unique. This construction can be applied 
when S is a group or a monoid G, and gives rise to the group algebra as in 
Chapter II, §5. 

Projective modules 

There exists another important type of module closely related to free modules, 
which we now discuss. 

Let A be a ring and P a module. The following properties are equivalent, 
and define what it means for P to be a projective module. 

P 1. Given a homomorphism /: P -► M" and surjective homomorphism 
g : M -*• Af", there exists a homomorphism h : P -+ M making the 
following diagram commutative. 

P 2. Every exact sequence 0 -+ M' M" -* P 0 splits. 

P 3. There exists a module M such that P © M is free, or in words, P is a 
direct summand of a free module. 

P 4. The functor M i—► HornA{P, M) is exact. 

We prove the equivalence of the four conditions. 
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Assume P 1. Given the exact sequence of P 2, we consider the map / = id 
in the diagram 

P 

id 

M"->P->0 

Then h gives the desired splitting of the sequence. 
Assume P 2. Then represent P as a quotient of a free module (cf. Exercise 1) 

F -► P -► 0, and apply P 2 to this sequence to get the desired splitting, which 
represents F as a direct sum of P and some module. 

Assume P3. Since Horn^X © Y, M) = HomA(X, M) © Hoin^Y, M), 
and since M >-► HornA(F, M) is an exact functor if F is free, it follows that 
Hom^(P, M) is exact when P is a direct summand of a free module, which proves 
P4. 

Assume P 4. The proof of P 1 will be left as an exercise. 

Examples. It will be proved in the next section that a vector space over a 
field is always free, i.e. has a basis. Under certain circumstances, it is a theorem 
that projective modules are free. In §7 we shall prove that a finitely generated 
projective module over a principal ring is free. In Chapter X, Theorem 4.4 we 
shall prove that such a module over a local ring is free; in Chapter XVI, Theo¬ 
rem 3.8 we shall prove that a finite flat module over a local ring is free; and in 
Chapter XXI, Theorem 3.7, we shall prove the Quillen-Suslin theorem that 
if A = k[Xl9. . . , Xn\ is the polynomial ring over a field k, then every finite pro¬ 
jective module over A is free. 

Projective modules give rise to the Grothendieck group. Let A be a ring. 
Isomorphism classes of finite projective modules form a monoid. Indeed, if P 
is finite projective, let [P] denote its isomorphism class. We define 

[P] + IQ] = [P ® Q\- 

This sum is independent of the choice of representatives P9 Q in their class. The 
conditions defining a monoid are immediately verified. The corresponding Groth¬ 
endieck group is denoted by K(A). 

We can impose a further equivalence relation that P is equivalent to P' if 
there exist finite free modules F and Ff such that P © F is isomorphic to 
P' © F'. Under this equivalence relation we obtain another group denoted by 
K0(A). If A is a Dedekind ring (Chapter II, §1 and Exercises 13-19) it can be 
shown that this group is isomorphic in a natural way with the group of ideal 
classes Pic(A) (defined in Chapter II, §1). See Exercises 11, 12, 13. It is also a 
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problem to determine AT0(A) for as many rings as possible, as explicitly as pos¬ 
sible. Algebraic number theory is concerned with A'q(A) when A is the ring of 
algebraic integers of a number field. The Quillen-Suslin theorem shows if A is 
the polynomial ring as above, then ^(A) is trivial. 

Of course one can carry out a similar construction with all finite modules. 
Let [M] denote the isomorphism class of a finite module M. We define the sum 
to be the direct sum. Then the isomorphism classes of modules over the ring 
form a monoid, and we can associate to this monoid its Grothendieck group. 
This construction is applied especially when the ring is commutative. There are 
many variations on this theme. See for instance the book by Bass, Algebraic 

K-theory, Benjamin, 1968. 
There is a variation of the definition of Grothendieck group as follows. Let 

F be the free abelian group generated by isomorphism classes of finite modules 
over a ring R, or of modules of bounded cardinality so that we deal with sets. 
In this free abelian group we let T be the subgroup generated by all elements 

[M] - lM'] - [AT] 

for which there exists an exact sequence 0 —> M' —> M —► Af" —> 0. The factor 
group F/T is called the Grothendieck group K(R). We shall meet this group 
again in §8, and in Chapter XX, §3. Note that we may form a similar Grothendieck 
group with any family of modules such that M is in the family if and only if M' 

and M" are in the family. Taking for the family finite projective modules, one 
sees easily that the two possible definitions of the Grothendieck group coincide 
in that case. 

§5. VECTOR SPACES 

A module over a field is called a vector space. 

Theorem 5.1. Let V be a vector space over a field K, and assume that 

V # {0}. Let r be a set of generators of V over K and let S be a subset ofT 

which is linearly independent. Then there exists a basis (R of V such that 

S c « c r. 

Proof Let I be the set whose elements are subsets T of T which contain S 

and are linearly independent. Then I is not empty (it contains 5), and we 
contend that I is inductively ordered. Indeed, if {7^} is a totally ordered subset 
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of I (by ascending inclusion), then (J 7] is again linearly independent and con¬ 
tains S. By Zorn’s lemma, let ® be a maximal element of X Then (B is linearly 
independent. Let W be the subspace of V generated by ®. If W # V, there 
exists some element xeT such that x$W. Then ® u {x} is linearly inde¬ 
pendent, for given a linear combination 

X ayy + bx = 0, ay, be K, 
yea 

we must have b = 0, otherwise we get 

x = - ^b~layyeW. 
yea 

By construction, we now see that ay = 0 for all ye®, thereby proving that 
® u {x} is linearly independent, and contradicting the maximality of ®. It 
follows that W = V, and furthermore that ® is not empty since V ^ {0}. This 
proves our theorem. 

If V is a vector space # {0}, then in particular, we see that every set of 
linearly independent elements of V can be extended to a basis, and that a basis 
may be selected from a given set of generators. 

Theorem 5.2. Let V be a vector space over a field X. Then two bases of V 
over X have the same cardinality. 

Proof. Let us first assume that there exists a basis of V with a finite 
number of elements, say {vl9..., vm}, m ^ 1. We shall prove that any other 
basis must also have m elements. For this it will suffice to prove: If wl5..., wn 
are elements of V which are linearly independent over X, then n ^ m (for 
we can then use symmetry). We proceed by induction. There exist elements 
Cj,..., cm of K such that 

(1) vv, = CtVi + ■■■ + cmvm, 

and some ci9 say cl9 is not equal to 0. Then vx lies in the space generated 
by wl5 v2, • •., vm over X, and this space must therefore be equal to V itself. 
Furthermore, wl9 v2,..., vm are linearly independent, for suppose bl9... 9bm 
are elements of X such that 

biw i + b2v2 + ••• + bmvm = 0. 

If bx #0, divide by bx and express wx as a linear combination of v2,..., vm. 
Subtracting from (1) would yield a relation of linear dependence among the 
vi9 which is impossible. Hence bx = 0, and again we must have all bt = 0 
because the v{ are linearly independent. 
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Suppose inductively that after a suitable renumbering of the vi9 we have 
found wl9..., wr (r < n) such that 

{Wi, . . . , Wr, l?r + i, ..., 

is a basis of V. We express wr+ j as a linear combination 

(2) wr+1 = clwl + ••• + crwr + cr+lvr+i + ... + cmvm 

with ct e K. The coefficients of the vt in this relation cannot all be 0; otherwise 
there would be a linear dependence among the Wj. Say cr+1 # 0. Using an 
argument similar to that used above, we can replace rr+jby wr+1 and still have 
a basis of V. This means that we can repeat the procedure until r = n, and 
therefore that n ^ m, thereby proving our theorem. 

We shall leave the general case of an infinite basis as an exercise to the 
reader. [Hint : Use the fact that a finite number of elements in one basis is 
contained in the space generated by a finite number of elements in another basis.] 

If a vector space V admits one basis with a finite number of elements, say m, 
then we shall say that V is finite dimensional and that m is its dimension. In 
view of Theorem 5.2, we see that m is the number of elements in any basis 
of V. If V = {0}, then we define its dimension to be 0, and say that V is 
0-dimensional. We abbreviate “dimension” by “dim” or “dim*” if the 
reference to K is needed for clarity. 

When dealing with vector spaces over a field, we use the words subspace 
and factor space instead of submodule and factor module. 

Theorem 5.3. Let V be a vector space over a field K, and let W be a subspace. 
Then 

dim* V = dim* W + dim* V/W. 

If f: V -► U is a homomorphism of vector spaces over K, then 

dim V = dim Ker / + dim Im f 

Proof. The first statement is a special case of the second, taking for / the 
canonical map. Let {uf}i6/ be a basis of Im /, and let {Wj}jeJ be a basis of 
Ker /. Let {uJJg/ be a family of elements of V such that /(v() = u( for each 
i e I. We contend that 

{Vi,Wj}u,Jej 

is a basis for V. This will obviously prove our assertion. 
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Let x be an element of V. Then there exist elements {a,-}fe/ of K almost 
all of which are 0 such that 

/(*) = Z aiui- 
is I 

Hence/(x - Z aivd =f(x) ~ Z aif(vi) = Thus 

x - Z ai Vi 

is in the kernel of/, and there exist elements {bj}jeJ of K almost all of which are 
0 such that 

x - Z a, Vi = Z bjWj. 

From this we see that x = Z ai vt + Z^jwj> ant^ that {t,4, Wj-} generates V. 

It remains to be shown that the family {vi9 wfi is linearly independent. Suppose 
that there exist elements ci9 dj such that 

o = Z civi + Z diwj■ 

Applying / yields 

o = Z cif(vi) = Z ciu 

whence all ct = 0. From this we conclude at once that all dj = 0, and hence that 
our family {vi9 Wj} is a basis for V over K, as was to be shown. 

Corollary 5.4. Let V be a vector space and W a subspace. Then 

dim W ^ dim V. 

If V is finite dimensional and dim W = dim V then W = V. 

Proof Clear. 

§6. THE DUAL SPACE AND DUAL MODULE 

Let £ be a free module over a commutative ring A. We view A as a free 
module of rank 1 over itself. By the dual module Ey of E we shall mean the 
module Hom(£, A). Its elements will be called functionals. Thus a functional 
on E is an A-linear map/: E A. If x e E and/ e £v, we sometimes denote 
f(x) by (x,f). Keeping x fixed, we see that the symbol (x9f) as a function of 
/e£vis A-linear in its second argument, and hence that x induces a linear map 
on £v, which is 0 if and only if x = 0. Hence we get an injection E —> £vv 
which is not always a surjection. 
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Let {jtz}ze/ be a basis of £. For each i e / letf be the unique functional such 
that = 8;j (in other words, 1 if i = j and 0 if i j). Such a linear map 
exists by general properties of bases (Theorem 4.1). 

Theorem 6.1. Let E be a finite free module over the commutative ring A, 

of finite dimension n. Then £v is also free, and dim £v = n. If {xx, ..., *„} 
is a basis for E, and f is the functional such that ffxf) = 8^, then {fx,.. ., /„} 
is a basis for £v. 

Proof. Let/e £v and let at = f{xt) (i = 1,..., n). We have 

f(c\xi + ' ' ' + cnxn) = cxf(xx) + * * • + cnf(xn). 

Hence/ = axfx + • • • + anfn, and we see that the f generate £v. Furthermore, 
they are linearly independent, for if 

bxfx + ' • • + bjn = 0 

with bt e K, then evaluating the left-hand side on xz yields 

biffXi) = 0, 

whence bt = 0 for all i. This proves our theorem. 

Given a basis {jcz} (z = 1,..., n) as in the theorem, we call the basis {/)•} 
the dual basis. In terms of these bases, we can express an element A of £ with 
coordinates (ax, . . . , an), and an element £ of £ v with coordinates (bx,. . . , bn), 
such that 

A = atx i + • • • + B = fc,/, + ••• + £>„/„. 

Then in terms of these coordinates, we see that 

(A, £) = 0^ + • ■ • + = A • B 

is the usual dot product of zz-tuples. 

Corollary 6.2. When E is free finite dimensional, then the map E —> £vv 
which to eac/z xeV associates the functional /*-» (jc,/) ozz £v zs a/z isomorphism 

of E onto £vv. 

Proof. Note that since {/j,..., /„} is a basis for £v, it follows from the 
definitions that {xx,. . . , xn} is the dual basis in £, so £ = £vv. 

Theorem 6.3. Let U, V, W be finite free modules over the commutative ring 

A, and let 

o-*■ t/-» o 

be an exact sequence of A-homomorphisms. Then the induced sequence 

0 -> HornA(U, A) Hom^V, A) -* Homely, A) -> 0 
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i.e. 

0 f/v —> Lv—» Ww-+ 0 

is also exact. 

Proof. This is a consequence of P2, because a free module is projective. 

We now consider properties which have specifically to do with vector spaces, 
because we are going to take factor spaces. So we assume that we deal with 
vector spaces over a field K. 

Let L, V' be two vector spaces, and suppose given a mapping 

Lx L' - K 

denoted by 

(x, x') i—► <x, x') 

for x e V and x' € L'. We call the mapping bilinear if for each x e V the function 
x' <x, x'> is linear, and similarly for each x' e V' the function x i—► <x, x'> is 
linear. An element x e L is said to be orthogonal (or perpendicular) to a subset 
S' of V' if <x, x'> = 0 for all x'eS'. We make a similar definition in the 
opposite direction. It is clear that the set of x e L orthogonal to S' is a sub¬ 
space of V. 

We define the kernel of the bilinear map on the left to be the subspace of V 

which is orthogonal to V', and similarly for the kernel on the right. 
Given a bilinear map as above, 

Lx V' -► K, 

let W' be its kernel on the right and let W be its kernel on the left. Let x' be 
an element of L'. Then x' gives rise to a functional on L, by the rule x i—► <x, x'), 
and this functional obviously depends only on the coset of x' modulo W\ in 
other words, if x\ = x'2 (mod W'\ then the functionals xi—► <x, x\} and 
x i-> <x, x'2) are equal. Hence we get a homomorphism 

V' -> Lv 

whose kernel is precisely W* by definition, whence an injective homomorphism 

0-» V’/W Lv. 

Since all the functionals arising from elements of V vanish on W, we can view 
them as functionals on V/W, i.e. as elements of (V/W)v. So we actually get an 
injective homomorphism 

0 V'/W' (V/W)y. 

One could give a name to the homomorphism 

g:Vf^Vy 
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such that 

<x, x'> = <X, 0(x')> 

for all x g V and x' e V'. However, it will usually be possible to describe it by an 
arrow and call it the induced map, or the natural map. Giving a name to it 
would tend to make the terminology heavier than necessary. 

Theorem 6.4. Let V x V' K be a bilinear map, let W, W' be its kernels 

on the left and right respectively, and assume that V'/W' is finite dimensional. 

Then the induced homomorphism V'/W' —> (V/Wf is an isomorphism. 

Proof. By symmetry, we have an induced homomorphism 

V/W(V'/W')v 

which is injective. Since 

dim(V'/vnv = dim V'/W' 

it follows that V/W is finite dimensional. From the above injective homomor¬ 
phism and the other, namely 

0 -> V'/W' (V/W)v, 

we get the inequalities 

dim V/W ^ dim V'/W' 

and 

dim V'/W' ^ dim V/W, 

whence an equality of dimensions. Hence our homomorphisms are surjective 
and inverse to each other, thereby proving the theorem. 

Remark 1. Theorem 6.4 is the analogue for vector spaces of the duality 
Theorem 9.2 of Chapter I. 

Remark 2. Let A be a commutative ring and let E be an A-module. Then 
we may form two types of dual: 

EA = Hom(£, Q/Z), viewing E as an abelian group; 

£v = Hom^CE, A), viewing E as an A-module. 

Both are called dual, and they usually are applied in different contexts. For 
instance, £v will be considered in Chapter XIII, while EA will be considered in 
the theory of injective modules, Chapter XX, §4. For an example of dual module 
Ey see Exercise 11. If by any chance the two duals arise together and there is 
need to distinguish between them, then we may call EA the Pontrjagin dual. 
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Indeed, in the theory of topological groups G, the group of continuous homo- 
morphisms of G into R/Z is the classical Pontrjagin dual, and is classically 
denoted by GA, so I find the preservation of that terminology appropriate. 

Instead of R/Z one may take other natural groups isomorphic to R/Z. The 
most common such group is the group of complex numbers of absolute value 1, 
which we denote by S1. The isomorphism with R/Z is given by the map 

x i-> e2nix. 

Remark 3. A bilinear map V x V-* K for which V' = V is called a bilinear 
form. We say that the form is non-singular if the corresponding maps 

V' —> Vv and V-»(V')v 

are isomorphisms. Bilinear maps and bilinear forms will be studied at greater 
length in Chapter XV. See also Exercise 33 of Chapter XIII for a nice example. 

§7. MODULES OVER PRINCIPAL RINGS 

Throughout this section, we assume that R is a principal entire ring. All modules 

are over R, and homomorphisms are R-homomorphisms, unless otherwise specified. 

The theorems will generalize those proved in Chapter I for abelian groups. 
We shall also point out how the proofs of Chapter I can be adjusted with sub¬ 
stitutions of terminology so as to yield proofs in the present case. 

Let F be a free module over R, with a basis {x,}le/. Then the cardinality of 
/ is uniquely determined, and is called the dimension of F. We recall that this 
is proved, say by taking a prime element p in R, and observing that F/pF is a 
vector space over the field R/pR, whose dimension is precisely the cardinality 
of /. We may therefore speak of the dimension of a free module over R. 

Theorem 7.1. Let F be a free module, and M a submodule. Then M is free, 
and its dimension is less than or equal to the dimension of F. 

Proof. For simplicity, we give the proof when F has a finite basis {xj, 
i = 1, ..., n. Let Mr be the intersection of M with (x1?..., xr), the module 
generated by xx,..., xr. Then Mx = Mn(xJ is a submodule of (xj), and is 
therefore of type (^Xj) with some ax e R. Hence is either 0 or free, of di¬ 
mension 1. Assume inductively that Mr is free of dimension ^ r. Let a be 
the set consisting of all elements ae R such that there exists an element x e M 

which can be written 

x = blxl -I- • • • + brxr + axr+l 
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with bi e R. Then a is obviously an ideal, and is principal, generated say by an 
element ar+ If ar+i =0, then Mr+l = Mr and we are done with the inductive 
step. If ar+l ^ 0, let w e Afr+! be such that the coefficient of w with respect 
to xr+1 is ar+l. If xeMr+l then the coefficient of x with respect to xr+1 is 
divisible by ur+1, and hence there exists ceR such that x — cw lies in Mr. 

Hence 

Mr+l = Mr + (w). 

On the other hand, it is clear that Mr n (w) is 0, and hence that this sum is direct, 
thereby proving our theorem. (For the infinite case, see Appendix 2, §2.) 

Corollary 7.2. Let E be a finitely generated module and E' a submodule. 

Then E' is finitely generated. 

Proof. We can represent E as a factor module of a free module F with a 
finite number of generators: If vl9 ..., vn are generators of F, we take a free 
module F with basis {xu ..., xn) and map x, on vt. The inverse image of E' in F 

is a submodule, which is free, and finitely generated, by the theorem. Hence 
E' is finitely generated. The assertion also follows using simple properties of 
Noetherian rings and modules. 

If one wants to translate the proofs of Chapter I, then one makes the 
following definitions. A free 1-dimensional module over R is called infinite 
cyclic. An infinite cyclic module is isomorphic to R, viewed as module over 
itself. Thus every non-zero submodule of an infinite cyclic module is infinite 
cyclic. The proof given in Chapter I for the analogue of Theorem 7.1 applies 
without further change. 

Let £ be a module. We say that Fisa torsion module if given x e F, there 
exists a e F, a # 0, such that ax = 0. The generalization of finite abelian group 
is finitely generated torsion module. An element x of E is called a torsion element 
if there exists ae R, a ^ 0, such that ax = 0. 

Let E be a module. We denote by Ftor the submodule consisting of all torsion 
elements of F, and call it the torsion submodule of F. If Ftor = 0, we say that 
F is torsion free. 

Theorem 7.3. Let E be finitely generated. Then F/Ftor is free. There exists 

a free submodule F of E such that E is a direct sum 

E = Ftor 0 F. 

The dimension of such a submodule F is uniquely determined. 

Proof. We first prove that F/Ftor is torsion free. If x e F, let x denote its 
residue class mod Ftor. Let b e R, b 4=- 0 be such that bx = 0. Then bx e Ftor, 
and hence there exists c e R, c ^ 0, such that cbx = 0. Hence x e Ftor and 
x = 0, thereby proving that F/Ftor is torsion free. It is also finitely generated. 
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Assume now that M is a torsion free module which is finitely generated. Let 
{vu .. ., vn} be a maximal set of elements of M among a given finite set of 
generators {yl9. . . , ym} such that {vu ..., vn} is linearly independent. If y is 
one of the generators, there exist elements a, bbn e R not all 0, such that 

ay b^vi + • • • + bnvn = 0. 

Then a ^ 0 (otherwise we contradict the linear independence of vl9 ..., t;„). 

Hence ay lies in (ul5..., t>„). Thus for each j = 1, ..., m we can find a}e R, 

dj # 0, such that a^y,- lies in (t^,..., uM). Let a = ax • • • am be the product. Then 
aM is contained in (vi9..., i?„), and a # 0. The map 

xi—►ax 

is an injective homomorphism, whose image is contained in a free module. 
This image is isomorphic to M, and we conclude from Theorem 7.1 that M is 
free, as desired. 

To get the submodule F we need a lemma. 

Lemma 7.4. Let E, E' be modules, and assume that E' is free. Let f\E^E' 

be a surjective homomorphism. Then there exists a free submodule F of E such 

that the restriction off to F induces an isomorphism of F with E\ and such that 

E = F ® Ker / 

Proof. Let {x;}l€/ be a basis of E'. For each i, let xt be an element of E such 
that /(xf) = x\. Let F be the submodule of E generated by all the elements xi9 

i e I. Then one sees at once that the family of elements {xjie/ is linearly inde¬ 
pendent, and therefore that F is free. Given xe E, there exist elements a* e R 

such that 

/(*) = Z a;*i- 

Then x — Z aixi lies in the kernel of/, and therefore E = Ker f + F. It is clear 
that Ker/n F = 0, and hence that the sum is direct, thereby proving the lemma. 

We apply the lemma to the homomorphism E —» E/Etor in Theorem 7.3 to 
get our decomposition E = Eior © F. The dimension of F is uniquely determined, 
because F is isomorphic to E/Etor for any decomposition of E into a direct sum 
as stated in the theorem. 

The dimension of the free module F in Theorem 7.3 is called the rank of E. 

In order to get the structure theorem for finitely generated modules over R, 
one can proceed exactly as for abelian groups. We shall describe the dictionary 
which allows us to transport the proofs essentially without change. 

Let E be a module over R. Let xeE. The map a ax is a homomorphism 
of R onto the submodule generated by x, and the kernel is an ideal, which is 
principal, generated by an element me R. We say that m is a period of x. We 
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note that m is determined up to multiplication by a unit (if m # 0). An element 
c e R, c # 0, is said to be an exponent for E (resp. for x) if cE = 0 (resp. cx = 0). 

Let p be a prime element. We denote by E(p) the submodule of E consisting 
of all elements x having an exponent which is a power pr(r ^ 1). Ap-submodule 
of £ is a submodule contained in E(p). 

We select once and for all a system of representatives for the prime elements 
of R (modulo units). For instance, if R is a polynomial ring in one variable over 

a field, we take as representatives the irreducible polynomials with leading 
coefficient 1. 

Let m e R, m # 0. We denote by Em the kernel of the map x mx. It consists 
of all elements of E having exponent m. 

A module E is said to be cyclic if it is isomorphic to R/(a) for some element 
a e R. Without loss of generality if a # 0, one may assume that a is a product of 
primes in our system of representatives, and then we could say that a is the order 
of the module. 

Let r j,..., rs be integers ^ 1. A /7-module E is said to be of type 

(pri,...,Prs) 

if it is isomorphic to the product of cyclic modules R/(pn) (i = 1,..., s). If p 

is fixed, then one could say that the module is of type (rl9..., rs) (relative to p). 

All the proofs of Chapter I, §8 now go over without change. Whenever we 
argue on the size of a positive integer m, we have a similar argument on the 
number of prime factors appearing in its prime factorization. If we deal with a 
prime power pr9 we can view the order as being determined by r. The reader 
can now check that the proofs of Chapter I, §8 are applicable. 

However, we shall develop the theory once again without assuming any 
knowledge of Chapter I, §8. Thus our treatment is self-contained. 

Theorem 7.5. Let E be a finitely generated torsion module ^ 0. Then E is 

the direct sum 

E = ® E(p), 
P 

taken over all primes p such that E(p) # 0. Each E(p) can be written as a direct 

sum 

E(p) = R/(pV1)©---© R/(PVS) 

with 1 ^ Vj ^ ^ vs. The sequence vu ..., vs is uniquely determined. 

Proof. Let a be an exponent for £, and suppose that a = be with (6, c) = (1). 
Let x, ye R be such that 

1 = xb + yc. 
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We contend that E = Eb © Ec. Our first assertion then follows by induction, 
expressing a as a product of prime powers. Let v e E. Then 

v = xbv + ycv. 

Then xbv e Ec because cxbv = xav = 0. Similarly, ycv e Eb. Finally Ebr\Ec = 0, 
as one sees immediately. Hence E is the direct sum of Eb and Ec. 

We must now prove that E(p) is a direct sum as stated. If yl9 ..., ym are 
elements of a module, we shall say that they are independent if whenever we have 
a relation 

a,y, + • • • + amym = 0 

with ate R9 then we must have = 0 for all i. (Observe that independent 
does not mean linearly independent.) We see at once that yl9 ..., ym are inde¬ 
pendent if and only if the module (yl5..., ym) has the direct sum decomposition 

0>i, • • •, ym) = Cvi) © • • • © O'*) 

in terms of the cyclic modules (yt)9 i = 1,..., m. 

We now have an analogue of Lemma 7.4 for modules having a prime power 
exponent. 

Lemma 7.6. Let E be a torsion module of exponent pr (r ^ 1) for some prime 

element p. Let xieE be an element of period pr. Let E = E/ixf). Let 

yl9..., ym be independent elements of E. Then for each i there exists a repre¬ 

sentative yt e E of yi9 such that the period of yt is the same as the period of yt. 

The elements xl9 yl9..., ym are independent. 

Proof Let y e E have period pn for some n ^ 1. Let y be a representative of 
y in E. Then pny e (xj, and hence 

pny = pscxl9 ce R9pf c9 

for some s ^ r. If s = r9 we see that y has the same period as y. If s < r, then 
pscx{ has period pr~s9 and hence y has period pn+r~s. We must have 

n + r — s ^ r, 

because pr is an exponent for E. Thus we obtain n ^ s, and we see that 

y - ps~ncxl 

is a representative for y9 whose period is pn. 

Let y{ be a representative for yt having the same period. We prove that 
*i> yi> • • • > ym are independent. Suppose that a9al9... 9ame R are elements such 
that 

+ 01^1 + ••• + = 0. 
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Then 
axyx + • • • + amym = 0. 

By hypothesis, we must have = 0 for each i. If pr* is the period of yh then 
pn divides a{. We then conclude that a, y, = 0 for each i, and hence finally 
that ax{ =0, thereby proving the desired independence. 

To get the direct sum decomposition of E(p), we first note that E(p) is 
finitely generated. We may assume without loss of generality that E = E(p). 

Let Xj be an element of E whose period pr‘ is such that r{ is maximal. Let 
E = £/(xj). We contend that dim Ep as vector space over R/pR is strictly less 
than dim Ep. Indeed, if yu ..., ym are linearly independent elements of Ep 
over R/pR, then Lemma 7.6 implies that dim Ep ^ m + 1 because we can always 
find an element of (xt) having period p, independent of yu ..., ym. Hence 
dim Ep < dim Ep. We can prove the direct sum decomposition by induction. 
If E # 0, there exist elements x2,..., xs having periods pr2,..., prs respectively, 
such that r2 = • • * ^ rs. By Lemma 7.6, there exist representatives x2,. . . , xr 

in E such that x, has period pn and xu ..., xr are independent. Since pri is such 
that r{ is maximal, we have rx ^ r2, and our decomposition is achieved. 

The uniqueness will be a consequence of a more general uniqueness theorem, 
which we state next. 

Theorem 7.7. Let E be a finitely generated torsion module, E # 0. Then 

E is isomorphic to a direct sum of non-zero factors 

R/(qi) 0 * • ■ ® R/(qr\ 

where qu ..., qr are non-zero elements of R, and q{ \q2 \ • • • \qr. The sequence 

of ideals (q{\ ..., (qr) is uniquely determined by the above conditions. 

Proof. Using Theorem 7.5, decompose E into a direct sum ofp-submodules, 
say £(Pi) © • • • ® £(pj), and then decompose each £(p,-) into a direct sum of 
cyclic submodules of periods p\ij. We visualize these symbolically as described 
by the following diagram: 

E(Pl): rll=r12=’*‘ 

R'iPl) : r2\ = r22 = * * ' 

E(Pi) • = rl2 = * * * 

A horizontal row describes the type of the module with respect to the prime at 
the left. The exponents ru are arranged in increasing order for each fixed 
i = 1, ..., /. We let ql9 ..., qr correspond to the columns of the matrix of 
exponents, in other words 

Qi = pTpT'"P?\ 

<?2 = pTpT • • • Pll\ 
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The direct sum of the cyclic modules represented by the first column is then 
isomorphic to R/(qi\ because, as with abelian groups, the direct sum of cyclic 
modules whose periods are relatively prime is also cyclic. We have a similar 
remark for each column, and we observe that our proof actually orders the qj 

by increasing divisibility, as was to be shown. 
Now for uniqueness. Let p be any prime, and suppose that E = R/(pb) for 

some be R,b =£ 0. Then Ep is the submodule bR/(pb\ as follows at once from 
unique factorization in R. But the kernel of the composite map 

R - W* - bR/(pb) 

is precisely (p). Thus we have an isomorphism 

R/(p) » bR/(pb). 

Let now E be expressed as in the theorem, as a direct sum of r terms. An 
element 

V = V1 ® •♦•© Vr, ViER/fai) 

is in Ep if and only if pv{ = 0 for all i. Hence Ep is the direct sum of the kernel of 
multiplication by p in each term. But Ep is a vector space over R/(p), and its 
dimension is therefore equal to the number of terms R/(q^ such that p divides qt. 

Suppose that p is a prime dividing ql9 and hence qt for each i = 1,..., r. Let 
E have a direct sum decomposition into d terms satisfying the conditions of the 
theorem, say 

E = R/(q\) © ■ ■ ■ ® R/(q;). 

Then p must divide at least r of the elements q'-, whence r ^ s. By symmetry, 
r = s, and p divides q'j for all j. 

Consider the module pE. By a preceding remark, if we write qt = pbh then 

pE » R/ibJ ® • • • © R/{br\ 

and b{ | • • • \br. Some of the bt may be units, but those which are not units 
determine their principal ideal uniquely, by induction. Hence if 

(M = ••• = (&,)= i 

but (bj+1) # (1), then the sequence of ideals 

...,(br) 
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is uniquely determined. This proves our uniqueness statement, and concludes 
the proof of Theorem 7.7. 

The ideals (qx),. . ., (qr) are called the invariants of E. 

For one of the main applications of Theorem 7.7 to linear algebra, see Chapter 
XV, §2. 

The next theorem is included for completeness. It is called the elementary 
divisors theorem. 

Theorem 7.8. Let F be a free module over R, and letM be a finitely generated 

submodule 4 0. Then there exists a basis (B of F, elements ex, ..., em in this 

basis, and non-zero elements ax,..., am e R such that: 

(i) The elements axex, ..., amemforrn a basis of M over R. 

(ii) We have ai\ai+xfor i = 1,..., m — 1. 

The sequence of ideals (ax), ..., (am) is uniquely determined by the preceding 

conditions. 

Proof. Write a finite set of generators for M as linear combination of a finite 
number of elements in a basis for F. These elements generate a free submodule 
of finite rank, and thus it suffices to prove the theorem when F has finite rank, 
which we now assume. We let n = rank(F). 

The uniqueness is a corollary of Theorem 7.7. Suppose we have a basis as 
in the theorem. Say ax,. . . , as are units, and so can be taken to be = 1, and 

as+j = qj with qx\q21 • • • | qr non-units. Observe that F/M = F is a finitely 
generated module over R, having the direct sum expression 

r 

F/M = F ~ (J) (R/qjR)ej © free module of rank n — (r + s) 
j= i 

where a bar denotes the class of an element of_F mod M. Thus the direct sum 
over j = 1,. .. , r is the torsion submodule of F, whence the elements qx,..., 

qr are uniquely determined by Theorem 7.7. We have r + 5 = m, so the rank 
of F/M is n — m, which determines m uniquely. Then s = m - r is uniquely 
determined as the number of units among ax,.. ., am. This proves the uniqueness 
part of the theorem. Next we prove existence. 

Let A be a functional on F, in other words, an element of Hom^(F, R). We 
let 7A = A(M). Then Jx is an ideal of R. Select A! such that AX(M) is maximal 
in the set of ideals {/A}, that is to say, there is no properly larger ideal in the 
set {yA}. 

Let Aj(M) = (ax). Then ax # 0, because there exists a non-zero element of 
M, and expressing this element in terms of some basis for F over F, with some 
non-zero coordinate, we take the projection on this coordinate to get a func¬ 
tional whose value on M is not 0. Let xxe M be such that = ax. For 
any functional g we must have g(xx) e (ax) [immediate from the maximality of 
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Ai(A/)]. Writing xx in terms of any basis of F, we see that its coefficients must 
all be divisible by ax. (If some coefficient is not divisible by au project on this 
coefficient to get an impossible functional.) Therefore we can write x{ = alel 

with some element exe F. 

Next we prove that F is a direct sum 

F = Rex © Ker 

Since Xx(ex) = 1, it is clear that Rex n Ker Xx = 0. Furthermore, given xe F 

we note that x — X1(x)e1 is in the kernel of Xx. Hence F is the sum of the in¬ 
dicated submodules, and therefore the direct sum. 

We note that Ker Xx is free, being a submodule of a free module (Theorem 
7.1). We let 

Fx = Ker Xx and Mx = M D Ker Xx. 

We see at once that M = Rxx ® Mx. 

Thus Mx is a submodule of Fx and its dimension is one less than the dimension 
of M. From the maximality condition on Xx(M), it follows at once that for any 
functional A on Fx, the image A(M) will be contained in Xx(M) (because otherwise, 
a suitable linear combination of functionals would yield an ideal larger than 
(<*!)). We can therefore complete the existence proof by induction. 

In Theorem 7.8, we call the ideals (a^),.. ., (am) the invariants of M in F. 
For another characterization of these invariants, see Chapter XIII, Proposition 
4.20. 

Example. First, see examples of situations similar to those of Theorem 7.8 
in Exercises 5,7, and 8, and for Dedekind rings in Exercise 13. 

Example. Another way to obtain a module M as in Theorem 7.8 is as 
a module of relations. Let W be a finitely generated module over F, with genera¬ 
tors Wj,. . . , wn. By a relation among {wl5. . ., wn} we mean an element 
(aXi.. . , an) E Rn such that 2 ciiwi = 0. The set of such relations is a sub- 
module of F", to which Theorem 7.8 may be applied. 

It is also possible to formulate a proof of Theorem 7.8 by considering M as 
a submodule of F", and applying the method of row and column operations to 
get a desired basis. In this context, we make some further comments which may 
serve to illustrate Theorem 7.8. We assume that the reader is acquainted with 
matrices over a ring. By row operations we mean: interchanging two rows; 
adding a multiple of one row to another; multiplying a row by a unit in the ring. 
We define column operations similarly. These row and column operations 
correspond to multiplication with the so-called elementary matrices in the ring. 

Theorem 7.9. Assume that the elementary matrices in R generate GLn{R). 

Let (Xij) be a non-zero matrix with components in F. Then with a finite 

number of row and column operations, it is possible to bring the matrix to 

the form 
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ax 0.0 

0 a2.0 

o • ■■■ am ■ ■■■ o 

0 . 0 ••• 0 

I 0 .0 

with a\ ■ ■ ■ am ¥= 0 and ax \a2\ • ■ ■ \ am. 

We leave the proof for the reader. Either Theorem 7.9 can be viewed as 
equivalent to Theorem 7.8, or a direct proof may be given. In any case, Theorem 
7.9 can be used in the following context. Consider a system of linear equations 

cn*i + ' * • + clnxn = 0 

cr\Xx T • • • + crnxn 0. 

with coefficients in R. Let F be the submodule of Rn generated by the vectors 
X = (jcj, ... , xn) which are solutions of this system. By Theorem 7.1, we know 
that F is free of dimension ^ n. Theorem 7.9 can be viewed as providing a 
normalized basis for F in line with Theorem 7.8. 

Further example. As pointed out by Paul Cohen, the row and column 
method can be applied to modules over a power series ring o[[X]], where o is 
a complete discrete valuation ring. Cf. Theorem 3.1 of Chapter 5 in my Cyclo- 

tomic Fields I and II (Springer Verlag, 1990). For instance, one could pick o it¬ 
self to be a power series ring k[[T]] in one variable over a field k9 but in the 
theory of cyclotomic fields in the above reference, o is taken to be the ring of 
p-adic integers. On the other hand, George Bergman has drawn my attention to 
P. M. Cohn’s “On the structure of GL^ of a ring,’’ IHES Publ. Math. No. 30 
(1966), giving examples of principal rings where one cannot use row and column 
operations in Theorem 7.9. 

§8. EULER-POINCARE MAPS 

The present section may be viewed as providing an example and application 
of the Jordan-Holder theorem for modules. But as pointed out in the examples 
and references below, it also provides an introduction for further theories. 

Again let A be a ring. We continue to consider A-modules. Let T be an 
abelian group, written additively. Let cp be a rule which to certain modules 
associates an element of T, subject to the following condition: 
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If 0 -► M' -► M -+ M" -> 0 is exact, t/zen <p(M) is defined if and only if cp(M') 

and cp(M") are defined, and in that case, we /idwe 

<p(M) = <p(M') 4- <p(M"). 

Furthermore cp{0) is defined and equal to 0. 

Such a rule cp will be called an Euler-Poincare mapping on the category of 
^-modules. If M' is isomorphic to M, then from the exact sequence 

0 -► M' 

we conclude that cp(M') is defined if cp(M) is defined, and that <p(M') = <p(M). 

Thus if cp(M) is defined for a module M, <p is defined on every submodule and 
factor module of M. In particular, if we have an exact sequence of modules 

M' - M - M" 

and if cp(M') and <p(M") are defined, then so is cp(M\ as one sees at once by 
considering the kernel and image of our two maps, and using the definition. 

Examples. We could let A = Z, and let cp be defined for all finite abelian 
groups, and be equal to the order of the group. The value of cp is in the multi¬ 
plicative group of positive rational numbers. 

As another example, we consider the category of vector spaces over a field k. 

We let cp be defined for finite dimensional spaces, and be equal to the dimension. 
The values of cp are then in the additive group of integers. 

In Chapter XV we shall see that the characteristic polynomial may be con¬ 
sidered as an Euler-Poincare map. 

Observe that the natural map of a finite module into its image in the Groth- 
endieck group defined at the end of §4 is a universal Euler-Poincare mapping. 
We shall develop a more extensive theory of this mapping in Chapter XX, §3. 

If M is a module (over a ring A), then a sequence of submodules 

M = Mj id M2 =>•••=> Mr = 0 

is also called a finite filtration, and we call r the length of the filtration. A module 
M is said to be simple if it does not contain any submodule other than 0 and M 

itself, and if M # 0. A filtration is said to be simple if each MJMi+1 is simple. 
The Jordan-Holder theorem asserts that two simple filtrations of a module are 

equivalent. 

A module M is said to be of finite length if it is 0 or if it admits a simple 
(finite) filtration. By the Jordan-Holder theorem, the length of such a simple 
filtration is the uniquely determined, and is called the length of the module. In 
the language of Euler characteristics, the Jordan-Holder theorem can be re¬ 
formulated as follows: 
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Theorem 8.1. Let cp be a rule which to each simple module associates an 

element of a commutative group T, and such that ifM&M' then 

(p(M) = (p(M'). 

Then (p has a unique extension to an Euler-Poincare mapping defined on all 

modules of finite length. 

Proof Given a simple filtration 

M = Mj =5 M2 => • • • => Mr = 0 

we define 

i = 1 

The Jordan-Holder theorem shows immediately that this is well-defined, and 
that this extension of (p is an Euler-Poincare map. 

In particular, we see that the length function is the Euler-Poincare map 
taking its values in the additive group of integers, and having the value 1 for any 
simple module. 

§9. THE SNAKE LEMMA 

This section gives a very general lemma, which will be used many times, 
so we extract it here. The reader may skip it until it is encountered, but already 
we give some exercises which show how it is applied: the five lemma in Exercise 
15 and also Exercise 26. Other substantial applications in this book will occur 
in Chapter XVI, §3 in connection with the tensor product, and in Chapter XX 
in connection with complexes, resolutions, and derived functors. 

We begin with routine comments. Consider a commutative diagram of homo- 
morphisms of modules. 

M'—-—> M 

n—r^N 

Then / induces a homomorphism 

Ker d' Ker d. 

Indeed, suppose d'x' = 0. Then df(x') = 0 because df(x') = hd'(x') = 0. 
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Similarly, h induces a homomorphism 

Coker d' —> Coker d 

in a natural way as follows. Let y9 e N' represent an element of N9/d'M'. Then 
hy' mod dM does not depend on the choice of y9 representing the given element, 
because if y" = y9 + d'x\ then 

hy99 = hy' + hd'x' = hy' + dfx' = hy9 mod dM. 

Thus we get a map 

A*: N’/d’M9 = Coker d9 -» N/dM = Coker d9 

which is immediately verified to be a homomorphism. 
In practice, given a commutative diagram as above, one sometimes writes/ 

instead of A, so one writes/ for the horizontal maps both above and below the 
diagram. This simplifies the notation, and is not so incorrect: we may view 
M', N9 as the two components of a direct sum, and similarly for M, N. Then/ 
is merely a homomorphism defined on the direct sum M9 © N9 into M © N. 

The snake lemma concerns a commutative and exact diagram called a snake 
diagram: 

M’——>M—-—♦ M"->0 

d' d d" 

0-* N9-—> N-> AT 
f g 

Let z" e Ker d”. We can construct elements of N9 as follows. Since g is 
surjective, there exists an element z e M such that gz = z". We now move 
vertically down by d, and take dz. The commutativity d”g = gd shows that 
gdz = 0 whence dz is in the kernel of g in N. By exactness, there exists an 
element z9 e N9 such that fz9 = dz. In brief, we write 

z' =/_1 °d°g~lz". 

Of course, z' is not well defined because of the choices made when taking inverse 
images. However, the snake lemma will state exactly what goes on. 

Lemma 9.1. (Snake Lemma). Given a snake diagram as above, the map 

d : Ker d" - Coker d' 

given by dz" = /“1 © d ° g~ 1z" is well defined, and we have an exact sequence 

Ker d' -► Ker d -* Ker d" 4 Coker d! Coker d -* Coker d" 

where the maps besides S are the natural ones. 
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Proof. It is a routine verification that the class of z mod Im d' is in¬ 
dependent of the choices made when taking inverse images, whence defining 
the map <5. The proof of the exactness of the sequence is then routine, and 
consists in chasing around diagrams. It should be carried out in full detail 
by the reader who wishes to acquire a feeling for this type of triviality. As an 
example, we shall prove that 

Ker 8 C Im g* 

where g* is the induced map on kernels. Suppose the image of z" is 0 in Coker 
d\ By definition, there exists u e M' such that z' = d'u'. Then 

dz = fz' = fd'u' = dfu' 

by commutativity. Hence 

d(z -fu') = 0, 

and z — fu' is in the kernel of d. But g(z — fu) = gz = z". This means that z" is 
in the image of #*, as desired. All the remaining cases of exactness will be left 
to the reader. 

The original snake diagram may be completed by writing in the kernels 
and cokernels as follows (whence the name of the lemma): 

Ker d! -> Ker d 

M' M 

Ker d" - 

M" 

N' N N” 

^ Coker d'-> Coker d-> Coker d” 

§10. DIRECT AND INVERSE LIMITS 

We return to limits, which we considered for groups in Chapter I. We now 
consider limits in other categories (rings, modules), and we point out that limits 
satisfy a universal property, in line with Chapter I, §11. 

Let / = {/} be a directed system of indices, defined in Chapter I, §10. Let 
Ofc be a category, and {Aj a family of objects in (2. For each pair i, j such that 
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i ^ j assume given a morphism 

fY-A^Aj 

such that, whenever i g /c, we have 

and /I = id. 

Such a family will be called a directed family of morphisms. A direct limit 
for the family {/}} is a universal object in the following category C. Ob(C) 
consists of pairs (A, (/')) where /l e Ob(Gfc) and (/') is a family of morphisms 
/1: Ai A, i e /, such that for all i ^ j the following diagram is commutative: 

fi. 
Ai ———>Aj 

(Universal of course means universally repelling.) 
Thus if (A, (/*)) is the direct limit, and if (B, (g1)) is any object in the above 

category, then there exists a unique morphism cp \ A -► B which makes the 
following diagram commutative: 

For simplicity, one usually writes 

A = UHjAh 
i 

omitting the f ) from the notation. 

Theorem 10.1. Direct limits exist in the category of abelian groups, or more 

generally in the category of modules over a ring. 

Proof Let {MJ be a directed system of modules over a ring. Let M be 
their direct sum. Let N be the submodule generated by all elements 

Xij = (. . . , 0, *, 0, . . . , 0, . . .) 
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where, for a given pair of indices (ij) with j ^ i, xu has component x in Mh 
/‘•(x) in Mj, and component 0 elsewhere. Then we leave to the reader the veri¬ 
fication that the factor module M/N is a direct limit, where the maps of M, into 
M/N are the natural ones arising from the composite homomorphism 

M/N. 

Example. Let X be a topological space, and let x e X. The open neigh¬ 
borhoods of x form a directed system, by inclusion. Indeed, given two open 
neighborhoods U and V, then U PI V is also an open neighborhood contained in 
both U and V. In sheaf theory, one assigns to each U an abelian group A(U) and 
for each pair U D Va homomorphism hy: A(U) —> A(V) such that if UD VD W 
then hy, ° hy = hThen the family of such homomorphisms is a directed family. 
The direct limit 

lim A(U) 
U 

is called the stalk at the point x. We shall give the formal definition of a sheaf 
of abelian groups in Chapter XX, §6. For further reading, I recommend at least 
two references. First, the self-contained short version of Chapter II in Hartshorne’s 
Algebraic Geometry, Springer Verlag, 1977. (Do all the exercises of that section, 
concerning sheaves.) The section is only five pages long. Second, I recommend 
the treatment in Gunning’s Introduction to Holomorphic Functions of Several 
Variables, Wadsworth and Brooks/Cole, 1990. 

We now reverse the arrows to define inverse limits. We are again given a 
directed set / and a family of objects At. If j ^ i we are now given a morphism 

satisfying the relations 

f[ofi=fi and /{ = id, 

if j ^ i and i ^ /c. As in the direct case, we can define a category of objects 
(A, f/) with f:A-> such that for all i, j the following diagram is com¬ 
mutative: 

A universal object in this category is called an inverse limit of the system (i4f,/}). 
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As before, we often say that 

A = lim Aj 

is the inverse limit, omitting the f) from the notation. 

Theorem 10.2. Inverse limits exist in the category of groups, in the category 

of modules over a ring, and also in the category of rings. 

Proof\ Let {Gj be a directed family of groups, for instance, and let T be 
their inverse limit as defined in Chapter I, §10. Let pt: V —» Gt be the projection 
(defined as the restriction from the projection of the direct product, since T is 
a subgroup of n G/). It is routine to verify that these data give an inverse limit 
in the category of groups. The same construction also applies to the category of 
rings and modules. 

Example. Let p be a prime number. For n^m we have a canonical surjective 
ring homomorphism 

fZ:Z/pnZ-*Z/p"'Z. 

The projective limit is called the ring of p-adic integers, and is denoted by Zp. 

For a consideration of this ring as a complete discrete valuation ring, see Exercise 
17 and Chapter XII. 

Let k be a field. The power series ring k[[T]] in one variable may be viewed 
as the projective limit of the factor polynomial rings k[T]/(Tn), where for 
n ^ m we have the canonical ring homomorphism 

fm- k[T]/(Tn) - k[T)/{Tm). 

A similar remark applies to power series in several variables. 
More generally, let R be a commutative ring and let J be a proper ideal. If 

n ^ m we have the canonical ring homomorphism 

/m: R/Jn * R/J"1- 

Let Rj = lim R/Jn be the projective limit. Then R has a natural homomorphism 
into Rj. If R is a Noetherian local ring, then by Krull’s theorem (Theorem 5.6 
of Chapter X), one knows that flJn = {0}, and so the natural homorphism of R 

in its completion is an embedding. This construction is applied especially when 
J is the maximal ideal. It gives an algebraic version of the notion of holomorphic 
functions for the following reason. 

Let R be a commutative ring and J a proper ideal. Define a /-Cauchy se¬ 
quence {xn} to be a sequence of elements of R satisfying the following condition. 
Given a positive integer k there exists N such that for all w, m ^ N we have 
xn — xm e /*. Define a null sequence to be a sequence for which given k there 
exists N such that for all n ^ N we have xn e Jk. Define addition and multipli- 
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cation of sequences termwise. Then the Cauchy sequences form a ring C, the 
null sequences form an ideal X, and the factor ring C/X is called the 7-adic 
completion of R. Prove these statements as an exercise, and also prove that there 
is a natural isomorphism 

e/x ~ Urn R/Jn- 

Thus the inverse limit Jim R/Jn is also called the 7-adic completion. See Chapter 
XII for the completion in the context of absolute values on fields. 

Examples. In certain situations one wants to determine whether there exist 
solutions of a system of a polynomial equation/(Xj,. . . ,Xn) = 0 with coefficients 
in a power series ring k[T], say in one variable. One method is to consider the 
ring mod (TN), in which case this equation amounts to a finite number of equations 
in the coefficients. A solution of f(X) = 0 is then viewed as an inverse limit of 
truncated solutions. For an early example of this method see [La 52], and for 
an extension to several variables [Ar 68]. 

[La 52] S. Lang, On quasi algebraic closure, Ann of Math. 55 (1952), pp. 373-390 

[Ar 68] M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968), pp. 
277-291 

See also Chapter XII, §7. 

In Iwasawa theory, one considers a sequence of Galois cyclic extensions Kn 

over a number field k of degree pn with p prime, and with Kn C Kn+l. Let Gn 

be the Galois group of Kn over k. Then one takes the inverse limit of the group 
rings (Z/pnZ)[Gn], following Iwasawa and Serre. Cf. my Cyclotomic Fields, 

Chapter 5. In such towers of fields, one can also consider the projective limits 
of the modules mentioned as examples at the end of §1. Specifically, consider 
the group of pn-th roots of unity jjy», and let Kn = Q(py+i), with K0 = Qtp^). 
We let 

Tp(ii) = lim \ipn 

under the homomorphisms |jyj+i —> \kpn given by £ . Then Tp([i) becomes 
a module for the projective limits of the group rings. Similarly, one can consider 
inverse limits for each one of the modules given in the examples at the end of 
§1. (See Exercise 18.) The determination of the structure of these inverse limits 
leads to fundamental problems in number theory and algebraic geometry. 

After such examples from real life after basic algebra, we return to some 
general considerations about inverse limits. 

Let (Ai9f{) = (AJ and (Bh g{) = (Bt) be two inverse systems of abelian 
groups indexed by the same indexing set. A homomorphism (A() -> (Bt) is the 
obvious thing, namely a family of homomorphisms 

^ : At -► Bi 
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for each i which commute with the maps of the inverse systems: 

A sequence 

Aj ~ ► Bj 

fi 

0 - (A,) - (Bt) - (Cf) - 0 

is said to be exact if the corresponding sequence of groups is exact for each i. 

Let (An) be an inverse system of sets, indexed for simplicity by the positive 
integers, with connecting maps 

“m,n'-Am -► An for m ^ n. 

We say that this system satisfies the Mittag-Leffler condition ML if for each n, 
the decreasing sequence um n(Am) (m ^ n) stabilizes, i.e. is constant for m 

sufficiently large. This condition is satisfied when umn is surjective for all m, 
n. 

We note that trivially, the inverse limit functor is left exact, in the sense that 
given an exact sequence 

then 

is exact. 

0 -> (An) - (Bn) -> (Cn) 0 

0 lim An Hm Bn -► Hm Cn 

Proposition 10.3. Assume that (A,,) satisfies ML. Given an exact sequence 

0 - tAn.) - (Bn) 4 (CJ - 0 

of inverse systems, then 

0 -> lim An -* Hm Bn -► Hm Cn -► 0 

is exact. 

Proof The only point is to prove the surjectivity on the right. Let (c„) be 
an element of the inverse limit. Then each inverse image g~1(cn) is a coset of 
A„, so in bijection with An. These inverse images form an inverse system, and 
the ML condition on (A„) implies ML on (g~l(cn)). Let Sn be the stable subset 

Sn = f) Um,n(g~'(cm)). 
m^n 
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Then the connecting maps in the inverse system (Sn) are surjective, and so there 
is an element (bn) in the inverse limit. It is immediate that g maps this element 
on the given (c„), thereby concluding the proof of the Proposition. 

Proposition 10.4. Let (Cn) be an inverse system of abelian groups satisfying 

ML, and let (umn) be the system of connecting maps. Then we have an exact 

sequence 

o- iim c,-nc.^nc.-*o. 

Proof. For each positive integer N we have an exact sequence with a finite 
product 

0 -► lim Cn -> Y[ Cn-► FI Cn 0. 
1 n= 1 n= 1 

The map u is the natural one, whose effect on a vector is 

(0,..., 0, cm, 0,..., 0) i-> (0,..., 0, um m_ jcm, 0,..., 0). 

One sees immediately that the sequence is exact. The infinite products are in¬ 
verse limits taken over N. The hypothesis implies at once that ML is satisfied 
for the inverse limit on the left, and we can therefore apply Proposition 10.3 to 
conclude the proof. 

EXERCISES 

1. Let V be a vector space over a field K, and let U, W be subspaces. Show that 

dim U -I- dim W = dim(U + W) + dim(U n W). 

2. Generalize the dimension statement of Theorem 5.2 to free modules over a commutative 
ring. [Hint: Recall how an analogous statement was proved for free abelian groups, 
and use a maximal ideal instead of a prime number.] 

3. Let R be an entire ring containing a field k as a subring. Suppose that R is a finite 
dimensional vector space over k under the ring multiplication. Show that R is a field. 

4. Direct sums. 

(a) Prove in detail that the conditions given in Proposition 3.2 for a sequence to 
split are equivalent. Show that a sequence 0 —» M' -4 M M" —> 0 splits if 

and only if there exists a submodule N of M such that M is equal to the direct 
sum Im/0 N, and that if this is the case, then N is isomorphic to M”. Complete 
all the details of the proof of Proposition 3.2. 
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(b) Let E and Et(i = 1,. .., m) be modules over a ring. Let <p, : Et —» E and 
if/j’. E —» £, be homomorphisms having the following properties: 

ipi o <pf = id, ipi ° (pj = 0 if i # j, 

m 

Z <Pi ° •A. = id- 

Show that the map xi—► 0/^x,..., i/fmx) is an isomorphism of E onto the direct product 
of the Ei(i = 1,..., m), and that the map 

+ ••• + <pmxm 

is an isomorphism of this direct product onto E. 

Conversely, if E is equal to a direct product (or direct sum) of submodules 
Ej (i = 1, . . ., m), if we let be the inclusion of £, in E, and t/f, the projection of 
E on Eh then these maps satisfy the above-mentioned properties. 

5. Let A be an additive subgroup of Euclidean space R", and assume that in every bounded 
region of space, there is only a finite number of elements of A. Show that A is a free 

abelian group on :g n generators. [Hint: Induction on the maximal number of 
linearly independent elements of A over R. Let vu ..., vm be a maximal set of such 
elements, and let A0 be the subgroup of A contained in the R-space generated by 
vu ..., vm_ j. By induction, one may assume that any element of A0 is a linear integral 
combination of vu ..., vm-v Let S be the subset of elements v e A of the form 
v = axvx -I- • • • + amvm with real coefficients a, satisfying 

0 ^ cii < 1 if i = 1,..., m — 1 

0 S S 1. 

If v'm is an element of S with the smallest am # 0, show that {vu..., vm-x, v'm} is a basis 
of A over Z.] 

Note. The above exercise is applied in algebraic number theory to show that the 
group of units in the ring of integers of a number field modulo torsion is isomorphic 
to a lattice in a Euclidean space. See Exercise 4 of Chapter VII. 

6. (Artin-Tate). Let G be a finite group operating on a finite set S. For w E S, denote 
1 • w by [w], so that we have the direct sum 

Z(5> = 2 Z[w], 
we5 

Define an action of G on Z(S) by defining cr[w] = [crw] (for w E S), and extending 
cr to Z(S) by linearity. Let M be a subgroup of Z(S) of rank #[S]. Show that M has 
a Z-basis {yw}wes such that cryw = for all w E S. (Cf. my Algebraic Number 
Theory, Chapter IX, §4, Theorem 1.) 

7. Let M be a finitely generated abelian group. By a seminorm on M we mean a real¬ 
valued function v i-» |i?| satisfying the following properties: 
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\v\ ^ 0 for all v E M\ 

\nv\ = |w| \v\ for n E Z; 

|i> + w| ^ |i?| + | w| for all v, w E M. 

By the kernel of the seminorm we mean the subset of elements v such that \ v\ = 0. 
(a) Let M0 be the kernel. Show that M0 is a subgroup. If M0 = {0}, then the 

seminorm is called a norm. 
(b) Assume that M has rank r. Let vx,..., vr E M be linearly independent over 

Z mod M0. Prove that there exists a basis {w,,.. ., wr} of M/M0 such that 

M § X |P;I- 
y=i 

[Hint: An explicit version of the proof of Theorem 7.8 gives the result. 
Without loss of generality, we can asume M0 = {0}. Let Mx = (vx,.. . , vr). 
Let d be the exponent of M/Mx. Then dM has a finite index in Mx. Let njj 
be the smallest positive integer such that there exist integers nJ X,... , njj-x 
satisfying 

nj xvx + • • • + njjVj = dwj for some Wj E M. 

Without loss of generality we may assume 0 ^njk^d- 1. Then the elements 
wx,. . . , wr form the desired basis.] 

8. Consider the multiplicative group Q* of non-zero rational numbers. For a non-zero 
rational number jc = a/b with a, b E Z and (a, b) = 1, define the height 

h{x) = log max(\a\, \b\). 

(a) Show that h defines a seminorm on Q*, whose kernel consists of ±1 (the 
torsion group). 

(b) Let Mx be a finitely generated subgroup of Q*, generated by rational numbers 
jCj, .. . , xm. Let M be the subgroup of Q* consisting of those elements x such 
that xs e Mx for some positive integer s. Show that M is finitely generated, 
and using Exercise 7, find a bound for the seminorm of a set of generators 
of M in terms of the seminorms of jc,, ... , xm. 

Note. The above two exercises are applied in questions of diophantine 
approximation. See my Diophantine approximation on toruses, Am. J. Math. 
86 (1964), pp. 521-533, and the discussion and references I give in Ency¬ 
clopedia of Mathematical Sciences, Number Theory III, Springer Verlag, 1991, 
pp. 240-243. 

Localization 

9. (a) Let A be a commutative ring and let M be an A-module. Let 5 be a multiplicative 
subset of A. Define S~l M in a manner analogous to the one we used to define 
S~lA, and show that S~lM is an S~ ^-module. 

(b) If 0 —> M' -» M -» M" —» 0 is an exact sequence, show that the sequence 
0 -» S~]M' -» S~lM -» S~lM" ^ 0 is exact. 
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10. (a) If p is a prime ideal, and 5 = A - p is the complement of p in the ring A, then 
S-1M is denoted by Mp. Show that the natural map 

of a module M into the direct product of all localizations Mp where p ranges over 
all maximal ideals, is injective. 

(b) Show that a sequence 0 —> M' —> M —> M" —» 0 is exact if and only if the sequence 

0 —> M'p —> Afp —> M"p —> 0 is exact for all primes p. 

(c) Let A be an entire ring and let M be a torsion-free module. For each prime p of 
A show that the natural mapM—»Mp is injective. In particular A —> Ap is injective, 
but you can see that directly from the imbedding of A in its quotient field K. 

Projective modules over Dedekind rings 

For the next exercise we assume you have done the exercises on Dedekind rings in 
the preceding chapter. We shall see that for such rings, some parts of their module theory 
can be reduced to the case of principal rings by localization. We let o be a Dedekind ring 

and K its quotient field. 

11. Let M be a finitely generated torsion-free module over o. Prove that M is projective. 
[Hint: Given a prime ideal p, the localized module Mp is finitely generated torsion- 
free over op, which is principal. Then Mp is projective, so if F is finite free over o, 

and /: F —» M is a surjective homomorphism, then fp: Fp -» Mp has a splitting 
gp: Mp —» Fp, such that fp ° gp = id^p. There exists cp E o such that cp ^ p and 
cpgp(M) C F. The family {cp} generates the unit ideal o (why?), so there is a finite 
number of elements cPi and elements jc, E o such that ^x(cPi = 1. Let 

g = 2*,cPigPi. 

Then show that g: M —> F gives a homomorphism such that f°g = id^.] 

12. (a) Let a,b be ideals. Show that there is an isomorphism ofo-modules 

a ® b —» o®ab 

[Hint: First do this when a, b are relatively prime. Consider the homomorphism 
a ® b —> a + b, and use Exercise 10. Reduce the general case to the relatively 
prime case by using Exercise 19 of Chapter II.] 

(b) Let a, b be fractional ideals, and let/: a —> b be an isomorphism (of o-modules, 
of course). Then/has an extension to a ^-linear map fK \ K —> K. Let c = fK( 1). 
Show that b = ca and that /is given by the mapping mc: x -+ cx (multiplication 
by c). 

(c) Let a be a fractional ideal. For each b E a-1 the map mb: a —> o is an element 
of the dual av. Show that a-1 = av = Hom0(a, o) under this map, and so 

avv = a. 

13. (a) Let M be a projective finite module over the Dedekind ring o. Show that there 
exist free modules F and F' such that F D M D F\ and F, F' have the same 
rank, which is called the rank of M. 

(b) Prove that there exists a basis {eu ..., en} of F and ideals c^,. . . , a„ such that 
M = axex + • • • + anen, or in other words, M ~ ® a,. 
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(c) Prove that M ~ o'1-1 © a for some ideal a, and that the association M i-> o 
induces an isomorphism of £0(o) with the group of ideal classes Pic(o). (The 
group Aq(0) is the group of equivalence classes of projective modules defined at 
the end of §4.) 

A few snakes 

14. Consider a commutative diagram of R-modules and homomorphisms such that each 
row is exact: 

M'-> M-> M"-> 0 

f q h 

0-> N'-► N -► AT 

Prove: 
(a) Iff h are monomorphisms then g is a monomorphism. 
(b) If/, h are surjective, then g is surjective. 
(c) Assume in addition that 0 -► M' -> M is exact and that N -* N" -+ 0 is exact. 

Prove that if any two of/, g, h are isomorphisms, then so is the third. [Hint:' 
Use the snake lemma.] 

15. The five lemma. Consider a commutative diagram of ^-modules and homomorph¬ 
isms such that each row is exact : 

Prove: 
(a) If/, is surjective and/2,/4 are monomorphisms, then/3 is a monomorphism. 
(b) Iff5 is a monomorphism and/2,/4 are surjective, then/3 is surjective. [Hint: 

Use the snake lemma.] 

Inverse limits 

16. Prove that the inverse limit of a system of simple groups in which the homomorphisms 
are surjective is either the trivial group, or a simple group. 

17. (a) Let n range over the positive integers and let p be a prime number. Show that 
the abelian groups An = Z/p^Z form a projective system under the canonical 
homomorphism if n ^ m. Let Zp be its inverse limit. Show that Tp maps sur¬ 
jectively on each Z/p^Z; that Xp has no divisors of 0, and has a unique maximal 
ideal generated by p. Show that Zp is factorial, with only one prime, namely p 
itself. 
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(b) Next consider all ideals of Z as forming a directed system, by divisibility. Prove 

that 

lim Z/(a) = FI Zp, 
(a) P 

where the limit is taken over all ideals (a), and the product is taken over all 

primes p. 

18. (a) Let {A„} be an inversely directed sequence of commutative rings, and let {Mn} 
be an inversely directed sequence of modules, Mn being a module over An such 

that the following diagram is commutative: 

An+\ x Afn+i + I 

•i 1 >1 

An xMn Mn 

The vertical maps are the homomorphisms of the directed sequence, and the 
horizontal maps give the operation of the ring on the module. Show that lim Mn 

is a module over lim An. 
(b) Let M be a /7-divisible group. Show that Tp(A) is a module over Zp. 

(c) Let Af, N be /7-divisible groups. Show that Tp(M © N) = Tp(M) © Tp(N), as 

modules over Zp. 

Direct limits 

19. Let (4,-,/*•) be a directed family of modules. Let ak e Ak for some k, and suppose that 
the image of ak in the direct limit A is 0. Show that there exists some index j ^ k such 
that fkj(ak) = 0. In other words, whether some element in some group A,• vanishes 

m the direct limit can already be seen within the original data. One way to see this 
is to use the construction of Theorem 10.1. 

20. Let /, J be two directed sets, and give the product I x J the obvious ordering that 
(ij) (/',/) if i ^ i' and j g/. Let Axj be a family of abelian groups, with homo¬ 
morphisms indexed by / x 7, and forming a directed family. Show that the direct 
limits 

Hm \jn\Aij and lim \\rx\A:j 
* j j i 

exist and are isomorphic in a natural way. State and prove the same result for inverse 

limits. 

21. Let (Mi, g)) be directed systems of modules over a ring. By a homomorphism 

(M;.) 4 (M,) 

one means a family of homomorphisms : M\ -* M, for each /' which commute with 
the fj, g). Suppose we are given an exact sequence 

0 - (M'd 4 (Mf) 4 (M") - 0 

of directed systems, meaning that for each i, the sequence 

0 -» m; - M,- - M" - 0 
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is exact. Show that the direct limit preserves exactness, that is 

0 -► hm hm M, -► hm M" -» 0 

is exact. 

22. (a) Let {MJ be a family of modules over a ring. For any module N show that 

Hom(® Af(., N) = f[ Hom(M„ N) 

(b) Show that 

Horn(N, fl Mt) = PI Hom(N, M,). 

23. Let {M,} be a directed family of modules over a ring. For any module N show that 

hm Hom(N, M,) = Hom(N, hm M,) 

24. Show that any module is a direct limit of finitely generated submodules. 

A module M is called finitely presented if there is an exact sequence 

F, ->F0->M-> 0 

where F0, F x are free with finite bases. The image of F{ in F0 is said to be the submodule 
of relations, among the free basis elements of F0. 

25. Show that any module is a direct limit of finitely presented modules (not necessarily 
submodules). In other words, given M, there exists a directed system {Mf, /j} with M, 

finitely presented for all i such that 

M % lim M,. 

[/fwt: Any finitely generated submodule is such a direct limit, since an infinitely 
generated module of relations can be viewed as a limit of finitely generated modules of 
relations. Make this precise to get a proof.] 

26. Let E be a module over a ring. Let {M,} be a directed family of modules. If E is finitely 
generated, show that the natural homomorphism 

lim Hom(F, M,) -> Hom(F, !im M{) 

is injective. If E is finitely presented, show that this homomorphism is an isomorphism. 
Hint: First prove the statements when E is free with finite basis. Then, say E is 

finitely presented by an exact sequence Fx -> F0 -» E -> 0. Consider the diagram: 

0-> hm Hom(F, M,)-► hm Hom(F0, Af,)-► lim HornfF^ M,) 

0 Hom(F, lim M() Hom(F0, lint ^i) Hom(F!, ling M,) 
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Graded Algebras 

Let A be an algebra over a field k. By a filtration of A we mean a sequence of k- 
vector spaces A( (z = 0,1,...) such that 

Ao <= A\ c= A2 <= ■ • • and (J A[ = A, 

and AiAj c= Ai+j for all z, j ^ 0. In particular, A is an /t0-algebra. We then call A a fil¬ 
tered algebra. Let R be an algebra. We say that R is graded if R is a direct sum 
R = 0 Ri of subspaces such that RtRj c= Ri+j for all z, j ^ 0. 

27. Let A be a filtered algebra. Define Ri for z^O by Ri = Aij A^\. By definition, 

A-1 = {0}. Let R = ©Ri, and Ri = gr((A). Define a natural product on R making 
R into a graded algebra, denoted by gr (A), and called the associated graded algebra. 

28. Let A, B be filtered algebras, A = (J At and B = (J Bt. Let L: A —► B be an (Ao, Bo)- 
linear map preserving the filtration, that is L(Ai) a Bi for all z, and L(ca) = 
L(c)L(a) for c e A0 and a e At for all z. 

(a) Show that L induces an (Ao, 5o)-linear map 

gr,(£): gr,(A) — gr,(B) for all (. 

(b) Suppose that gr^L) is an isomorphism for all z. Show that L is an (Ao,Bo)- 
isomorphism. 

29. Suppose k has characteristic 0. Let n be the set of all strictly upper triangular ma¬ 
trices of a given size n x n over k. 

(a) For a given matrix X 6 n, let D\(X),.. .,Dn(X) be its diagonals, so D\ = 
D\(X) is the main diagonal, and is 0 by the definition of n. Let n, be the 
subset of n consisting of those matrices whose diagonals D\,..., are 0. 
Thus no = {0}, ni consists of all matrices whose components are 0 except 
possibly for xnn; n2 consists of all matrices whose components are 0 except 
possibly those in the last two diagonals; and so forth. Show that each n, is 
an algebra, and its elements are nilpotent (in fact the (z + l)-th power of its 
elements is 0). 

(b) Let U be the set of elements I + X with X e n. Show that U is a multi¬ 
plicative group. 

(c) Let exp be the exponential series defined as usual. Show that exp defines a 
polynomial function on n (all but a finite number of terms are 0 when eval¬ 
uated on a nilpotent matrix), and establishes a bijection 

exp: n —► JJ. 

Show that the inverse is given by the standard log series. 



CHAPTER IV 

Polynomials 

This chapter provides a continuation of Chapter II, §3. We prove stan¬ 
dard properties of polynomials. Most readers will be acquainted with some 
of these properties, especially at the beginning for polynomials in one vari¬ 
able. However, one of our purposes is to show that some of these properties 
also hold over a commutative ring when properly formulated. The Gauss 
lemma and the reduction criterion for irreducibility will show the importance 
of working over rings. Chapter IX will give examples of the importance of 
working over the integers Z themselves to get universal relations. It happens 
that certain statements of algebra are universally true. To prove them, one 
proves them first for elements of a polynomial ring over Z, and then one 
obtains the statement in arbitrary fields (or commutative rings as the case 
may be) by specialization. The Cayley-Hamilton theorem of Chapter XV, 
for instance, can be proved in that way. 

The last section on power series shows that the basic properties of 
polynomial rings can be formulated so as to hold for power series rings. I 
conclude this section with several examples showing the importance of power 
series in various parts of mathematics. 

§1. BASIC PROPERTIES FOR POLYNOMIALS 
IN ONE VARIABLE 

We start with the Euclidean algorithm. 

Theorem 1.1. Let A be a commutative ring, let /, g e A[X~\ be poly¬ 

nomials in one variable, of degrees ^ 0, and assume that the leading 

173 
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coefficient of g is a unit in A. Then there exist unique polynomials 

q, r e A [X] such that 

f = gq + r 
and deg r < deg g. 

Proof. Write 

f(X) = anX" + -- + a0, 

g(X) = bdXd + ••• + &()» 

where n = deg/, d = degg so that an, bd^0 and bd is a unit in A. We use 
induction on n. 

If n = 0, and deg g > deg /, we let q = 0, r = /. If deg # = deg / = 0, then 
we let r = 0 and g = anbfl. 

Assume the theorem proved for polynomials of degree < n (with n > 0). 
We may assume deg g ^ deg / (otherwise, take q = 0 and r = /). Then 

f(X) = anbf'Xn-dg(X)+fi(n 

where has degree < n. By induction, we can find r such that 

/(*) = anbflXn~dg(X) + 4l (X)flW + rW 

and deg r < deg Then we let 

q(X) = anbf'Xn-d + qi(X) 

to conclude the proof of existence for q, r. 

As for uniqueness, suppose that 

f=<h9 + r1= q2g + r2 

with deg r1 < deg g and deg r2 < deg g. Subtracting yields 

(<?1 - <h)g = r2-ri. 

Since the leading coefficient of g is assumed to be a unit, we have 

deg(fli - q2)g = degtei - <?2) + deg gf. 

Since deg(r2 — r{) < deg g9 this relation can hold only if qi—q2 = 0, i*e. 
= q2, and hence finally r{ = r2 as was to be shown. 

Theorem 1.2. Let k be a field. Then the polynomial ring in one variable 

/c[A"] is principal. 
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Proof. Let a be an ideal of k[X~\, and assume a # 0. Let g be an 
element of a of smallest degree ^ 0. Let / be any element of a such that 
/ # 0. By the Euclidean algorithm we can find q, re fc[X] such that 

f=M + r 

and deg r < deg g. But r = f — qg, whence r is in a. Since g had minimal 
degree ^ 0 it follows that r = 0, hence that a consists of all polynomials qg 

(with q e /c[AT]). This proves our theorem. By Theorem 5.2 of Chapter II we 
get: 

Corollary 1.3. The ring k[X] is factorial. 

If k is a field then every non-zero element of k is a unit in k, and one sees 
immediately that the units of /c[2Q are simply the units of k. (No polyno¬ 
mial of degree ^ 1 can be a unit because of the addition formula for the 
degree of a product.) 

A polynomial f(X) e /c[2f] is called irreducible if it has degree ^ 1, and if 
one cannot write f(X) as a product 

f(X) = g(X)h(X) 

with g, h e k[X], and both g, h £ k. Elements of k are usually called constant 
polynomials, so we can also say that in such a factorization, one of g or h must 
be constant. A polynomial is called monic if it has leading coefficient 1. 

Let A be a commutative ring and f(X) a polynomial in A[Xf Let A be 
a subring of B. An element b e B is called a root or a zero of / in B if 
f(b) = 0. Similarly, if (2f) is an n-tuple of variables, an n-tuple (b) is called a 
zero of / if f(b) = 0. 

Theorem 1.4. Let k be a field and f a polynomial in one variable X in 

k\_X\ of degree n ^ 0. Then f has at most n roots in /c, and if a is a root 

of f in k, then X — a divides f(X). 

Proof. Suppose f(a) = 0. Find q, r such that 

f(X) = q(X)(X -a) A- r(X) 

and deg r < 1. Then 

0 =f(a) = r(a). 

Since r = 0 or r is a non-zero constant, we must have r = 0, whence X — a 

divides f(X). If al9am are distinct roots of / in k, then inductively we see 
that the product 

(X-aJ-'iX-aJ 
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divides f(X), whence m ^ n, thereby proving the theorem. The next corollaries 
give applications of Theorem 1.4 to polynomial functions. 

Corollary 1.5. Let k be a field and T an infinite subset of k. Let 
f(X) e k[X~\ be a polynomial in one variable. If f(a) = 0 for all a e T, then 
f = 0, i.e. f induces the zero function. 

Corollary 1.6. Let k be a field, and let Sl9 ..., Sn be infinite subsets of k. 

Let f(Xt,..., Xn) be a polynomial in n variables over k. If f(a{ ,...,an) = 0 
for all at e St (i = 1,..., n\ then f = 0. 

Proof. By induction. We have just seen the result is true for one 
variable. Let n ^ 2, and write 

f(xu...,x„) = Ydfi(xl,...,xn_i)xi 
j 

as a polynomial in Xn with coefficients in k{_Xl9..., Xn_f\. If there exists 

(bu...,b.-i)eSi x ••• x S„_, 

such that for some j we have fi(b1,..., bn-i) # 0, then 

f(bi9...9bn_l9Xn) 

is a non-zero polynomial in k^X^ which takes on the value 0 for the infinite 
set of elements Sn. This is impossible. Hence f induces the zero function on 
Si x • • • x Sn_i for all j, and by induction we have f = 0 for all j. Hence 
/ = 0, as was to be shown. 

Corollary 1.7. Let k be an infinite field and f a polynomial in n variables 
over k. If f induces the zero function on k{n\ then f = 0. 

We shall now consider the case of finite fields. Let k be a finite field with 
q elements. Let f(Xl9..., Xn) be a polynomial in n variables over k. Write 

f{xl9...9xn) = Y.“*)XV-"X:\ 

If a(v) # 0, we recall that the monomial M{v)(X) occurs in /. Suppose this is 
the case, and that in this monomial M{V)(X)9 some variable Xt occurs with an 
exponent ^ q. We can write 

X?* = X^\ p = integer ^ 0. 

If we now replace Xp by A/+1 in this monomial, then we obtain a new 
polynomial which gives rise to the same function as /. The degree of this 
new polynomial is at most equal to the degree of /. 
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Performing the above operation a finite number of times, for all the 
monomials occurring in / and all the variables Xl9 ..., Xn we obtain some 
polynomial /* giving rise to the same function as /, but whose degree in 
each variable is < q. 

Corollary 1.8. Let k be a finite field with q elements. Let f be a 
polynomial in n variables over k such that the degree of f in each variable 
is <q. Iff induces the zero function on kin\ then f = 0. 

Proof By induction. If n = 1, then the degree of / is < q, and hence / 
cannot have q roots unless it is 0. The inductive step is carried out just as 
we did for the proof of Corollary 1.6 above. 

Let / be a polynomial in n variables over the finite field k. A polynomial 
g whose degree in each variable is < q will be said to be reduced. We have 
shown above that there exists a reduced polynomial f* which gives the same 
function as / on k(n). Theorem 1.8 now shows that this reduced polynomial is 
unique. Indeed, if gl9 g2 are reduced polynomials giving the same function, 
then — g2 is reduced and gives the zero function. Hence gY — g2 = 0 and 

01 = 02* 

We shall give one more application of Theorem 1.4. Let k be a field. By 
a multiplicative subgroup of k we shall mean a subgroup of the group k* 
(non-zero elements of k). 

Theorem 1.9. Let k be a field and let U be a finite multiplicative sub¬ 
group of k. Then U is cyclic. 

Proof. Write U as a product of subgroups U(p) for each prime p, where 
U(p) is a p-group. By Proposition 4.3(vi) of Chapter I, it will suffice to prove 
that U(p) is cyclic for each p. Let a be an element of U(p) of maximal period 
pr for some integer r. Then xpr = 1 for every element x e U(p\ and hence all 
elements of U(p) are roots of the polynomial 

Xpr - 1. 

The cyclic group generated by a has pr elements. If this cyclic group is not 
equal to U(p\ then our polynomial has more than pr roots, which is 
impossible. Hence a generates U(p), and our theorem is proved. 

Corollary 1.10. If k is a finite field, then /c* is cyclic. 

An element £ in a field k such that there exists an integer n ^ 1 such that 
£" = 1 is called a root of unity, or more precisely an n-th root of unity. Thus 
the set of n-th roots of unity is the set of roots of the polynomial Xn — 1. 
There are at most n such roots, and they obviously form a group, which is 
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cyclic by Theorem 1.9. We shall study roots of unity in greater detail 
later. A generator for the group of n-th roots of unity is called a primitive 
n-th root of unity. For example, in the complex numbers, e2ni/n is a primi¬ 
tive n-th root of unity, and the n-th roots of unity are of type e2niv,n with 
1 ^ v ^ n. 

The group of roots of unity is denoted by p. The group of roots of unity 
in a field K is denoted by 

A field k is said to be algebraically closed if every polynomial in /c[AT] of 
degree ^ 1 has a root in k. In books on analysis, it is proved that the 
complex numbers are algebraically closed. In Chapter V we shall prove that 
a field k is always contained in some algebraically closed field. If k is 
algebraically closed then the irreducible polynomials in k[X] are the poly¬ 
nomials of degree 1. In such a case, the unique factorization of a polynomial 
/ of degree ^ 0 can be written in the form 

f(X) = C n (X - a,r 
1 = 1 

with c e k, c # 0 and distinct roots <xl9..., ocr. We next develop a test when 
> 1. 
Let A be a commutative ring. We define a map 

D: AlX]-> AIX] 

of the polynomial ring into itself. If f(X) = anXn + ••• + a0 with a{ e A, we 
define the derivative 

Df(X) =f'(X) = ^ vavXv_1 = na„Ar"_1 + ••• + at. 
v = l 

One verifies easily that if /, g are polynomials in A[X~\9 then 

(/ + 0)' = /' + 0', (fg)’ = f'g + fg\ 

and if a e A, then 

(afy = af. 

Let K be a field and / a non-zero polynomial in K[X]. Let a be a root 
of / in K. We can write 

f(X) = (X- a)mg(X) 

with some polynomial g(X) relatively prime to X — a (and hence such that 
g(a) # 0). We call m the multiplicity of a in /, and say that a is a multiple 
root if m > 1. 
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Proposition 1.11. Let K, / be as above. The element a of K is a multiple 
root of f if and only if it is a root and f'(a) = 0. 

Proof Factoring / as above, we get 

f'(X) = (X- a)mg'(X) + m(X - aT^g(X). 

If m > 1, then obviously f'(a) = 0. Conversely, if m = 1 then 

ff{X) = (X- a)g'(X) + g{X\ 

whence f'(a) = g(a) # 0. Hence if f'(a) = 0 we must have m > 1, as desired. 

Proposition 1.12. Let f e K[Xf If K has characteristic 0, and f has 
degree ^ 1, then f # 0. Let K have characteristic p > 0 and f have 
degree ^ 1. Then /' = 0 if and only if in the expression for f(X) given 

by 

/(X) = £ avX\ 
v = l 

p divides each integer v such that av ^ 0. 

Proof If K has characteristic 0, then the derivative of a monomial avXv 
such that v ^ 1 and av # 0 is not zero since it is vaxXv~l. If K has 
characteristic p > 0, then the derivative of such a monomial is 0 if and only if 
p|v, as contended. 

Let K have characteristic p > 0, and let / be written as above, and be 
such that f'(X) = 0. Then one can write 

d 

fix) = X b,x™ 
m=i 

with e K. 

Since the binomial coefficients 

see that if K has characteristic p, then for a, b e K we have 

are divisible by p for 1 ^ v ^ p — 1 we 

(a + b)p = ap + bp. 

Since obviously (ab)p = apbp, the map 

xi—>xp 

is a homomorphism of K into itself, which has trivial kernel, hence is 
injective. Iterating, we conclude that for each integer r ^ 1, the map x\-+xpV 
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is an endomorphism of X, called the Frobenius endomorphism. Inductively, if 
ccn are elements of X, then 

(ct +--- + cny = cf+ ••• + <£. 

Applying these remarks to polynomials, we see that for any element ae K 
we have 

(X - ^ = x^ - 

If ce K and the polynomial 

X^-c 

has one root a in X, then a1^ = c and 

X^ - c = (X - fljT 

Hence our polynomial has precisely one root, of multiplicity pr. For in¬ 
stance, (X - Yf = Xpr -1. 

§2. POLYNOMIALS OVER A FACTORIAL RING 

Let A be a factorial ring, and X its quotient field. Let a e X, a # 0. We 
can write a as a quotient of elements in A, having no prime factor in 
common. If p is a prime element of A, then we can write 

a = p% 

where b e X, r is an integer, and p does not divide the numerator or 
denominator of b. Using the unique factorization in A, we see at once that r 
is uniquely determined by a, and we call r the order of a at p (and write 
r = ordp a). If a = 0, we define its order at p to be oo. 

If a, a' e X and aa' # 0, then 

ordp(aa') = ordp a + ordp a'. 

This is obvious. 
Let /(X) e X[X] be a polynomial in one variable, written 

/(X) = a0 + axX + • * • + anXn. 

If / = 0, we define ordpf to be oo. If / # 0, we define ordp/ to be 
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ordp / = min ordp ah 

the minimum being taken over all those i such that a( # 0. 
If r = ordp f we call upr a p-content for /, if u is any unit of A. We define 

the content of / to be the product. 

n pordp/. 
the product being taken over all p such that ordp / # 0, or any multiple of 
this product by a unit of A. Thus the content is well defined up to 
multiplication by a unit of A. We abbreviate content by cont. 

If b e K, b # 0, then cont(bf) = b cont(/). This is clear. Hence we can 
write 

f(X) = c-MX) 

where c = cont(/), and ffX) has content 1. In particular, all coefficients of 
lie in A, and their g.c.d. is 1. We define a polynomial with content 1 to be 

a primitive polynomial. 

Theorem 2.1. (Gauss Lemma). Let A be a factorial ring, and let K be 
its quotient field. Let fige K{_X] be polynomials in one variable. Then 

cont(fg) = cont(/) cont(gf). 

Proof. Writing / = cfi and g = dgx where c = cont(/) and d = cont(g), 
we see that it suffices to prove: If /, g have content 1, then fg also has 
content 1, and for this, it suffices to prove that for each prime p, ordp(fg) = 0. 
Let 

f(X) = anXn + -- + a0, an*0, 

g(X) = bmXm-^-^b0, bm* 0, 

be polynomials of content 1. Let p be a prime of A. It will suffice to prove 
that p does not divide all coefficients of fg. Let r be the largest integer such 
that 0 ^ r ^ n, ar # 0, and p does not divide ar. Similarly, let bs be the 
coefficient of g farthest to the left, bs # 0, such that p does not divide bs. 
Consider the coefficient of Xr+S in f(X)g(X). This coefficient is equal to 

C ”1” ^r+l^s—1 T" 

+ ^r-l^s+l + **’ 

and p\arbs. However, p divides every other non-zero term in this sum since 
in each term there will be some coefficient at to the left of ar or some 
coefficient bj to the left of bs. Hence p does not divide c, and our lemma is 
proved. 
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We shall now give another proof for the key step in the above argument, 
namely the statement: 

If fg e A\_X~\ are primitive (i.e. have content 1) then fg is primitive. 

Proof. We have to prove that a given prime p does not divide all the 
coefficients of fg. Consider reduction mod p, namely the canonical homo¬ 
morphism A -► A/(p) = A. Denote the image of a polynomial by a bar, so 
/h->/ and g^g under the reduction homomorphism. Then 

jg=fg- 

By hypothesis, / # 0 and g # 0. Since A is entire, it follows that fg # 0, as 
was to be shown. 

Corollary 2.2. Let /(I)eA[I] have a factorization f(X) = g(X)h(X) in 
KlXl If cg = cont(p), ch = cont(h), and g = cggl9 h = chhi9 then 

f(X) = Cgc.g^h, (X)9 

and cgch is an element of A. In particular, if f g e A[X~\ have content 1, 
then he A[X] also. 

Proof. The only thing to be proved is cgch e A. But 

cont(/) = cont(gxht) = ctfch, 

whence our assertion follows. 

Theorem 2.3. Let A be a factorial ring. Then the polynomial ring A [X] 
in one variable is factorial. Its prime elements are the primes of A and poly¬ 
nomials in A[X] which are irreducible in K[X] and have content 1. 

Proof. Let /e A[X~\9 f ^ 0. Using the unique factorization in K[X~\ 
and the preceding corollary, we can find a factorization 

f(X) = c-Pl(X)--pr(X) 

where ce A, and pl9 ..., pr are polynomials in A[X~\ which are irreducible in 
K\_X~\. Extracting their contents, we may assume without loss of generality 
that the content of pt is 1 for each i. Then c = cont(/) by the Gauss lemma. 
This gives us the existence of the factorization. It follows that each pfX) is 
irreducible in A[X]. If we have another such factorization, say 

f(X) = dqi(X)-qs(X), 

then from the unique factorization in K[X~\ we conclude that r = s, and after 
a permutation of the factors we have 

Pi = Wi 
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with elements a{ e K. Since both ph q( are assumed to have content 1, it 
follows that cii in fact lies in A and is a unit. This proves our theorem. 

Corollary 2.4. Let A be a factorial ring. Then the ring of polynomials in 
n variables A\_Xl9..., Xn~\ is factorial. Its units are precisely the units of 
A, and its prime elements are either primes of A or polynomials which are 
irreducible in K\_X~\ and have content 1. 

Proof. Induction. 

In view of Theorem 2.3, when we deal with polynomials over a factorial 
ring and having content 1, it is not necessary to specify whether such 
polynomials are irreducible over A or over the quotient field K. The two 
notions are equivalent. 

Remark 1. The polynomial ring K[_XU..., Xn~] over a field K is not 
principal when n ^ 2. For instance, the ideal generated by Xi9..., Xn is not 
principal (trivial proof). 

Remark 2. It is usually not too easy to decide when a given polynomial 
(say in one variable) is irreducible. For instance, the polynomial X4 + 4 is 
reducible over the rational numbers, because 

X4 + 4 = (X2 - 2X + 2)(X2 + 2X 4- 2). 

Later in this book we shall give a precise criterion when a polynomial 
Xn — a is irreducible. Other criteria are given in the next section. 

§3. CRITERIA FOR IRREDUCIBILITY 

The first criterion is: 

Theorem 3.1. (Eisenstein’s Criterion). Let A be a factorial ring. Let K 
be its quotient field. Let f(X) = anXn + ••• + a0 be a polynomial of degree 
n ^ 1 in A[X~\. Let p be a prime of A, and assume: 

an^0 (mod p), at = 0 (mod p) for all i < n, 

a0 # 0 (mod p2). 

Then f(X) is irreducible in K[X~\. 
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Proof. Extracting a g.c.d. for the coefficients of /, we may assume 
without loss of generality that the content of / is 1. If there exists a 
factorization into factors of degree ^ 1 in K[X~\, then by the corollary of 
Gauss’ lemma there exists a factorization in A[X\ say f(X) = g(X)h(X), 

g(X) = bdXd + --- + b0i 

h(X) = cmXm + -- + c0, 

with d, m ^ 1 and bdcm # 0. Since b0c0 = a0 is divisible by p but not p2, it 
follows that one of b0, c0 is not divisible by p, say b0. Then p|c0. Since 
cmbd = an is not divisible by p, it follows that p does not divide cm. Let cr be 
the coefficient of h furthest to the right such that cr # 0 (mod p). Then 

ar = b0cr + blcr-1 + . 

Since p\b0cr but p divides every other term in this sum, we conclude that 
p\ar, a contradiction which proves our theorem. 

Example. Let a be a non-zero square-free integer # +1. Then for any 
integer n ^ 1, the polynomial Xn — a is irreducible over Q. The polynomials 
32T5 — 15 and 2X10 — 21 are irreducible over Q. 

There are some cases in which a polynomial does not satisfy Eisenstein’s 
criterion, but a simple transform of it does. 

Example. Let p be a prime number. Then the polynomial 

f(X) = Xp~1 +•••+ 1 

is irreducible over Q. 

Proof. It will suffice to prove that the polynomial f(X + 1) is irreducible 
over Q. We note that the binomial coefficients 

fp)= El 
\vj v!(p — v)f 

l^vgp-1, 

are divisible by p (because the numerator is divisible by p and the denomina¬ 
tor is not, and the coefficient is an integer). We have 

,,v , „_(*+l)p-l -X' + pX'-1 +--- + pX 

•/( + } (X + 1) - 1 X 

from which one sees that f(X + 1) satisfies Eisenstein’s criterion. 

Example. Let £ be a field and t an element of some field containing E such 
that t is transcendental over E. Let K be the quotient field of E[t]. 
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For any integer n ^ 1 the polynomial Xn — t is irreducible in K[X~\. This 
comes from the fact that the ring A = E[t] is factorial and that t is a prime 
in it. 

Theorem 3.2. (Reduction Criterion). Let A, B be entire rings, and let 

(p . A -+ B 

be a homomorphism. Let K, L be the quotient fields of A and B respec¬ 
tively. Let f e A [A"] be such that cpf # 0 and deg cpf = deg f. If cpf is 
irreducible in L[X\ then f does not have a factorization f(X) = g(X)h(X) 
with 

g, he A [Z] and deg g, deg h ^ 1. 

Proof. Suppose / has such a factorization. Then (pf = ((pg)((ph). Since 
deg cpg ^ deg g and deg (ph ^ deg b, our hypothesis implies that we must 
have equality in these degree relations. Hence from the irreducibility in 
L[X] we conclude that g or h is an element of A, as desired. 

In the preceding criterion, suppose that A is a local ring, i.e. a ring having 
a unique maximal ideal p, and that p is the kernel of cp. Then from the 
irreducibility of (pf in L\X~\ we conclude the irreducibility of / in A[X]. 
Indeed, any element of A which does not lie in p must be a unit in A, so our 
last conclusion in the proof can be strengthened to the statement that g or h 
is a unit in A. 

One can also apply the criterion when A is factorial, and in that case 
deduce the irreducibility of / in K[X~\. 

Example. Let p be a prime number. It will be shown later that 
Xp — X — 1 is irreducible over the field Z/pZ. Hence Xp — X — 1 is irreduc¬ 
ible over Q. Similarly, 

X5 - 5X* - 6X - 1 

is irreducible over Q. 

There is also a routine elementary school test whether a polynomial has a 
root or not. 

Proposition 3.3. (Integral Root Test). Let A be a factorial ring and K 
its quotient field. Let 

f(X) = anXn + --• + a0e A \_Xf 

Let oce K be a root of f with ot = b/d expressed with b, de A and b, d 
relatively prime. Then b\a0 and d\an. In particular, if the leading coefficient 
an is 1, then a root ot must lie in A and divides a0. 
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We leave the proof to the reader, who should be used to this one from way 
back. As an irreducibility test, the test is useful especially for a polynomial of 
degree 2 or 3, when reducibility is equivalent with the existence of a root in 
the given field. 

§4. HILBERT'S THEOREM 

This section proves a basic theorem of Hilbert concerning the ideals of a 
polynomial ring. We define a commutative ring A to be Noetherian if every 
ideal is finitely generated. 

Theorem 4.1. Let A be a commutative Noetherian ring. Then the polyno¬ 
mial ring A[X] is also Noetherian. 

Proof. Let 91 be an ideal of A[X]. Let at consist of 0 and the set of elements 
a El A appearing as leading coefficient in some polynomial 

a0 + axX + ••• + aX * 

lying in 81. Then it is clear that a, is an ideal. (If a, b are in af, then a ± b is 
in a, as one sees by taking the sum and difference of the corresponding 
polynomials. If x e A, then xa e a, as one sees by multiplying the corre¬ 
sponding polynomial by x.) Furthermore we have 

a0 c aj c a2 c ••*, 

in other words, our sequence of ideals {aj is increasing. Indeed, to see this 
multiply the above polynomial by X to see that a e ai+l. 

By criterion (2) of Chapter X, §1, the sequence of ideals {aj stops, say at 
ar: 

a0 c ax c a2 c c ar = ar+1 = • • •. 

Let 

a0a0no be generators for a0, 

arl,..., arny be generators for ar. 

For each i = 0, ..., r and j = 1, ..., n{E let f{j be a polynomial in 81, of degree 
U with leading coefficient aVy We contend that the polynomials ftj are a set 
of generators for 81. 

Let / be a polynomial of degree d in 81. We shall prove that / is in the 
ideal generated by the fip by induction on d. Say d ;> 0. If d > r, then we 
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note that the leading coefficients of 

vd—rf yd-rf 
A Jr 1> •••> A Jrnr 

generate ad. Hence there exist elements ct, ...,cn e A such that the 
polynomial 

/ - Clxd~rfrl - • • • - cnXd~rfrnr 

has degree <d, and this polynomial also lies in 91. If d ^ r, we can subtract 
a linear combination 

/ ™ Clfdl “ * “ “ Cnjdnd 

to get a polynomial of degree < d, also lying in 21. We note that the 
polynomial we have subtracted from / lies in the ideal generated by the ftj. 

By induction, we can subtract a polynomial g in the ideal generated by the 
fj such that / — g = 0, thereby proving our theorem. 

We note that if cp\ A -► B is a surjective homomorphism of commutative 
rings and A is Noetherian, so is B. Indeed, let b be an ideal of B, so <p_1(b) 
is an ideal of A. Then there is a finite number of generators (au . . . , an) for 
<p-1(b), and it follows since <p is surjective that b = <p(<p_1(b)) is generated by 

..., as desired. As an application, we obtain: 

Corollary 4.2. Let A be a Noetherian commutative ring, and let B = 

A[xl9 ... , xm] be a commutative ring finitely generated over A. Then B is 

Noetherian. 

Proof. Use Theorem 4.1 and the preceding remark, representing B as a 
factor ring of a polynomial ring. 

Ideals in polynomial rings will be studied more deeply in Chapter IX. 
The theory of Noetherian rings and modules will be developed in Chapter X. 

§5. PARTIAL FRACTIONS 

In this section, we analyze the quotient field of a principal ring, using the 
factoriality of the ring. 

Theorem 5.1. Let A be a principal entire ring, and let P be a set of 

representatives for its irreducible elements. Let K be the quotient field of 

A, and let cue K. For each pe P there exists an element ocp e A and an 

integer j(p) ^ 0, such that j(p) = 0 for almost all p e P, ocp and pjip) are 
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relatively prime, and 

V 

If we have another such expression 

— V 
a " L ni(p)’ 

peP P 

then j(p) = i(p) for all p, and otp = pp mod pjip) for all p. 

Proof. We first prove existence, in a special case. Let a, b be rela¬ 
tively prime non-zero elements of A. Then there exists x, y e A such that 
xa + yb = 1. Hence 

1 x y 

ab b a' 

Hence any fraction c/ab with ce A can be decomposed into a sum of two 
fractions (namely cx/b and cy/a) whose denominators divide b and a respec¬ 
tively. By induction, it now follows that any cue K has an expression as 
stated in the theorem, except possibly for the fact that p may divide ap. 
Canceling the greatest common divisor yields an expression satisfying all the 
desired conditions. 

As for uniqueness, suppose that a has two expressions as stated in the 
theorem. Let q be a fixed prime in P. Then 

^q Pq   y Pp ^p 

n j(q) ni(Q) ~~ L* ni(p) nj(p)' 
H H P*q P P 

If j(<l) = i(4) = 0, our conditions concerning q are satisfied. Suppose one of 
j(q) or i(q) > 0, say j(q\ and say j(q) ^ i(q). Let d be a least common multiple 
for all powers pj(p) and pl{p) such that p # q. Multiply the above equation by 
dqm. We get 

d(<xq - qj{q)~mpq) = qj(q)P 

for some P e A. Furthermore, q does not divide d. If i(q) < j(q) then q 
divides ocq9 which is impossible. Hence i(q) = j(q). We now see that qm 
divides ocq — Pq, thereby proving the theorem. 

We apply Theorem 5.1 to the polynomial ring k[X~\ over a field k. We 
let P be the set of irreducible polynomials, normalized so as to have leading 
coefficient equal to 1. Then P is a set of representatives for all the irreduc¬ 
ible elements of k[X']. In the expression given for a in Theorem 5.1, we can 
now divide ap by pj{p\ i.e. use the Euclidean algorithm, if deg ap ^ deg pjip). 
We denote the quotient field of /c[X] by k(X)9 and call its elements rational 
functions. 
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Theorem 5.2. Let A = k[X~\ be the polynomial ring in one variable over a 
field k. Let P be the set of irreducible polynomials in k\_X~\ with leading 
coefficient 1. Then any element f of k(X) has a unique expression 

/W = p?Pp§^ + 3W’ 
where fp, g are polynomials, fp = 0 if j(p) = 0, fp is relatively prime to p if 

j(p) > 0, and deg fp < deg pjip) if j(p) > 0. 

Proof The existence follows at once from our previous remarks. The 
uniqueness follows from the fact that if we have two expressions, with 
elements fp and <pp respectively, and polynomials g, h, then pAp) divides 
fP ~ whence fp- <pp = 0, and therefore fp = <pp, g = h. 

One can further decompose the term fp/pAp) by expanding fp according to 
powers of p. One can in fact do something more general. 

Theorem 5.3. Let k be a field and k\_X] the polynomial ring in one 
variable. Let fge /c[X\ and assume deg g ^ 1. Then there exist unique 
polynomials 

such that deg f < deg g and such that 

f = fo + /i 9 + “ * + fd9d- 

Proof. We first prove existence. If deg g > deg f then we take f0 = / 
and f = 0 for i > 0. Suppose deg g ^ deg /. We can find polynomials q, r 
with deg r < deg g such that 

f =99 +r, 

and since deg ^ 1 we have deg q < deg /. Inductively, there exist polyno¬ 
mials h0, hl9hs such that 

q = h0 + htg + ■■■ + hsgs, 

and hence 

f = r + h0g + ■■■ + hsgs+1, 

thereby proving existence. 
As for uniqueness, let 

/ = fo + fi9 + *** + fd9d = <Po + <P\9 H-+ <Pm9m 

be two expressions satisfying the conditions of the theorem. Adding terms 
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equal to 0 to either side, we may assume that m = d. Subtracting, we get 

0 = (/o “ <Po) + ‘ * * + (fd — <Pd)Qd- 

Hence g divides f0- <p0, and since deg(/0 - (p0) < deg g we see that f0 = cp0. 
Inductively, take the smallest integer i such that / # q>t (if such i exists). 
Dividing the above expression by gl we find that g divides /• — <pf and hence 
that such i cannot exist. This proves uniqueness. 

We shall call the expression for / in terms of g in Theorem 5.3 the g-adic 
expansion of /. If g(X) = X, then the p-adic expansion is the usual expres¬ 
sion of / as a polynomial. 

Remark. In some sense, Theorem 5.2 redoes what was done in Theorem 
8.1 of Chapter I for Q/Z; that is, express explicitly an element of K/A as a 
direct sum of its p-components. 

§6. SYMMETRIC POLYNOMIALS 

Let A be a commutative ring and let tl9...9tn be algebraically indepen¬ 
dent elements over A. Let X be a variable over A[ti9...9 tn]. We form the 
polynomial 

F(X) = (X-tl)--(X-tn) 

= Xn-SlXn~l +■•■ + (- \)\9 

where each = st(tl9..., tn) is a polynomial in tl9..., tn. Then for instance 

si = tx + • • • -f tn and sn = • • • tn. 

The polynomials sl9 ..., sn are called the elementary symmetric polynomials 
of 11,..., tn. 

We leave it as an easy exercise to verify that st is homogeneous of degree i 
in fj,..., tn. 

Let a be a permutation of the integers (1, ...,n). Given a polynomial 
f(t) e A[t] = A[tx,..., rj, we define cr/to be 

• • • » ^cr(n))* 

If cr, r are two permutations, then err/ = cr(r/) and hence the symmetric group 
G on n letters operates on the polynomial ring A[t]. A polynomial is called 
symmetric if cr/ = / for all cr e G. It is clear that the set of symmetric 
polynomials is a subring of A\t\9 which contains the constant polynomials 
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(i.e. A itself) and also contains the elementary symmetric polynomials s1?...,sn. 
We shall see below that A[s1?sn] is the ring of symmetric polynomials. 

Let Xl9...9Xn be variables. We define the weight of a monomial 

*iVi •••*;- 

to be Vj + 2v2 + •• + nv„. We define the weight of a polynomial 
g(Xi9..., Xn) to be the maximum of the weights of the monomials occurring 
in g. 

Theorem 6.1. Let fit) e A[tl9 ...,tM] be symmetric of degree d. Then 
there exists a polynomial g(Xi9..., Xn) of weight ^ d such that 

fit) = g{sl9...,s„). 

Proof By induction on n. The theorem is obvious if n = 1, because 
Si = tx. 

Assume the theorem proved for polynomials in n — 1 variables. 
If we substitute tn = 0 in the expression for F(X), we find 

(X-tl)--(X- tn-X)X = xn- (sx).oX"-1 + ••• + (-1 y-'iSn-M 

where (s^q is the expression obtained by substituting tn = 0 in sf. We see 
that (sJq, are precisely the elementary symmetric polynomials in 

11»• • • > tfi i • 
We now carry out induction on d. If d = 0, our assertion is trivial. 

Assume d > 0, and assume our assertion proved for polynomials of degree 
< d. Let /(tj,..., t„) have degree d. There exists a polynomial 
gi(Xl9..., Xn_Y) of weight ^ d such that 

fiti > • • • > t,,_i, 0) = g{ ((Si )0> • • • 9 (s«-1 )o)* 

We note that gfsl9..., sn_!) has degree ^ d in tl9..., tn. The polynomial 

f\(h>--->tn) = f(tl9...9tn) -g1{sl9...9sn.i) 

has degree ^ d (in tl9..., tn) and is symmetric. We have 

/1(t1,...,tn_1,0) = 0. 

Hence fl is divisible by tn, i.e. contains tn as a factor. Since /x is symmetric, 
it contains t{ • • • tn as a factor. Hence 

fl = s„f2(tu...,tn) 

for some polynomial /2, which must be symmetric, and whose degree is 
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^d — n <d. By induction, there exists a polynomial g2 in n variables and 
weight ^d — n such that 

f2(tu--,tn) = 92(s1,...,sn). 
We obtain 

fit) = G\ (^l 9 •••> ^n-l ) •”) 

and each term on the right has weight ^ d. This proves our theorem. 

We shall now prove that the elementary symmetric polynomials s1,...,sn 
are algebraically independent over A. 

If they are not, take a polynomial f(Xl9..., Xn) e A [A"] of least degree 
and not equal to 0 such that 

/(«i> • • • > $n) = 0. 

Write / as a polynomial in Xn with coefficients in A{_Xi9 ..., Xn-{]9 

nx 1,..., X„) = /„(*!..... Jf.-, ) + )^. 

Then /0 # 0. Otherwise, we can write 

f(X) = *.*(*) 

with some polynomial ip, and hence sn^(sl5..., s„) = 0. From this it follows 
that ^(sl5..., s„) = 0, and ip has degree smaller than the degree of /. 

We substitute sf for X{ in the above relation, and get 

0 = f0(s1Sn—i) + • • • + fd(si, ■ • •, S„-, )si. 

This is a relation in A[tl9...9 tn], and we substitute 0 for tn in this relation. 
Then all terms become 0 except the first one, which gives 

0 = /o((si)o> •»(sn-i)o)> 

using the same notation as in the proof of Theorem 6.1. This is a non-trivial 
relation between the elementary symmetric polynomials in tl9...9tn_l9 a 
contradiction. 

Example. (The Discriminant). Let f(X) = (X — t1) ••• (X — tn). Con¬ 
sider the product 

s(t)=n (ff - tj)- 
i<j 

For any permutation a of (1,..., n) we see at once that 

S°(t)= ±<5(t). 
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Hence d(t)2 is symmetric, and we call it the discriminant: 

Df = D(S1,..., sB) = n (ti - tj)2- 
i<j 

We thus view the discriminant as a polynomial in the elementary symmetric 
functions. For a continuation of the general theory, see §8. We shall now 
consider special cases. 

Quadratic case. You should verify that for a quadratic polynomial 
f(X) = X2 + bX + c, one has 

D = b2 — 4c. 

Cubic case. Consider f(X) = X3 + aX + b. We wish to prove that 

D = —4a3 — 21b2. 

Observe first that D is homogeneous of degree 6 in tl9 t2. Furthermore, a is 
homogeneous of degree 2 and b is homogeneous of degree 3. By Theorem 
6.1 we know that there exists some polynomial g(X2,X3) of weight 6 such 
that D = g(a, b). The only monomials X^X” of weight 6, i.e. such that 
2m + 3n = 6 with integers m, n ^ 0, are those for which m = 3, n = 0, or 
m = 0 and n = 2. Hence 

g(X2, x3) = vXl + wY32 

where v, w are integers which must now be determined. 
Observe that the integers v, w are universal, in the sense that for any 

special polynomial with special values of a, b its discriminant will be given 
by g(a, b) = va3 -f wb2. 

Consider the polynomial 

MX) = X(X - l)(X + 1) = Y3 - X. 

Then a = — 1, b — 0, and D = —va3 = —v. But also D = 4 by using the 
definition of the discriminant of the product of the differences of the roots, 
squared. Hence we get v = — 4. Next consider the polynomial 

MX) = x3-\. 

Then a = 0, b = —1, and D = 2b2 = w. But the three roots of f2 are the 
cube roots of unity, namely 

, -i+>/=3 -i-y=3 
’ 2 ’ 2 

Using the definition of the discriminant we find the value D = —27. Hence 
we get w = — 27. This concludes the proof of the formula for the dis¬ 
criminant of the cubic when there is no X2 term. 
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In general, consider a cubic polynomial 

f(X) = X3-SlX2 + s2X - s3 == (X - tt)(X - t2)(X - t3). 

We find the value of the discriminant by reducing this case to the simpler 
case when there is no X2 term. We make a translation, and let 

y = x-is1 so a:= y + is, = y + i(t!+ t2 + t3). 

Then f(X) becomes 

f(X) = f*(Y) = Y3 + aY + b = (Y - u1)(T - u2)(Y - u3), 

where a = u1u2 + u2u3 + 1/^3 and b = —ulu2u3, while ux + w2 -f u3 = 0. 
We have 

Ui = tt — ^ for i = 1, 2, 3, 

and ut — Uj = — tj for all i # j, so the discriminant is unchanged, and you 
can easily get the formula in general. Do Exercise 12(b). 

§7. MASON-STOTHERS THEOREM AND THE 
abc CONJECTURE 

In the early 80s a new trend of thought about polynomials started with the 
discovery of an entirely new relation. Let f(t) be a polynomial in one variable 
over the complex numbers if you wish (an algebraically closed field of charac¬ 
teristic 0 would do). We define 

n0(f) = number of distinct roots of /. 

Thus n0(f) counts the zeros of / by giving each of them multiplicity 1, and 
n0(f) can be small even though deg / is large. 

Theorem 7.1 (Mason-Stothers, [Mas 84], [Sto 81]). Let a(t), b(t), c(t) be 
relatively prime polynomials such that a + b = c. Then 

maxdeg{a, b, c} ^ no(abc) - 1. 

Proof. (Mason) Dividing by c, and letting / = a/c, g = b/c we have 

/ + G = 1, 

where /, g are rational functions. Differentiating we get f' + g' = 0, which 
we rewrite as 
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SO that 

a f g'/g' 

Let 

«(t)=ci n =c2 n (f - pjfj> c(t)=c3 n (t - y*y*- 

Then by calculus algebraicized in Exercise 11 (c), we get 

y y rk 

b= /'//_ Lt-a, L t - yk 

& 9 19 y tlj   y 

L t - Pj Lt-yk 

A common denominator for /'// and g'/g is given by the product 

whose degree is n0(abc). Observe that N0f'/f and N0g'/g are both polyno¬ 
mials of degrees at most n0(abc) — 1. From the relation 

b _ NJ'/f 

a N0 g'/g 

and the fact that a,, b are assumed relatively prime, we deduce the inequality 
in the theorem. 

As an application, let us prove Fermat’s theorem for polynomials. Thus 
let x(t), y(t), z(t) be relatively prime polynomials such that one of them has 
degree ^ 1, and such that 

x(t)n 4- y(t)n = z(t)n. 

We want to prove that n ^ 2. By the Mason-Stothers theorem, we get 

n deg x = deg x(t)n ^ deg x(t) -f deg y(t) + deg z(t) — 1, 

and similarly replacing x by y and z on the left-hand side. Adding, we find 

n(deg x + deg y + deg z) ^ 3(deg x 4- deg y 4- deg z) — 3. 

This yields a contradiction if n ^ 3. 
As another application in the same vein, one has: 

Davenport’s theorem. Let /, g be non-constant polynomials such that 
f3 — g2 # 0. Then 

deg{f3 - g2) ^ jdegf- 1. 

See Exercise 13. 
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One of the most fruitful analogies in mathematics is that between the 
integers Z and the ring of polynomials F[f] over a field F. Evolving from 
the insights of Mason [Ma 84], Frey [Fr 87], Szpiro, and others, Masser and 
Oesterle formulated the abc conjecture for integers as follows. Let m be a 
non-zero integer. Define the radical of m to be 

N0{m) = [] P. 
p\m 

i.e. the product of all the primes dividing m, taken with multiplicity 1. 

The abc conjecture. Given e > 0, there exists a positive number C(e) having 
the following property. For any non-zero relative prime integers a, h, c 
such that a + b = c, we have 

max(|a|, \b\, |c|) g C(s)N0(abc)1+e. 

Observe that the inequality says that many prime factors of a, b, c occur to 
the first power, and that if “small” primes occur to high powers, then they 
have to be compensated by “large” primes occurring to the first power. For 
instance, one might consider the equation 

2" ± 1 =m. 

For m large, the abc conjecture would state that m has to be divisible by 
large primes to the first power. This phenomenon can be seen in the tables 
of [BLSTW 83]. 

Stewart-Tijdeman [ST 86] have shown that it is necessary to have the e in 
the formulation of the conjecture. Subsequent examples were communicated to 
me by Wojtek Jastrzebowski and Dan Spielman as follows. 

We have to give examples such that for all C > 0 there exist natural 
numbers a, 6, c relatively prime such that a + b = c and \a\> CN0(abc). But 
trivially, 

2"|(32" - 1). 

We consider the relations an + bn = cn given by 

32" — 1 = c„. 

It is clear that these relations provide the desired examples. Other examples 
can be constructed similarly, since the role of 3 and 2 can be played by other 
integers. Replace 2 by some prime, and 3 by an integer = 1 mod p. 

The abc conjecture implies what we shall call the 

Asymptotic Fermat Theorem. For all n sufficiently large, the equation 

xn + yn = zn 

has no solution in relatively prime integers # 0. 
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The proof follows exactly the same pattern as for polynomials, except 
that we write things down multiplicatively, and there is a 1 + e floating 
around. The extent to which the abc conjecture will be proved with an 
explicit constant C(e) (or say C(l) to fix ideas) yields the corresponding 
explicit determination of the bound for n in the application. We now go into 
other applications. 

Hall’s conjecture [Ha 71]. If u, v are relatively prime non-zero integers 
such that u3 — v2 # 0, then 

\u3 — v2\ » |u|1/2-c. 

The symbol » means that the left-hand side is ^ the right-hand side times a 
constant depending only on e. Again the proof is immediate from the abc 
conjecture. Actually, the hypothesis that u, v are relatively prime is not 
necessary; the general case can be reduced to the relatively prime case by 
extracting common factors, and Hall stated his conjecture in this more 
general way. However, he also stated it without the epsilon in the exponent, 
and that does not work, as was realized later. As in the polynomial case, 
Hall’s conjecture describes how small |u3 — v2\ can be, and the answer is not 
too small, as described by the right-hand side. 

The Hall conjecture can also be interpreted as giving a bound for integral 
relatively prime solutions of 

v2 = u3 + b with integral b. 

Then we find 
\u\ « \b\2+e. 

More generally, in line with conjectured inequalities from Lang-Waldschmidt 
[La 78], let us fix non-zero integers A, B and let u, v, fc, m, n be variable, 
with u, v relatively prime and mv > m + n. Put 

Aum + Bvn = k. 

By the abc conjecture, one derives easily that 

(1) |«| « N0(k)mn-™m+n>< 1 +e) and |v| « N0(/c)m"“”'"+n)< 1 +£). 

From this one gets 

\k\ « N0(k)mn""'+n)il+c). 

The Hall conjecture is a special case after we replace N0(k) with |fc|, because 

AW*) ^14 
Next take m = 3 and n = 2, but take A = 4 and B = — 27. In this case 

we write 

D = 4u3 — llv2 
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and we get 

(2) |m| «N0(D)2+e and \v\«N0(D)3+e. 

These inequalities are supposed to hold at first for u, v relatively prime. 
Suppose we allow u, v to have some bounded common factor, say d. Write 

u = u'd and v = v'd 

with u\ v' relatively prime. Then 

D = 4d3u’3 - 21d2v'2. 

Now we can apply inequality (1) with A = 4d3 and B = —lid2, and we find 
the same inequalities (2), with the constant implicit in the sign « depending 
also on d, or on some fixed bound for such a common factor. Under these 
circumstances, we call inequalities (2) the generalized Szpiro conjecture. 

The original Szpiro conjecture was stated in a more sophisticated situa¬ 
tion, cf. [La 90] for an exposition, and Szpiro’s inequality was stated in the 
form 

|D|«N(D)6+£, 

where N(D) is a more subtle invariant, but for our purposes, it is sufficient 
and much easier to use the radical N0(D). 

The point of D is that it occurs as a discriminant. The trend of thoughts 
in the direction we are discussing was started by Frey [Fr 87], who asso¬ 
ciated with each solution of a + b = c the polynomial 

x(x — a)(x -f b), 

which we call the Frey polynomial. (Actually Frey associated the curve 
defined by the equation y2 = x(x — a)(x -f b), for much deeper reasons, but 
only the polynomial on the right-hand side will be needed here.) The 
discriminant of the polynomial is the product of the differences of the roots 
squared, and so 

D = (abc)2. 

We make a translation 

„ b — a 

to get rid of the x2-term, so that our polynomial can be rewritten 

£3- 72^-73, 

where y29 y3 are homogeneous in a, b of appropriate weight. The dis¬ 
criminant does not change because the roots of the polynomial in £ are 
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translations of the roots of the polynomial in x. Then 

D = 4yi - 21yl 

The translation with (b — a)/3 introduces a small denominator. One may 
avoid this denominator by using the polynomial x(x — 3a) (x — 3b), so that 
y2, y3 then come out to be integers, and one can apply the generalized Szpiro 
conjecture to the discriminant, which then has an extra factor D = 36(abc)2. 

It is immediately seen that the generalized Szpiro conjecture implies 
asymptotic Fermat. Conversely: 

Generalized Szpiro implies the abc conjecture. 

Indeed, the correspondence (a, b)<-+(y2, y3) is invertible, and has the “right” 
weight. A simple algebraic manipulation shows that the generalized Szpiro 
estimates on y2, y3 imply the desired estimates on \a\, \b\. (Do Exercise 14.) 
From the equivalence between abc and generalized Szpiro, one can use the 
examples given earlier to show that the epsilon is needed in the Szpiro 
conjecture. 

Finally, note that the polynomial case of the Mason-Stothers theorem and 
the case of integers are not independent, or specifically the Davenport theorem 
and Hall’s conjecture are related. Examples in the polynomial case parametrize 
cases with integers when we substitute integers for the variables. Such examples 
are given in [BCHS 65], one of them (due to Birch) being 

fit) = t6 + 414 + 10f2 -f 6 and g(t) = t9 + 611 + 2\t5 + 3513 + ^t, 

whence 

deg(/(f)3 - g(t)2) = I deg / + 1. 

This example shows that Davenport’s inequality is best possible, because the 
degree attains the lowest possible value permissible under the theorem. 
Substituting large integral values of t = 2 mod 4 gives examples of similarly 
low values for x3 — y2. For other connections of all these matters, cf. [La 90]. 
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§8. THE RESULTANT 

In this section, we assume that the reader is familiar with determinants. 
The theory of determinants will be covered later. The section can be viewed 
as giving further examples of symmetric functions. 

Let A be a commutative ring and let v0,...9vn9 w0, ...,wm be alge¬ 
braically independent over A. We form two polynomials: 

fv(X) = v0 Xn + 

gw(X) = w0Xm + ••• + wm. 

We define the resultant of (v, w), or of /„, gw, to be the determinant 

m + n 

The blank spaces are supposed to be filled with zeros. 
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If we substitute elements (a) = (a0, ...,#„) and (b) = (b0,.bm) in A for 
(v) and (w) respectively in the coefficients of fv and gw, then we obtain 
polynomials fa and gb with coefficients in A, and we define their resultant to 
be the determinant obtained by substituting (a) for (v) and (b) for (w) in the 
determinant. We shall write the resultant of fv9 gw in the form 

Res(/„, gj or R(v, w). 

The resultant Res(/„, gb) is then obtained by substitution of (a), (b) for (t>), (w) 
respectively. 

We observe that R(v9 w) is a polynomial with integer coefficients, i.e. we 
may take A = Z. If z is a variable, then 

R(zv, w) = zmR(v, w) and R(v, zw) = znR(v, w) 

as one sees immediately by factoring out z from the first m rows (resp. the 
last n rows) in the determinant. Thus R is homogeneous of degree m in its 
first set of variables, and homogeneous of degree n in its second set of 
variables. Furthermore, R(v, w) contains the monomial 

VoK 

with coefficient 1, when expressed as a sum of monomials. 

If we substitute 0 for v0 and w0 in the resultant, we obtain 0, because the 
first column of the determinant vanishes. 

Let us work over the integers Z. We consider the linear equations 

X^UX) = v0xn+m- 

xm~2L(X) = 

1 + viXn+m-2 +■■■ 

v0Xn+m~2 +••• 

+ 

+ vnXm-2 

L(X) = o
 3 

+ v„ 

X'-'gJX) = w0Xn+m- -1+wlXn+m-2 + ••• + w^"-1 

Xn~2gw(X) = w0Arn+m-2 + ••• + wmX"-2 

gjx) = w0Xm + ... + wm 

Let C be the column vector on the left-hand side, and let 

Co, • • •, Cm+„ 

be the column vectors of coefficients. Our equations can be written 

c = xn+m~1c0 + • • • + 1 • Cm+n. 

By Cramer’s rule, applied to the last coefficient which is = 1, 

R(v9 w) = det(C0,..., Cm+n) = det(C0,..., Cm+n_j, C). 
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From this we see that there exist polynomials <pv w and ij/VtW in Z[u, w][A"] 
such that 

<P,v,wfv + 'I'v.wdw = R(vyw) = Res (fV9fw). 

Note that R(v, w) e Z[u, w] but that the polynomials on the left-hand side 
involve the variable X. 

If A: Z[v, w] -► A is a homomorphism into a commutative ring A and we 
let A(v) = (a), A(w) = (b), then 

<Pa,bfa + 4>a,b9b = K(«, *>) = Res(/a, /fc). 

Thus from the universal relation of the resultant over Z we obtain a similar 
relation for every pair of polynomials, in any commutative ring A. 

Proposition 8.1. Let K be a subfield of a field L, and let fa, gb be 
polynomials in K[X] having a common root £ in L. Then R(a, b) = 0. 

Proof. If /a(£) = = 0, then we substitute £ for X in the expression 
obtained for R(a, b) and find R(a, b) = 0. 

Next, we shall investigate the relationship between the resultant and the 
roots of our polynomials fv9 gw. We need a lemma. 

Lemma 8.2. Let h(Xl9..., Xn) be a polynomial in n variables over the 
integers Z. If h has the value 0 when we substitute X1 for X2 and leave 
the other Xt fixed (i ^ 2), then h(Xx,..., Xn) is divisible by XY — X2 in 

Proof Exercise for the reader. 

Let v0, tl9 ..., tn, w0, ui9 ..., um be algebraically independent over Z and 
form the polynomials 

L = v0(X - tx) •••(*- tn) = UqA"” + ••• + n., 

gw = w0(X - Ui) ■ ■ ■ (X - um) = w0Xm + • • • + wm. 

Thus we let 

Vi = (~ 1 yv0Si(t) and Wj = (- iyw0S;(u). 

We leave to the reader the easy verification that 

V0, Vi9 ..., !?„, W0, Wj, ..., wm 

are algebraically independent over Z. 

Proposition 8.3. Notation being as above, we boi;e 

Res^, gj = vSw£ fj ft (t, - u,). 
i=i j=i 
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Proof. Let S be the expression on the right-hand side of the equality in 
the statement of the proposition. 

Since R(v, w) is homogeneous of degree m in its first variables, and 
homogeneous of degree n in its second variables, it follows that 

R = v%w£h(t, u) 

where h(t, u) e Z[t, u]. By Proposition 8.1, the resultant vanishes when we 
substitute t( for Uj (i = 1,..., n and j = 1,..., m), whence by the lemma, view¬ 
ing R as an element of Z[i?0, w0, t, u] it follows that R is divisible by t( - Uj 
for each pair (ij). Hence S divides R in Z[y09 w0, r, u], because tt — Uj is 
obviously a prime in that ring, and different pairs (ij) give rise to different 
primes. 

From the product expression for S, namely 

(1) ^=vgwg fi ft (h - uj)> 
i=i j=i 

we obtain 
n n m 

n d(ti)=< n n (fi - «*)> 
i=1 i=l j=1 

whence 

(2) S = ^n 9(ti). 
i=l 

Similarly, 

(3) s = (-irmwsYlnuj). 
j=i 

From (2) we see that S is homogeneous and of degree n in (w), and from (3) 
we see that S is homogeneous and of degree m in (v). Since R has exactly the 
same homogeneity properties, and is divisible by S, it follows that R = cS for 
some integer c. Since both R and S have a monomial v™w„ occurring in 
them with coefficient 1, it follows that c = 1, and our proposition is proved. 

We also note that the three expressions found for S above now give us a 
factorization of R. We also get a converse for Proposition 8.1. 

Corollary 8.4. Let /fl, gb be polynomials with coefficients in a field K, such 
that a0b0 # 0, and such that /a, gb split in factors of degree 1 in K[X~\. 
Then Res(/fl, gb) — 0 if and only if fa and gb have a root in common. 

Proof. Assume that the resultant is 0. If 

fa = a0(X-«l)'-(X-oin\ 

gb = b0(X-^)---(X-pn), 

is the factorization of fa, gb, then we have a homomorphism 
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Z[r0, t, w0, u] -+ K 

such that (;0i—>a0, w0i—>b0, f;i—> aj, and Uj >—> for all i,j. Then 

0 = Res(/a, gb) = a[f[ 11 («< - ft). 
i j 

whence /a, /5 have a root in common. The converse has already been 
proved. 

We deduce one more relation for the resultant in a special case. Let fv be 
as above, 

fv(X) = v0Xn + ••• + = v0(X - tx) ••• (X - tn). 

From (2) we know that if /„' is the derivative of fv, then 

(4) Res(/„,/;)=»rn/'('.)• 
i 

Using the product rule for differentiation, we find: 

fv(X) = X v0(X -tl)-(X-tt)-~(X- tn), 
i 

fM = v0(ti 1,) • (r, — tn). 

where a roof over a term means that this term is to be omitted. 
We define the discriminant of fv to be 

D(fv) = D(V) = (- 1 r(n-mv2n-2 n {ti _ tjy 

i*j 

Proposition 8.5. Let fv be as above and have algebraically independent 
coefficients over Z. Then 

(5) Res(/„, /„') = v20"~l n (U - h) = (-1 r(n-l)l2v0D(fv). 
i*j 

Proof. One substitutes the expression obtained for /J(t4) into the prod¬ 
uct (4). The result follows at once. 

When we substitute 1 for v0, we find that the discriminant as we defined 
it in the preceding section coincides with the present definition. In particular, 
we find an explicit formula for the discriminant. The formulas in the special 
case of polynomials of degree 2 and 3 will be given as exercises. 

Note that the discriminant can also be written as the product 

d(q=vin~2 n (t.- - h)2. 
i<j 

Serre once pointed out to me that the sign ( —l)^n_1)/2 was missing in the 
first edition of this book, and that this sign error is quite common in the 
literature, occurring as it does in van der Waerden, Samuel, and Hilbert (but 
not in his collected works, corrected by Olga Taussky); on the other hand 
the sign is correctly given in Weber’s Algebra, Vol. I, 50. 

For a continuation of this section, see Chapter IX, §3 and §4. 
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§9. POWER SERIES 

Let A" be a letter, and let G be the monoid of functions from the set {X} 
to the natural numbers. If v e N, we denote by Av the function whose value 
at X is v. Then G is a multiplicative monoid, already encountered when we 
discussed polynomials. Its elements are X°, X\ X2,..., Xv,_ 

Let A be a commutative ring, and let A [[A"]] be the set of functions 
from G into A, without any restriction. Then an element of ^[[A']] may be 
viewed as assigning to each monomial Xv a coefficient aveA. We denote 
this element by 

00 

Z avAv. 
v=0 

The summation symbol is not a sum, of course, but we shall write the above 
expression also in the form 

a0X° 4- alX1 +••• 

and we call it a formal power series with coefficients in A, in one variable. 
We call a0f al9 ... its coefficients. 

Given two elements of 4 [[A"]], say 

Z «vAv and £ bMX*9 
v = 0 n=0 

we define their product to be 

00 

Z CtX‘ 
i—0 

where 

C( Z aA- 
v+H=i 

Just as with polynomials, one defines their sum to be 

t (a, + K)Xy. 
v = 0 

Then we see that the power series form a ring, the proof being the same as 
for polynomials. 

One can also construct the power series ring in several variables 
A[lXl9..., A"n]] in which every element can be expressed in the form 

X a{v)XV *• ‘ ^ = Z flcv)M(v)(Jf1# 
(v) 

with unrestricted coefficients a{v) in bijection with the n-tuples of integers 
(vj,..., vn) such that vf ^ 0 for all i. It is then easy to show that there is an 
isomorphism between A\^lXi1..., Xn~\\ and the repeated power series ring 
^[[A^]] **• [[A„]]. We leave this as an exercise for the reader. 
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The next theorem will give an analogue of the Euclidean algorithm for 
power series. However, instead of dealing with power series over a field, it is 
important to have somewhat more general coefficients for certain applica¬ 
tions, so we have to introduce a little more terminology. 

Let A be a ring and / an ideal. We assume that 

n/v={°}- 
V = 1 

We can view the powers P as defining neighborhoods of 0 in A, and we can 
transpose the usual definition of Cauchy sequence in analysis to this situation, 
namely: we define a sequence {an} in A to be Cauchy if given some power P 
there exists an integer N such that for all m.n'^.N we have 

Thus P corresponds to the given e of analysis. Then we have the usual 
notion of convergence of a sequence to an element of A. One says that A is 
complete in the /-adic topology if every Cauchy sequence converges. 

Perhaps the most important example of this situation is when A is a local 
ring and I = m is its maximal ideal. By a complete local ring, one always 
means a local ring which is complete in the m-adic topology. 

Let k be a field. Then the power series ring 

R = kl 

in n variables is such a complete local ring. Indeed, let m be the ideal 
generated by the variables Xl9 ..., Xn. Then R/m is naturally isomorphic to 
the field k itself, so m is a maximal ideal. Furthermore, any power series of 
the form 

f(X) = c0-MX) 

with c0 e fc, c0 t^O and MX) e m is invertible. To prove this, one may first 
assume without loss of generality that c0 = 1. Then 

(i - MX))~l = i +M*) + M*)2 + MX? + • • • 

gives the inverse. Thus we see that m is the unique maximal ideal and R is 
local. It is immediately verified that R is complete in the sense we have just 
defined. The same argument shows that if k is not a field but c0 is invertible 
in /c, then again f(X) is invertible. 

Again let A be a ring. We may view the power series ring in n variables 
(n > 1) as the ring of power series in one variable Xn over the ring of power 
series in n — 1 variables, that is we have a natural identification 

If A = k is a field, the ring k[\Xl9..., is then a complete local 
ring. More generally, if o is a complete local ring, then the power series ring 
°[[^]] is a complete local ring, whose maximal ideal is (m, X) where m is 
the maximal ideal of o. Indeed, if a power series Y,avXv has unit constant 
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term a0 e o*, then the power series is a unit in o[[X]], because first, without 
loss of generality, we may assume that a0 = 1, and then we may invert 1 + h 
with h e (m, X) by the geometric series 1 — h + h2 — h2 + • * *. 

In a number of problems, it is useful to reduce certain questions about 
power series in several variables over a field to questions about power series 
in one variable over the more complicated ring as above. We shall now 
apply this decomposition to the Euclidean algorithm for power series. 

Theorem 9.1. Let o be a complete local ring with maximal ideal m. Let 

f(X) = £ aix‘ 
1 = 0 

be a power series in o[[A"]] (one variable), such that not all at lie in m. 
Say a0, ..., an^1 e m, and an e o* is a unit. Given g e o[[X]] we can solve 
the equation 

g = qf + r 

uniquely with q e ofCA"]], r e ofA"], and deg r ^ n — 1. 

Proof (Manin). Let a and t be the projections on the beginning and 
tail end of the series, given by 

a: X biX1 "X biX1 = b0 + bx X + • ■ + bn_x Xn~\ 
i=0 

r: Y, biXl^Y biXl~n = bn -f bn+lX + bn+2X2 + •••. 
i=n 

Note that r(hX") = h for any h e o[[;f|]; and h is a polynomial of degree 

< n if and only if t(/j) = 0. 
The existence of q, r is equivalent with the condition that there exists q 

such that 

*(g) = *(4/> 

Hence our problem is equivalent with solving 

t (g) = t M/)) + r(qx(f)X") = x(qa (/)) + qx(f). 

Note that x(/) is invertible. Put Z = qx(f). Then the above equation is 
equivalent with 

Note that 

To°^:o[m]-mo[[X]], 
x(J) 

because a(f)/x(f ) e mo[[X]]. We can therefore invert to find Z, namely 
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which proves both existence and uniqueness and concludes the proof. 

Theorem 9.2. (Weierstrass Preparation). The power series f in the pre¬ 
vious theorem can be written uniquely in the form 

f(X) = (Xn + bn_iXn-l+- + b0)ui 

where bt e m, and u is a unit in °[ml 

Proof Write uniquely 

Xn = qf + r, 

by the Euclidean algorithm. Then q is invertible, because 

q = c0 + cYx + 

so that 
/ = ■" + anXn + ’’*> 

1 = c0an (mod m), 

and therefore c0 is a unit in o. We obtain qf = Xn — r, and 

f = q'\Xn-r\ 

with r = 0 (mod m). This proves the existence. Uniqueness is immediate. 

The integer n in Theorems 9.1 and 9.2 is called the Weierstrass degree of /, 
and is denoted by deg^ /. We see that a power series not all of whose coeffi¬ 
cients lie in m can be expressed as a product of a polynomial having the given 
Weierstrass degree, times a unit in the power series ring. Furthermore, all 
the coefficients of the polynomial except the leading one lie in the maximal 
ideal. Such a polynomial is called distinguished, or a Weierstrass polynomial. 

Remark. I rather like the use of the Euclidean algorithm in the proof of 
the Weierstrass Preparation theorem. However, one can also give a direct 
proof exhibiting explicitly the recursion relations which solve for the coeffi¬ 
cients of u, as follows. Write u = £ qAT Then we have to solve the 
equations 

b0c0 = a0> 

b0c1 + bxc0 = al9 

b()Cn-l + * ’ * + K-l C0 — an-1 > 

b()Cn Cq ani 

^O^n+l T * * ’ T = + 
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In fact, the system of equations has a unique solution mod mr for each 
positive integer r, after selecting c0 to be a unit, say c0 = 1. Indeed, from 
the first n equations (from 0 to n — 1) we see that b0,..., bn_x are uniquely 
determined to be 0 mod m. Then c„, cn+1,... are uniquely determined 
mod m by the subsequent equations. Now inductively, suppose we have 
shown that the coefficients bh Cj are uniquely determined mod mr. Then one 
sees immediately that from the conditions a0,..., an_1 = 0 mod m the first n 
equations define b{ uniquely mod mr+1 because all b, = 0 mod m. Then 
the subsequent equations define c} mod mr+1 uniquely from the values of 
bt mod mr+1 and Cj mod mr. The unique system of solutions mod mr for each 
r then defines a solution in the projective limit, which is the complete local 
ring. 

We now have all the tools to deal with unique factorization in one important 
case. 

Theorem 9.3. Let k be a field. Then k[[Xx,..., Xn]] is factorial. 

Proof. Let f(x) = f(Xx,. .. ,Xn) e £[[X]] be =£ 0. After making a sufficiently 
general linear change of variables (when k is infinite) 

Xi = 2 CtjYj with Cij e k, 

we may assume without loss of generality that/(0,..., 0, xn) =£ 0. (When k is 
finite, one has to make a non-linear change, cf. Theorem 2.1 of Chapter VIII.) 
Indeed, if we write f(X) = fd(X) + higher terms, where fd(X) is a homogeneous 
polynomial of degree 0, then changing the variables as above preserves the 
degree of each homogeneous component of/, and since k is assumed infinite, 
the coefficients ctj can be taken so that in fact each power Yf (i = 1,..., n) 
occurs with non-zero coefficient. 

We now proceed by induction on n. Let Rn = k[[Xl9..., Xn]\ be the power 
series in n variables, and assume by induction that Rn_ x is factorial. By Theorem 
9.2, write/= gu where u is a unit and g is a Weierstrass polynomial in/^.JXJ. 
By Theorem 2.3, Rn-\[Xn] is factorial, and so we can write g as a product of 
irreducible elements gl9..., gr e Rn-X[XJ, so/= gx • • • gru, where the factors 
g( are uniquely determined up to multiplication by units. This proves the existence 
of a factorization. As to uniqueness, suppose /is expressed as a product of 
irreducible elements in Rn, f = fx • • • fs. Then /^(0,..., 0, xn) =£ 0 for each 
q = 1,.. . , s9 so we can write fq = hquq where uq is a unit and hq is a Weierstrass 

polynomial, necessarily irreducible in Rn_x[Xn]. Then / = gu= n hq n Uq 
with g and all hq Weierstrass polynomials. By Theorem 9.2, we must have 

g = El hq9 and since Rn_x[Xn] is factorial, it follows that the polynomials hq 
are the same as the polynomials gh up to units. This proves uniqueness. 

Remark. As was pointed out to me by Dan Anderson, I incorrectly stated 
in a previous printing that if 0 is a factorial complete local ring, then O[[X]] 
is also factorial. This assertion is false, as shown by the example 

k(t)[[Xlt X2, X3]]/(X? + x\ + xi) 
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due to P. Salmon, Su un problema post da P. Samuel, Atti Acad. Naz. Lincei 
Rend. Cl. Sc. Fis. Matem. 40(8) (1966) pp. 801-803. It is true that if O is a 
regular local ring in addition to being complete, then £)[[X]] is factorial, but this 
is a deeper theorem. The simple proof I gave for the power series over a field 
is classical. I chose the exposition in [GrH 78]. 

Theorem 9.4. If A is Noetherian, then A[[X]] is also Noetherian. 

Proof. Our argument will be a modification of the argument used in the 
proof of Hilbert’s theorem for polynomials. We shall consider elements of 
lowest degree instead of elements of highest degree. 

Let 91 be an ideal of A[[X]]. We let a, be the set of elements ae A such 
that a is the coefficient of X1 in a power series 

aX1 + terms of higher degree 

lying in 91. Then at is an ideal of A, and af c= ai+1 (the proof of this assertion 
being the same as for polynomials). The ascending chain of ideals stops: 

a0 c ctj cz a2 c • • ■ c ar = ar+1 = • • • 

As before, let a0- (i = 0, ...,r and j = 1, ...,nf) be generators for the ideals 
ah and let fj be power series in A having as beginning coefficient. 
Given / e 91, starting with a term of degree d, say d g r, we can find 
elements cv . . . , cnd e A such that 

f ~ C\fd\ ~ ~ Cnjdnd 

starts with a term of degree ^ d + 1. Proceeding inductively, we may as¬ 
sume that d > r. We then use a linear combination 

f _ cy)x*-'frl - ■■■ - ddjxd-%nr 

to get a power series starting with a term of degree ^ d + 1. In this way, if 
we start with a power series of degree d > r, then it can be expressed as a 
linear combination of frl, , fmr by means of the coefficients 

9AX) = £ c["X'~r,.... g„r(X) = t cZ)Xv-r, 
v=d v—d 

and we see that the f{j generate our ideal 91, as was to be shown. 

Corollary 9.5. If A is a Noetherian commutative ring, or a field, then 

Aiixu...,x.-n is Noetherian. 

Examples. Power series in one variable are at the core of the theory of 
functions of one complex variable, and similarly for power series in several 
variables in the higher-dimensional case. See for instance [Gu 90]. 

Weierstrass polynomials occur in several contexts. First, they can be used 
to reduce questions about power series to questions about polynomials, in 
studying analytic sets. See for instance [GrH 78], Chapter 0. In a number- 
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theoretic context, such polynomials occur as characteristic polynomials in 
the Iwasawa theory of cyclotomic fields. Cf. [La 90], starting with Chapter 
5. 

Power series can also be used as generating functions. Suppose that to 
each positive integer n we associate a number a(n). Then the generating 
function is the power series £tf(n)tn. In significant cases, it turns out that 
this function represents a rational function, and it may be a major result to 
prove that this is so. 

For instance in Chapter X, §6 we shall consider a Poincare series, 
associated with the length of modules. Similarly, in topology, consider a 
topological space X such that its homology groups (say) are finite dimen¬ 
sional over a field k of coefficients. Let hn = dim Hn(X, fc), where Hn is the 
n-th homology group. The Poincarfc series is defined to be the generating 
series 

Px(t) = I hntn. 

Examples arise in the theory of dynamical systems. One considers a 
mapping T: X -+ X from a space X into itself, and we let Nn be the number 
of fixed points of the n-th iterate Tn=ToTo -oT(n times). The generat¬ 
ing function is £iVntw. Because of the number of references I give here, I 
list them systematically at the end of the section. See first Artin-Mazur 
[ArM 65]; a proof by Manning of a conjecture of Smale [Ma 71]; and 
Shub’s book [Sh 87], especially Chapter 10, Corollary 10.42 (Manning’s 
theorem). 

For an example in algebraic geometry, let V be an algebraic variety 
defined over a finite field k. Let Kn be the extension of k of degree n (in a 
given algebraic closure). Let Nn be the number of points of V in Kn. One 
defines the zeta function Z(t) as the power series such that Z(0) = 1 and 

Z'/Z(t) = £ NJ”-1. 
n=1 

Then Z(t) is a rational function (F. K. Schmidt when the dimension of V is 1, 
and Dwork in higher dimensions). For a discussion and references to the 
literature, see Appendix C of Hartshorne [Ha 77]. 

Finally we mention the partition function p(n), which is the number of 
ways a positive integer can be expressed as a sum of positive integers. The 
generating function was determined by Euler to be 

i + f P(n)t- = n (i - n~l- 
n=1 n=1 

See for instance Hardy and Wright [HardW 71], Chapter XIX. The generat¬ 
ing series for the partition function is related to the power series usually 
expressed in terms of a variable q, namely 
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A = <7 ft 0 “ 4")24 = £ 
n=l n=1 

which is the generating series for the Ramanujan function x(n). The power 
series for A is also the expansion of a function in the theory of modular 
functions. For an introduction, see Serre’s book [Se 73], last chapter, and 
books on elliptic functions, e.g. mine. We shall mention one application of 
the power series for A in the Galois theory chapter. 

Generating power series also occur in K-theory, topological and algebraic 
geometric, as in Hirzebruch’s formalism for the Riemann-Roch theorem and 
its extension by Grothendieck. See Atiyah [At 67], Hirzebruch [Hi 66], and 
[FuL 86]. I have extracted some formal elementary aspects having directly 
to do with power series in Exercises 21-27, which can be viewed as basic 
examples. See also Exercises 31-34 of the next chapter. 
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EXERCISES 

1. Let k be a field and f(X) e k[X~\ a non-zero polynomial. Show that the following 
conditions are equivalent: 
(a) The ideal (f(X)) is prime. 
(b) The ideal (/(X)) is maximal. 
(c) f(X) is irreducible. 

2. (a) State and prove the analogue of Theorem 5.2 for the rational numbers. 
(b) State and prove the analogue of Theorem 5.3 for positive integers. 

3. Let / be a polynomial in one variable over a field k. Let X, Y be two variables. 
Show that in k\_X, 7] we have a “Taylor series” expansion 

f(X+Y)=f(X) + £ Vi(X)Y\ 
i=1 

where (p^X) is a polynomial in X with coefficients in k. If k has characteristic 0, 
show that 

<Pi(X) = 

D'f(X) 

4. Generalize the preceding exercise to polynomials in several variables (introduce 
partial derivatives and show that a finite Taylor expansion exists for a polynomial 
in several variables). 

5. (a) Show that the polynomials X4 + 1 and X6 + X3 + 1 are irreducible over the 

rational numbers. 
(b) Show that a polynomial of degree 3 over a field is either irreducible or has a 

root in the field. Is X3 — 5X2 + 1 irreducible over the rational numbers? 
(c) Show that the polynomial in two variables X2 + Y2 — 1 is irreducible over 

the rational numbers. Is it irreducible over the complex numbers? 

6. Prove the integral root test of §3. 

7. (a) Let He a finite field with q elements. Let f(Xu ..., Xn) be a polynomial in 
fc[X] of degree d and assume /(0, ...,0) = 0. An element (al9..., a„) e k(n) 
such that f(a) = 0 is called a zero of /. If n > d, show that / has at least one 
other zero in k{n). [Hint: Assume the contrary, and compare the degrees of 
the reduced polynomial belonging to 

1-W1 

and (1 — X?-1) ••• (1 — XH~l). The theorem is due to Chevalley.] 
(b) Refine the above results by proving that the number N of zeros of / in k(n) is 

= 0 (mod p), arguing as follows. Let i be an integer ^ 1. Show that 

2>' = 
if q — 1 divides i, 

otherwise. 

Denote the preceding function of i by Show that 
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I (i -/(*r‘) 
X6 fc<"> 

and for each n-tuple (ix,..., in) of integers ^ 0 that 

£ x[' ■■■ x‘„" = l/'OJ ••• (*„)- 
jcefc<"> 

Show that both terms in the sum for A above yield 0 mod p. (The above 
argument is due to Warning.) 

(c) Extend Che valley’s theorem to r polynomials of degrees du...,dr 
respectively, in n variables. If they have no constant term and n > show 
that they have a non-trivial common zero. 

(d) Show that an arbitrary function /: k(n) -* k can be represented by a poly¬ 
nomial. (As before, k is a finite field.) 

8. Let A be a commutative entire ring and X a variable over A. Let a, be A and 
assume that a is a unit in A. Show that the map X\-+aX 4- b extends to a 
unique automorphism of A[X~\ inducing the identity on A. What is the inverse 
automorphism? 

9. Show that every automorphism of A[X~\ is of the type described in Exercise 8. 

10. Let K be a field, and A(X) the quotient field of K[X\. Show that every automorphism 
of K(X) which induces the identity on K is of type 

Y[ aX + b 

cX + d 

with a, b, c, d e K such that (aX + b)/(cX + d) is not an element of K, or 

equivalently, ad — be # 0. 

11. Let A be a commutative entire ring and let K be its quotient field. We show here 
that some formulas from calculus have a purely algebraic setting. Let D: A -► A 
be a derivation, that is an additive homomorphism satisfying the rule for the 

derivative of a product, namely 

D(xy) = xDy + yDx for x, y e A. 

(a) Prove that D has a unique extension to a derivation of K into itself, and that 
this extension satisfies the rule 

for x, y e A and y # 0. [Define the extension by this formula, prove that it is 
independent of the choice of x, y to write the fraction x/y, and show that it 
is a derivation having the original value on elements of A.~\ 

(b) Let L(x) = Dx/x for x e K*. Show that L(xy) = L(x) + L(y). The homo¬ 
morphism L is called the logarithmic derivative. 

(c) Let D be the standard derivative in the polynomial ring /c[X] over a field k. 
Let R(X) = cf|(X — a,)m< with a, e k, c e k, and m, e Z, so R(X) is a rational 
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function. Show that 

12. (a) If f(X) = aX2 + bX + c, show that the discriminant of / is b2 - 4ac. 
(b) If f{X) = a0X3 + axX2 + a2X + a3, show that the discriminant of / is 

a\a\ — 4a0a\ — 4 o\a3 — 21a\a\ + l&a0ala2a3. 

(c) Let f(X) = (X — tx) - (X — tn). Show that 

D/*(-rlwnm 
i=1 

13. Polynomials will be taken over an algebraically closed field of characteristic 0. 
(a) Prove 

Davenport’s theorem. Let f(t), g(t) be polynomials such that f3 — g2 # 0. Then 

deg(/3-02)^ideg/+ 1. 

Or put another way, let h = /3 — g2 and assume h ^ 0. Then 

deg / ^ 2 deg h — 2. 

To do this, first assume /, # relatively prime and apply Mason’s theorem. In 
general, proceed as follows. 

(b) Let A, B, /, g be polynomials such that Af\ Bg are relatively prime ^ 0. Let 
h = Af3 + Bg2. Then 

deg / ^ deg A + deg B + 2 deg h — 2. 

This follows directly from Mason’s theorem. Then starting with /, g not 
necessarily relatively prime, start factoring out common factors until no 
longer possible, to effect the desired reduction. When I did it, I needed to do 
this step three times, so don’t stop until you get it. 

(c) Generalize (b) to the case of fm — gn for arbitrary positive integer exponents 
m and n. 

14. Prove that the generalized Szpiro conjecture implies the abc conjecture. 

15. Prove that the abc conjecture implies the following conjecture: There are infinitely 
many primes p such that 2P_1 ^ 1 mod p2. [Cf. the reference [Sil 88] and [La 90] 
at the end of §7.] 

16. Let w be a complex number, and let c = max(l, |w|). Let F, G be non-zero 
polynomials in one variable with complex coefficients, of degrees d and d' respec¬ 
tively, such that |F|, |G| ^ 1. Let R be their resultant. Then 

\R\ gcd+d'[|F(w)| + \G(w)\-]\F\d'\G\d(d + d')d+d'. 

(We denote by |F| the maximum of the absolute values of the coefficients of F.) 

17. Let d be an integer ^ 3. Prove the existence of an irreducible polynomial of 
degree d over Q, having precisely d — 2 real roots, and a pair of complex 
conjugate roots. Use the following construction. Let bl9 ..., hd-2 be distinct 
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integers, and let a be an integer > 0. Let 

g(X) = (.X2 + a)(X - bt) • ■■ ■■ (X - bd.x) = + cd^lXd~l + • • ■ + c0. 

Observe that c, e Z for all i. Let p be a prime number, and let 

gn(X) = g(X) + 

so that gn converges to g (i.e. the coefficients of gn converge to the coefficients 

of g\ 
(a) Prove that gn has precisely d — 2 real roots for n sufficiently large. (You may 

use a bit of calculus, or use whatever method you want.) 
(b) Prove that gn is irreducible over Q. 

Integral-valued polynomials 

18. Let P(X)e Q[Y] be a polynomial in one variable with rational coefficients. It 
may happen that P(ri) e Z for all sufficiently large integers n without necessarily P 
having integer coefficients. 

(a) Give an example of this. 
(b) Assume that P has the above property. Prove that there are integers 

c0, cu ...» cr such that 

P(X) “ co(f) + ci(r f j) + ”• + c" 

where 

is the binomial coefficient function. In particular, P(n) e Z for all n. Thus we 
may call P integral valued. 

(c) Let /: Z -► Z be a function. Assume that there exists an integral valued 
polynomial Q such that the difference function A/ defined by 

(40M = f(n) — f(n - 1) 

is equal to Q(n) for all n sufficiently large. Show that there exists an integral¬ 
valued polynomial P such that f(n) = P(n) for all n sufficiently large. 

Exercises on symmetric functions 

19. (a) Let Xl9...,XH be variables. Show that any homogeneous polynomial in 
Z[Xlf ...,Xn] of degree > n(n — 1) lies in the ideal generated by the elemen¬ 
tary symmetric functions sx,..., sn. 

(b) With the same notation show that Z[Xl9...,Xn] is a free Z[s1,...,s„] 
module with basis the monomials 

Xir) = X[l Xrn'' 

with 0 ^ r{r ^ n — i. 
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(c) Let Xl9...9XH and Yl9...,Ym be two independent sets of variables. Let 
sl9...,sn be the elementary symmetric functions of X and the 
elementary symmetric functions of Y (using vector vector notation). Show 
that Z[X, 7] is free over Z[s, s'] with basis X(r)Yiq\ and the exponents (r), (q) 
satisfying inequalities as in (b). 

(d) Let I be an ideal in Z[s, s']. Let J be the ideal generated by / in Z[X, 7]. 
Show that 

J n Z[s, s'] = /. 

20. Let A be a commutative ring. Let t be a variable. Let 

fit) = z «,*' and g(t) = £ fc,t' 
i=0 i=0 

be polynomials whose constant terms are a0 = b0 = 1. If 

f(t)g(t) = 1, 

show that there exists an integer jV (= (m + n)(m + n — 1)) such that any mono¬ 
mial 

with Y,jrj > N is equal to 0. [Hint: Replace the a’s and h’s by variables. Use 
Exercise 19(b) to show that any monomial M(a) of weight > N lies in the ideal / 
generated by the elements 

k 

Ck = Yj ai^k~i 
i=0 

(letting a0 = b0 = 1). Note that cfc is the /c-th elementary symmetric function of 
the m + n variables (X, 7).] 
[Note: For some interesting contexts involving symmetric functions, see 
Cartier’s talk at the Bourbaki Seminar, 1982-1983.] 

A-rings 

The following exercises start a train of thought which will be pursued in Exercise 
33 of Chapter V; Exercises 22-24 of Chapter XVIII; and Chapter XX, §3. These 
originated to a large extent in Hirzebruch’s Riemann-Roch theorem and its extension 
by Grothendieck who defined A-rings in general. 

Let K be a commutative ring. By ^.-operations we mean a family of mappings 

A£: K -> K 

for each integer i ^ 0 satisfying the relations for all x e K: 

A°(x) = 1, A1(x) = x, 

and for all integers n ^ 0, and x, y e K, 

A"(x + y)=t m^y). 
i=o 
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The reader will meet examples of such operations in the chapter on the alternat¬ 
ing and symmetric products, but the formalism of such operations depends only 
on the above relations, and so can be developed here in the context of formal 
power series. Given a 2-operation, in which case we also say that K is a 2-ring, 
we define the power series 

A,(x) = t 
i=0 

Prove the following statements. 

21. The map xnlt(x) is a homomorphism from the additive group of K into the 

multiplicative group of power series 1 + tK[[t]] whose constant term is equal to 
1. Conversely, any such homomorphism such that 2t(x) = 1 + xt 4- higher terms 

gives rise to 2-operations. 

22. Let s = at 4- higher terms be a power series in X[[r]] such that a is a unit in K. 
Show that there is a power series 

t = g(s) = Y, bis' with bt e K. 

Show that any power series f(t) eK[[l]] can be written in the form h(s) for some 

other power series with coefficients in K. 
Given a 2-operation on X, define the corresponding Grothendieck power series 

ytW = = *.(*) 

where s = t/( 1 — t). Then the map 

x*->yt(x) 

is a homomorphism as before. We define y'(x) by the relation 

= I yW 

Show that y satisfies the following properties. 

23. (a) For every integer n^Owe have 

y"(x + y)=t yW'm 
.1=0 

(b) y,(l) = 1/(1 - ()• 

(c) y,(—1) = 1 — t. 

24. Assume that /.'u — 0 for i > 1. Show: 

(a) y,(u - 1) = 1 + (u - l)t. 

(b) y,(l - u) = g (1 - u)Y. 
i=0 

25. Bernoulli numbers. Define the Bernoulli numbers Bk as the coefficients in the 
power series 

r* 
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Of course, e' = £ t"/n! is the standard power series with rational coefficients 1/n!. 
Prove: 

(a) B0 = 1, Bx = —2, B2 = 6- 
(b) F( — t) = t + F(r), and Bk = 0 if k is odd # 1. 

26. Bernoulli polynomials. Define the Bernoulli polynomials Bk(X) by the power 
series expansion 

fooo fk 

It is clear that Bk = Bfc(0), so the Bernoulli numbers are the constant terms of the 
Bernoulli polynomials. Prove: 

(a) BoW = 1. B,(X) = X - b B2(X) = X2-X + i 
(b) For each positive integer N, 

(c) Bk(X) = Xk — \kXk~l + lower terms. 

(d) F(t, X + 1) - F(t, X) = tex' = 

(e) Bn(X + 1) - Bk(X) = kXk~l for 1. 

27. Let N be a positive integer and let / be a function on Z/NZ. Form the power 
series 

n-i teia+X)t 
F/(t,*)= X /W?B—T 

a=0 e — 1 

Following Leopoldt, define the generalized Bernoulli polynomials relative to the 
function / by 

F,(t,X)= £ B*.,(*)£. 
fc=0 

In particular, the constant term of Bkf{X) is defined to be the generalized 
Bernoulli number Bk f = Bfct/(0) introduced by Leopoldt in cyclotomic fields. 
Prove: 

(a) Ff(t, X + k) = ek'Ff(t, X). 
(b) Ff(t, X + N)- Ff(t, X) = (em - l)Ff(t, X). 

(c) + N) - Bt j-(X)] = Y /(«)(« + Xf'1. 
K a= o 

(d) Bfc/(J0= I {^jBi.fX--1 

= Bkf + kBk_ufX + ••• + kBUfXk~x + B0 fXk. 

Note. The exercises on Bernoulli numbers and polynomials are designed not 
only to give examples for the material in the text, but to show how this material 
leads into major areas of mathematics: in topology and algebraic geometry centering 
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around Riemann-Roch theorems; analytic and algebraic number theory, as in the 
theory of the zeta functions and the theory of modular forms, cf. my Introduction 
to Modular Forms, Springer-Verlag, New York, 1976, Chapters XIV and XV; my 
Cyclotomic Fields, I and II, Springer-Verlag, New York, 1990, Chapter 2, §2; Kubert- 
Lang’s Modular Units, Springer-Verlag, New York, 1981; etc. 

Further Comments, 1996-2001. I was informed by Umberto Zannier that what has 
been called Mason’s theorem was proved three years earlier by Stothers [Sto 81], Theo¬ 
rem 1.1. Zannier himself has published some results on Davenport’s theorem [Za 95], 
without knowing of the paper by Stothers, using a method similar to that of Stothers, 
and rediscovering some of Stothers’ results, but also going beyond. Indeed, Stothers uses 
the “Belyi method” belonging to algebraic geometry, and increasingly appearing as a 
fundamental tool. Mason gave a very elementary proof, accessible at the basic level of 
algebra. An even shorter and very elegant proof of the Mason-Stothers theorem was 
given by Noah Snyder [Sny 00]. I am much indebted to Snyder for showing me that 
proof before publication, and I reproduced it in [La 99b]. But I recommend looking at 
Snyder’s version. 

[La 99b] S. Lang, Math Talks for Undergraduates, Springer Verlag 1999 

[Sny 00] N. Snyder, An alternate proof of Mason’s theorem, Elemente der Math. 55 
(2000) pp. 93-94 

[Sto 81] W. Stothers, Polynomial identities and hauptmoduln, Quart. J. Math. Oxford 
(2) 32 (1981) pp. 349-370 

[Za 95] U. Zannier, On Davenport’s bound for the degree of/3 - g2 and Riemann’s 
existence theorem, Acta Arithm. LXXI.2 (1995) pp. 107-137 



Part Two 

ALGEBRAIC 
EQUATIONS 

This part is concerned with the solutions of algebraic equations, in one 
or several variables. This is the recurrent theme in every chapter of this 
part, and we lay the foundations for all further studies concerning such 
equations. 

Given a subring A of a ring B, and a finite number of polynomials 
/j, ..., fn in A [Xj,..., X„], we are concerned with the w-tuples 

A) eB<B) 
such that 

fi(bi,...,bn) = 0 

for i= 1, ...,r. For suitable choices of A and B, this includes the general 
problem of diophantine analysis when A, B have an “arithmetic” structure. 

We shall study various cases. We begin by studying roots of one polyno¬ 
mial in one variable over a field. We prove the existence of an algebraic 
closure, and emphasize the role of irreducibility. 

Next we study the group of automorphisms of algebraic extensions of a 
field, both intrinsically and as a group of permutations of the roots of a 
polynomial. We shall mention some major unsolved problems along the 
way. 

It is also necessary to discuss extensions of a ring, to give the possibil¬ 
ity of analyzing families of extensions. The ground work is laid in Chapter 
VII. 

In Chapter IX, we come to the zeros of polynomials in several variables, 
essentially over algebraically closed fields. But again, it is advantageous to 
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consider polynomials over rings, especially Z, since in projective space, the 
conditions that homogeneous polynomials have a non-trivial common zero 
can be given universally over Z in terms of their coefficients. 

Finally we impose additional structures like those of reality, or metric 
structures given by absolute values. Each one of these structures gives rise to 
certain theorems describing the structure of the solutions of equations as 
above, and especially proving the existence of solutions in important cases. 



CHAPTER V 
Algebraic Extensions 

In this first chapter concerning polynomial equations, we show that given 
a polynomial over a field, there always exists some extension of the field 
where the polynomial has a root, and we prove the existence of an algebraic 
closure. We make a preliminary study of such extensions, including the 
automorphisms, and we give algebraic extensions of finite fields as examples. 

§1. FINITE AND ALGEBRAIC EXTENSIONS 

Let F be a field. If F is a subfield of a field F, then we also say that E is 
an extension field of F. We may view £ as a vector space over F, and we say 
that E is a finite or infinite extension of F according as the dimension of this 
vector space is finite or infinite. 

Let F be a subfield of a field E. An element a of E is said to be algebraic 
over F if there exist elements a09 ..., an (n ^ 1) of F, not all equal to 0, such 
that 

a0 + ax a + ••• + anotn = 0. 

If a # 0, and a is algebraic, then we can always find elements at as above 
such that (factoring out a suitable power of a). 

Let A' be a variable over F. We can also say that a is algebraic over F if 
the homomorphism 

F [A] -> E 

223 



224 ALGEBRAIC EXTENSIONS V, §1 

which is the identity on F and maps A" on a has a non-zero kernel. In that 
case the kernel is an ideal which is principal, generated by a single polyno¬ 
mial p(X\ which we may assume has leading coefficient 1. We then have an 
isomorphism 

FlXy(p(X)) * F[a], 

and since F[a] is entire, it follows that p(X) is irreducible. Having normal¬ 
ized p(X) so that its leading coefficient is 1, we see that p(X) is uniquely 
determined by a and will be called THE irreducible polynomial of a over F. 
We sometimes denote it by Irr(a, F, X). 

An extension E of F is said to be algebraic if every element of E is 
algebraic over F. 

Proposition 1.1. Let E be a finite extension of F. Then E is algebraic 
over F. 

Proof Let a e F, a # 0. The powers of a, 

1, a, a2, ..., a", 

cannot be linearly independent over F for all positive integers n, otherwise 
the dimension of E over F would be infinite. A linear relation between these 
powers shows that a is algebraic over F. 

Note that the converse of Proposition 1.1 is not true; there exist infinite 
algebraic extensions. We shall see later that the subfield of the complex 
numbers consisting of all algebraic numbers over Q is an infinite extension 
of Q. 

If E is an extension of F, we denote by 

[F:F] 

the dimension of E as vector space over F. It may be infinite. 

Proposition 1.2. Let k be a field and F a E extension fields of k. Then 

[F:/c] = [F : F] [F: fc]. 

If {xf}ie/ is a basis for F over k and {yj}jeJ is a basis for E over F, then 

{Xiyj}aj)eixj Is & basis for E over k. 

Proof Let z e E. 
ocj = 0, such that 

By hypothesis there exist elements otj e F, almost all 

Z = Z *j)’j- 
jeJ 

For each j e J there exist elements bji e /c, almost all of which are equal to 0, 
such that 
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aj = Z 
iel 

and hence 

z = Z Z 
This shows that {x.y,} is a family of generators for E over k. We must show 
that it is linearly independent. Let {c0} be a family of elements of k, almost 
all of which are 0, such that 

Z Z cox.Ti = 0. 
J i 

Then for each j, 

Z cijxi = ° 
i 

because the elements y} are linearly independent over F. Finally ctj = 0 for 
each i because {xj is a basis of F over k, thereby proving our proposition. 

Corollary 1.3. The extension E of k is finite if and only if E is finite over 
F and F is finite over k. 

As with groups, we define a tower of fields to be a sequence 

Fi <= F2 c ■ ■ • c F„ 

of extension fields. The tower is called finite if and only if each step is finite. 
Let k be a field, E an extension field, and ae£. We denote by k(a) the 

smallest subfield of E containing both k and a. It consists of all quotients 
f(ot)/g(oc), where /, g are polynomials with coefficients in k and g(a) # 0. 

Proposition 1.4. Let oc be algebraic over k. Then k(ot) = k[a], and k(a) is 
finite over k. The degree [/c(a): k] is egua/ to the degree of Irr(a, k, A'). 

Proo/. Let p(X) = Irr(a, k, A"). Let /(I)Gk[I] be such that /(a) # 0. 
Then p(X) does not divide f(X), and hence there exist polynomials g(X\ 
h(X) g k\_X~\ such that 

g(X)p(X) + fcW/W = 1. 

From this we get h(<x)f(oc) = 1, and we see that /(a) is invertible in k[a]. 
Hence k[a] is not only a ring but a field, and must therefore be equal to 
fc(a). Let d = deg p(I). The powers 

1, a,a*1-1 

are linearly independent over k, for otherwise suppose 

a0 + atot + - ' + a^-iOtd 1 = 0 
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with at e /c, not all a{ = 0. Let g(X) = a0 + * * * + ad-{ Xd~l. Then g # 0 and 
g(a) = 0. Hence p(A") divides 0(A"), contradiction. Finally, let /(a)e/c[a], 
where /(A") e k[X~\. There exist polynomials q(X\ r(X)ek[X~\ such that 
deg r < d and 

f(X) = q(X)p(X) + r(A> 

Then /(a) = r(a), and we see that 1, a,ad_1 generate /c[a] as a vector space 
over k. This proves our proposition. 

Let F, F be extensions of a field k. If F and F are contained in some field 
L then we denote by EF the smallest subfield of L containing both E and 
F, and call it the compositum of E and F, in L. If F, F are not given as 
embedded in a common field L, then we cannot define the compositum. 

Let k be a subfield of E and let a1?..., a„ be elements of E. We denote 
by 

the smallest subfield of £ containing k and at,a„. Its elements consist of 
all quotients 

/(«!, •••.«») 

0(*1> •••.*«) 

where /, 0 are polynomials in n variables with coefficients in k, and 

g(«u ■■■,*„) #o. 

Indeed, the set of such quotients forms a field containing k and a^-.^a^. 
Conversely, any field containing k and 

ai, an 
must contain these quotients. 

We observe that E is the union of all its subfields fc(a1,...,an) as 
(a1,...,an) ranges over finite subfamilies of elements of E. We could define 
the compositum of an arbitrary subfamily of subfields of a field L as the 
smallest subfield containing all fields in the family. We say that E is finitely 
generated over k if there is a finite family of elements al5...,an of E such 
that 

E = /c(ax,..., an). 

We see that E is the compositum of all its finitely generated subfields over k. 

Proposition 1.5. Let E be a finite extension of k. Then E is finitely 
generated. 

Proof 
certainly 

Let {a1,...,all} be a basis of E as vector space over k. Then 

E = k(ocl9..., a„). 
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If F = fc(a1?a„) is finitely generated, and F is an extension of k, both 
F, E contained in L, then 

EF = F(ax,a„), 

and FF is finitely generated over F. We often draw the following picture: 

EF 

k 

Lines slanting up indicate an inclusion relation between fields. We also call 
the extension EF of F the translation of E to F, or also the lifting of E to 
F. 

Let a be algebraic over the field k. Let F be an extension of k, and 
assume fc(a), F both contained in some field L. Then a is algebraic over F. 
Indeed, the irreducible polynomial for a over k has a fortiori coefficients in 
F, and gives a linear relation for the powers of a over F. 

Suppose that we have a tower of fields: 

k c k(ax) c k(otl9ct2) c= ••• c k(al5..., a„), 

each one generated from the preceding field by a single element. Assume that 
each af is algebraic over k, i = 1, ..., n. As a special case of our preceding 
remark, we note that ai+1 is algebraic over k(ax,..., af). Hence each step of 
the tower is algebraic. 

Proposition 1.6. Let E = k(a1?..., an) be a finitely generated extension of 
a field fc, and assume af algebraic over k for each i = 1, ..., n. F/zen E is 
finite algebraic over k. 

Proof From the above remarks, we know that E can be obtained as the 
end of a tower each of whose steps is generated by one algebraic element, 
and is therefore finite by Proposition 1.4. We conclude that E is finite over k 
by Corollary 1.3, and that it is algebraic by Proposition 1.1. 

Let C be a certain class of extension fields F c= E. We shall say that G is 
distinguished if it satisfies the following conditions: 

(1) Let k c= F c= E be a tower of fields. The extension k a E is in Q if and 
only if k a F is in e and F c= E is in C. 

(2) If k c= E is in (3, if F is any extension of k, and F, F are both 
contained in some field, then F <= FF is in G. 

(3) If k c= F and k c= F are in C and F, F are subfields of a common field, 
then k c= FF is in C. 
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The diagrams illustrating our properties are as follows: 

(1) (2) (3) 

These lattice diagrams of fields are extremely suggestive in handling exten¬ 
sion fields. 

We observe that (3) follows formally from the first two conditions. 
Indeed, one views EF over k as a tower with steps k cz F a EF. 

As a matter of notation, it is convenient to write E/F instead of F c= E to 
denote an extension. There can be no confusion with factor groups since we 
shall never use the notation E/F to denote such a factor group when E is an 
extension field of F. 

Proposition 1.7. The class of algebraic extensions is distinguished, and so 
is the class of finite extensions. 

Proof Consider first the class of finite extensions. We have already 
proved condition (1). As for (2), assume that E/k is finite, and let F be any 
extension of k. By Proposition 1.5 there exist elements al5...,awe£ such 
that E = k(al9..., an). Then EF = F(au ..., aw), and hence EF/F is finitely 
generated by algebraic elements. Using Proposition 1.6 we conclude that 
EF/F is finite. 

Consider next the class of algebraic extensions, and let 

kczFczE 

be a tower. Assume that E is algebraic over k. Then a fortiori, F is 
algebraic over k and E is algebraic over F. Conversely, assume each step in 
the tower to be algebraic. Let oce E. Then a satisfies an equation 

andn + • • * + #o = 0 

with a( e F, not all a{ = 0. Let F0 = k(an,..., a0). Then F0 is finite over k by 
Proposition 1.6, and a is algebraic over F0. From the tower 

k a F0 = k(an,..., a0) cz F0(a) 

and the fact that each step in this tower is finite, we conclude that F0(a) is 
finite over fc, whence a is algebraic over /c, thereby proving that E is algebraic 
over k and proving condition (1) for algebraic extensions. Condition (2) has 
already been observed to hold, i.e. an element remains algebraic under lifting, 
and hence so does an extension. 



V, §2 ALGEBRAIC CLOSURE 229 

Remark. It is true that finitely generated extensions form a distinguished 
class, but one argument needed to prove part of (1) can be carried out only 
with more machinery than we have at present. Cf. the chapter on transcen¬ 
dental extensions. 

§2. ALGEBRAIC CLOSURE 

In this and the next section we shall deal with embeddings of a field into 
another. We therefore define some terminology. 

Let E be an extension of a field F and let 

be an embedding (i.e. an injective homomorphism) of F into L. Then cr 

induces an isomorphism of F with its image crF, which is sometimes written 
Fa. An embedding t of E in L will be said to be over cr if the restriction of t 
to F is equal to g. We also say that t extends cr. If cr is the identity then we 
say that t is an embedding of E over F. 

These definitions could be made in more general categories, since they 
depend only on diagrams to make sense: 

E—-—► L E—-—► L 

F-► L F 

Remark. Let f(X) e F[X] be a polynomial, and let a be a root of / in 
E. SsLyf(X) = a0 + -- + anXn. Then 

0 = f(a) = a0 + aya + • • • + anan. 

If t extends cr as above, then we see that ta is a root of fa because 

0 = r(/(a)) = ag + a) + • • • + <('ray. 

Here we have written aa instead of cr(a). This exponential notation is 
frequently convenient and will be used again in the sequel. Similarly, we 
write Fa instead of cr(F) or gF. 

In our study of embeddings it will also be useful to have a lemma 
concerning embeddings of algebraic extensions into themselves. For this we 
note that if cr: £ -► L is an embedding over k (i.e. inducing the identity on k), 
then cr can be viewed as a /c-homomorphism of vector spaces, because both 
£, L can be viewed as vector spaces over k. Furthermore cr is injective. 
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Lemma 2.1. Let E be an algebraic extension of k9 and let a: E -► E be an 
embedding of E into itself over k. Then a is an automorphism. 

Proof Since a is injective, it will suffice to prove that a is surjective. Let 
a be an element of £, let p(X) be its irreducible polynomial over fc, and let E' 
be the subfield of E generated by all the roots of p(X) which lie in E. Then 
£' is finitely generated, hence is a finite extension of k. Furthermore, a must 
map a root of p(X) on a root of p(X\ and hence a maps E' into itself. We 
can view a as a /c-homomorphism of vector spaces because a induces the 
identity on k. Since a is injective, its image cr(£') is a subspace of E' having 
the same dimension [£' : k]. Hence cr(£') = £'. Since a e E', it follows that 
a is in the image of a, and our lemma is proved. 

Let £, F be extensions of a field /c, contained in some bigger field L. We 
can form the ring E[F] generated by the elements of F over E. Then E[F] = 
F[E], and EF is the quotient field of this ring. It is clear that the elements of 
E[F] can be written in the form 

a A +--- + anbn 

with a{ e E and bt e F. Hence EF is the field of quotients of these elements. 

Lemma 2.2. Let El9 E2 be extensions of a field k9 contained in some 
bigger field £, and let o be an embedding of E in some field L. Then 

<t(E1E2) = (t(E1)o(E2). 

Proof We apply o to a quotient of elements of the above type, say 

(aib\ + •" + onK \ _ + ••• + a°b° 

\a\b\ + • • * + a'mbj ~ a'fb'f + * * • + Om* 

and see that the image is an element of (j(£1)cr(£2). It is clear that the image 
o(ElE2) is o(El)(j(E2). 

Let k be a field, f(X) a polynomial of degree ^ 1 in k[X~\. We consider 
the problem of finding an extension E of k in which / has a root. If p(X) is 
an irreducible polynomial in k[X~\ which divides f(X)9 then any root of p(X) 
will also be a root of f(X)9 so we may restrict ourselves to irreducible 
polynomials. 

Let p(X) be irreducible, and consider the canonical homomorphism 

a:klXl^klXy{p(X)). 

Then a induces a homomorphism on /c, whose kernel is 0, because every 
nonzero element of k is invertible in k, generates the unit ideal, and 1 does 
not lie in the kernel. Let £ be the image of X under (j, i.e. ^ = o(X) is the 
residue class of X mod p{X). Then 

p°(Z) = P°(x°) = (P(X)Y = o. 
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Hence £ is a root of pa9 and as such is algebraic over ok. We have now 
found an extension of ak, namely crfc(^) in which pa has a root. 

With a minor set-theoretic argument, we shall have: 

Proposition 2.3. Let k be a field and f a polynomial in k[X] of degree 
^ 1. Then there exists an extension E of k in which f has a root. 

Proof We may assume that / = p is irreducible. We have shown that 
there exists a field F and an embedding 

a: k-> F 

such that pa has a root £ in F. Let S be a set whose cardinality is the same 
as that of F — ok (= the complement of ok in F) and which is disjoint from 
k. Let E = fc u S. We can extend o: k -»F to a bijection of F on F. We now 
define a field structure on E. If x, y e E we define 

xy = <r-1(ffW<7(>0). 

x + y = + ff(j'))- 

Restricted to k, our addition and multiplication coincide with the given 
addition and multiplication of our original field k, and it is clear that k is a 
subfield of E. We let a = o~l(£). Then it is also clear that p(a) = 0, as 
desired. 

Corollary 2.4. Let k be a field and let fl9 ..., fn be polynomials in k[X~\ 
of degrees ^ 1. Then there exists an extension E of k in which each f has 
a root, i = 1,..., n. 

Proof Let E{ be an extension in which /x has a root. We may view f2 
as a polynomial over Et. Let E2 be an extension of El in which f2 has a 
root. Proceeding inductively, our corollary follows at once. 

We define a field L to be algebraically closed if every polynomial in L[X] 
of degree ^ 1 has a root in L. 

Theorem 2.5. Let k be a field. Then there exists an algebraically closed field 
containing k as a subfield. 

Proof. We first construct an extension Ex of k in which every polyno¬ 
mial in k[X~\ of degree ^ 1 has a root. One can proceed as follows (Artin). 
To each polynomial / in k[X~\ of degree ^ 1 we associate a letter Xf and we 
let S be the set of all such letters Xf (so that S is in bijection with the set of 
polynomials in /c[X] of degree ^ 1). We form the polynomial ring fc[S], and 
contend that the ideal generated by all the polynomials f(Xf) in fc[S] is not 
the unit ideal. If it is, then there is a finite combination of elements in our 
ideal which is equal to 1: 

gJx(Xh) + --- + gjn(xfn)=\ 
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with g( e fc[S]. For simplicity, write Xt instead of Xfi. The polynomials gt 
will involve actually only a finite number of variables, say Xl9 ..., XN (with 
N ^ n). Our relation then reads 

£gi(Xl,...,XN)fi(Xi)= 1. 
1 = 1 

Let F be a finite extension in which each polynomial /i,...,/n has a root, 
say af is a root of f in F, for i = 1, ..., n. Let a£ = 0 for i > n. Substitute af 
for in our relation. We get 0 = 1, contradiction. 

Let m be a maximal ideal containing the ideal generated by all polyno¬ 
mials f(Xf) in fc[S]. Then /c[S]/m is a field, and we have a canonical map 

<x: fc[S] - /c[S]/m. 

For any polynomial / g /cfA"] of degree ^ 1, the polynomial fa has a root in 
fc[S]/m, which is an extension of ok. Using the same type of set-theoretic 
argument as in Proposition 2.3, we conclude that there exists an extension 

of k in which every polynomial / e /c[2f] of degree ^ 1 has a root in E1. 
Inductively, we can form a sequence of fields 

Et cz E2 c= £3 c= ••• c= En • • 

such that every polynomial in Fw[2f] of degree ^ 1 has a root in £n+1. Let E 
be the union of all fields n = 1, 2, .... Then E is naturally a field, for if 
x, ye E then there exists some n such that x, y e £n, and we can take the 
product or sum xy or x + y in En. This is obviously independent of the 
choice of n such that x, y e En, and defines a field structure on E. Every 
polynomial in £[2f] has its coefficients in some subfield hence a root in 
£n+1, hence a root in £, as desired. 

Corollary 2.6. Let k be a field. There exists an extension ka which is 
algebraic over k and algebraically closed. 

Proof. Let E be an extension of k which is algebraically closed and let 
fca be the union of all subextensions of E, which are algebraic over k. Then 
fca is algebraic over k. If a e E and a is algebraic over /ca then a is algebraic 
over k by Proposition 1.7. If / is a polynomial of degree ^ 1 in k?[_X\ then 
/ has a root a in £, and a is algebraic over /ca. Hence a is in ka and fca is 
algebraically closed. 

We observe that if L is an algebraically closed field, and / e L[X] has 
degree ^ 1, then there exists c e L and ax,..., an e L such that 

/W = c(2r-a1)*--(X-an). 

Indeed, / has a root in L, so there exists g(X) e L[X] such that 

f(X) = (X- xJgiX). 

If deg 0^1, we can repeat this argument inductively, and express / as a 
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product of terms (X — af) (i = 1,..., n) and an element c e L. Note that c is 
the leading coefficient of /, i.e. 

f(X) = cXn + terms of lower degree. 

Hence if the coefficients of / lie in a subfield k of L, then cek. 
Let k be a field and a: k -► L an embedding of k into an algebraically 

closed field L. We are interested in analyzing the extensions of <x to algebraic 
extensions E of k. We begin by considering the special case when E is 
generated by one element. 

Let E = fc(a) where a is algebraic over k. Let 

p(X) = Irr(a, k9 X). 

Let P be a root of pa in L. Given an element of k(oc) = /c[a], we can write it 
in the form /(a) with some polynomial f(X) e k\_X]. We define an extension 
of a by mapping 

/(«wm 
This is in fact well defined, i.e. independent of the choice of polynomial f(X) 
used to express our element in fc[oc]. Indeed, if g(X) is in k[X] and such that 
0(a) = /(<*)> then (0-/)(a) = O, whence p(A) divides g(X) - f(X). Hence 
p°(X) divides g*(X) — fa(X)9 and thus ga(ft) = /*(/?). It is now clear that our 
map is a homomorphism inducing a on k9 and that it is an extension of o to 
k((x). Hence we get: 

Proposition 2.7. The number of possible extensions of o to k(<x) is ^ the 
number of roots of p9 and is equal to the number of distinct roots of p. 

This is an important fact, which we shall analyze more closely later. For 
the moment, we are interested in extensions of o to arbitrary algebraic 
extensions of k. We get them by using Zorn’s lemma. 

Theorem 2.8. Let k be a field, E an algebraic extension of k9 and 
o:k^*L an embedding of k into an algebraically closed field L. Then 
there exists an extension of o to an embedding of E in L. If E is 
algebraically closed and L is algebraic over ok9 then any such extension of 
a is an isomorphism of E onto L. 

Proof. Let S be the set of all pairs (F, t) where F is a subfield of E 
containing fc, and x is an extension of a to an embedding of F in L. If (F, x) 
and (F, x') are such pairs, we write (F, x) ^ (F, x') if F <= F' and x'\F = x. 
Note that S is not empty [it contains (k9 cr)], and is inductively ordered: If 
{(Fi9 Xi)} is a totally ordered subset, we let F = (J Ft and define x on F to be 
equal to xt on each Ff. Then (F, x) is an upper bound for the totally ordered 
subset. Using Zorn’s lemma, let (K9 X) be a maximal element in S. Then X is 
an extension of cr, and we contend that K = E. Otherwise, there exists a e F, 
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a £ K. By what we saw above, our embedding A has an extension to K(a), 
thereby contradicting the maximality of (K, A). This proves that there exists 
an extension of g to E. We denote this extension again by cr. 

If E is algebraically closed, and L is algebraic over crfc, then gE is 
algebraically closed and L is algebraic over cr£, hence L = gE. 

As a corollary, we have a certain uniqueness for an “algebraic closure” of 
a field k. 

Corollary 2.9. Let k be a field and let £, E' be algebraic extensions of k. 
Assume that £, E are algebraically closed. Then there exists an iso¬ 
morphism 

t : £ - F 

of E onto E' inducing the identity on k. 

Proo/. Extend the identity mapping on k to an embedding of E into F 
and apply the theorem. 

We see that an algebraically closed and algebraic extension of k is 
determined up to an isomorphism. Such an extension will be called an 
algebraic closure of /c, and we frequently denote it by ka. In fact, unless 
otherwise specified, we use the symbol /ca only to denote algebraic closure. 

It is now worth while to recall the general situation of isomorphisms and 
automorphisms in general categories. 

Let G be a category, and A, B objects in G. We denote by Iso(^, B) the 
set of isomorphisms of A on B. Suppose there exists at least one such 
isomorphism o: A-+ B, with inverse o~l: B -► A. If (p is an automorphism of 
A, then o o (p: A B is again an isomorphism. If ij/ is an automorphism of 
£, then ij/ o cr: A -> B is again an isomorphism. Furthermore, the groups 
of automorphisms Aut(^) and Aut(P) are isomorphic, under the mappings 

(p\-^GO(po G~\ 

G'1 oil/ o g<t-\4/, 

which are inverse to each other. The isomorphism g o (p o cr-1 is the one 
which makes the following diagram commutative: 

<7 

We have a similar diagram for cr-1 o ^ o g. 

Let t: A -+ B be another isomorphism. Then t_1 o a is an automorphism 
of A, and t o cr"1 is an automorphism of B. Thus two isomorphisms differ by 
an automorphism (of A or B). We see that the group Aut(B) operates on the 
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set Iso(,4, B) on the left, and Aut(A) operates on the set Iso(/l, B) on the 
right. 

We also see that Aut(v4) is determined up to a mapping analogous to a 
conjugation. This is quite different from the type of uniqueness given by 
universal objects in a category. Such objects have only the identity auto¬ 
morphism, and hence are determined up to a unique isomorphism. 

This is not the case with the algebraic closure of a field, which usually 
has a large amount of automorphisms. Most of this chapter and the next is 
devoted to the study of such automorphisms. 

Examples. It will be proved later in this book that the complex numbers 
are algebraically closed. Complex conjugation is an automorphism of C. 
There are many more automorphisms, but the other automorphisms =£ id. are 
not continuous. We shall discuss other possible automorphisms in the chapter 
on transcendental extensions. The subfield of C consisting of all numbers which 
are algebraic over Q is an algebraic closure Qa of Q. It is easy to see that Qa 
is denumerable. In fact, prove the following as an exercise: 

If k is a field which is not finite, then any algebraic extension of k has the 
same cardinality as k. 

If k is denumerable, one can first enumerate all polynomials in k, then 
enumerate finite extensions by their degree, and finally enumerate the cardi¬ 
nality of an arbitrary algebraic extension. We leave the counting details as 
exercises. 

In particular, Qa # C. If R is the field of real numbers, then Ra = C. 
If k is a finite field, then algebraic closure ka of k is denumerable. We 

shall in fact describe in great detail the nature of algebraic extensions of 
finite fields later in this chapter. 

Not all interesting fields are subfields of the complex numbers. For 
instance, one wants to investigate the algebraic extensions of a field C(X) 
where A" is a variable over C. The study of these extensions amounts to the 
study of ramified coverings of the sphere (viewed as a Riemann surface), and 
in fact one has precise information concerning the nature of such extensions, 
because one knows the fundamental group of the sphere from which a finite 
number of points has been deleted. We shall mention this example again 
later when we discuss Galois groups. 

§3. SPLITTING FIELDS AND 
NORMAL EXTENSIONS 

Let k be a field and let / be a polynomial in k[_X~\ of degree ^ 1. By a 
splitting field K of / we shall mean an extension K of k such that / splits 
into linear factors in K, i.e. 
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/W = c(^-a1)“*(^-an) 

with a, g X, i = 1, n, and such that X = k(ctl9.an) is generated by all 
the roots of /. 

Theorem 3.1. Let K be a splitting field of the polynomial f(X) e fc[X]. If 
E is another splitting field of /, then there exists an isomorphism cr: £ -► K 
inducing the identity on k. IfkczKcz fca, where ka is an algebraic closure 
of k, then any embedding of E in k* inducing the identity on k must be an 
isomorphism of E onto K. 

Proof Let Xa be an algebraic closure of X. Then Xa is algebraic over 
fc, hence is an algebraic closure of k. By Theorem 2.8 there exists an 
embedding 

a:£-Xa 

inducing the identity on k. We have a factorization 

/(X) = c(X- A) •••(*-A) 

with ft g £, i = 1, ..., n. The leading coefficient c lies in k. We obtain 

f(X) = f%X) = c(X - aft) • • • (X - aft). 

We have unique factorization in Xa[X]. Since / has a factorization 

f(X) = c(X-*l)--(X-*n) 

in X[X], it follows that (aft,aft) differs from (a1?..., a„) by a permuta¬ 
tion. From this we conclude that aft g X for i= 1, ..., n and hence that 
oE a X. But X = fe(a1,..., a„) = k(oPl9..., aj?w), and hence oE = X, because 

This proves our theorem. 

We note that a polynomial /(X) g fc[X] always has a splitting field, 
namely the field generated by its roots in a given algebraic closure fca of k. 

Let / be a set of indices and let {fi}i€l be a family of polynomials in 
fc[X], of degrees ^1. By a splitting field for this family we shall mean an 
extension X of k such that every f splits in linear factors in X[X], and X is 
generated by all the roots of all the polynomials fh i g /. In most applica¬ 
tions we deal with a finite indexing set /, but it is becoming increasingly 
important to consider infinite algebraic extensions, and so we shall deal with 
them fairly systematically. One should also observe that the proofs we shall 
give for various statements would not be simpler if we restricted ourselves to 
the finite case. 

Let fca be an algebraic closure of k, and let Xf be a splitting field of f in 
fca. Then the compositum of the X, is a splitting field for our family, 
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since the two conditions defining a splitting field are immediately satisfied. 
Furthermore Theorem 3.1 extends at once to the infinite case: 

Corollary 3.2. Let K be a splitting field for the family {fi}ieI and let E 
be another splitting field. Any embedding of E into Xa inducing the 
identity on k gives an isomorphism of E onto X. 

Proof Let the notation be as above. Note that E contains a unique 
splitting field of f and X contains a unique splitting field Xf of f. Any 
embedding o of E into Xa must map E{ onto Kt by Theorem 3.1, and hence 
maps E into X. Since X is the compositum of the fields Kh our map cr must 
send E onto X and hence induces an isomorphism of E onto X. 

Remark. If / is finite, and our polynomials are fu ..., /„, then a split¬ 
ting field for them is a splitting field for the single polynomial f(X) = 
fi(X) **• fn(X) obtained by taking the product. However, even when dealing 
with finite extensions only, it is convenient to deal simultaneously with sets 
of polynomials rather than a single one. 

Theorem 3.3. Let K be an algebraic extension of k, contained in an 
algebraic closure ka of k. Then the following conditions are equivalent: 

NOR 1. Every embedding of K in k* over k induces an automorphism of K. 

NOR 2. K is the splitting field of a family of polynomials in k[X]. 

NOR 3. Every irreducible polynomial of /c[X] which has a root in K 
splits into linear factors in K. 

Proof Assume NOR 1. Let a be an element of K and let pa(X) be its 
irreducible polynomial over k. Let /? be a root of pa in ka. There exists an 
isomorphism of fc(a) on k(f) over k, mapping a on /?. Extend this iso¬ 
morphism to an embedding of K in ka. This extension is an automorphism cr 
of K by hypothesis, hence era = /? lies in K. Hence every root of pa lies in X, 
and pa splits in linear factors in K[X~\. Hence K is the splitting field of the 
family {pa}aex as a ranges over all elements of X, and NOR 2 is satisfied. 

Conversely, assume NOR 2, and let {f}ieI be the family of polynomials 
of which X is the splitting field. If a is a root of some f in X, then for any 
embedding a of X in fca over k we know that era is a root of f. Since X is 
generated by the roots of all the polynomials fh it follows that cr maps X 
into itself. We now apply Lemma 2.1 to conclude that cr is an automorphism. 

Our proof that NOR 1 implies NOR 2 also shows that NOR 3 is 
satisfied. Conversely, assume NOR 3. Let cr be an embedding of X in ka 
over k. Let a e X and let p(X) be its irreducible polynomial over k. If cr is 
an embedding of X in fca over k then cr maps a on a root ft of p(X\ and by 
hypothesis f lies in X. Hence era lies in X, and cr maps X into itself. By 
Lemma 2.1, it follows that cr is an automorphism. 
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An extension K of k satisfying the hypotheses NOR 1, NOR 2, NOR 3 
will be said to be normal. It is not true that the class of normal extensions is 
distinguished. For instance, it is easily shown that an extension of degree 2 
is normal, but the extension Q(^/2) of the rational numbers is not normal 
(the complex roots of X4 — 2 are not in it), and yet this extension is obtained 
by successive extensions of degree 2, namely 

E = Q(^2) => F = Q, 

where 

F = Q(a), a = and E = F(N/a). 

Thus a tower of normal extensions is not necessarily normal. However, we 
still have some of the properties: 

Theorem 3.4. Normal extensions remain normal under lifting. If 

K 3 E => k and K is normal over k, then K is normal over E. If Kl9 K2 

are normal over k and are contained in some field L, then KlK2 is normal 

over k, and so is Kx nK2. 

Proof For our first assertion, let K be normal over k, let F be any 
extension of k, and assume K, F are contained in some bigger field. Let o be 
an embedding of KF over F (in Fa). Then a induces the identity on F, hence 
on fc, and by hypothesis its restriction to K maps K into itself. We get 
(KF)a = KaFa = KF whence KF is normal over F. 

Assume that K => E => k and that K is normal over k. Let o be an 
embedding of K over E. Then a is also an embedding of K over fc, and 
our assertion follows by definition. 

Finally, if Kl9 K2 are normal over fc, then for any embedding cr of KtK2 

over k we have 

(j(/C1K2) = (T(X1MX2) 

and our assertion again follows from the hypothesis. The assertion concern¬ 
ing the intersection is true because 

a(KlnK2) = a(Kl)n(r(K2). 

We observe that if K is a finitely generated normal extension of fc, say 

K = k(otl9..., a„), 

and Pi,...,pn are the respective irreducible polynomials of oti9...,ocn over 
k then K is already the splitting field of the finite family Pi,...,pn. We 
shall investigate later when K is the splitting field of a single irreducible 
polynomial. 
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§4. SEPARABLE EXTENSIONS 

Let £ be an algebraic extension of a field F and let 

a:F->L 

be an embedding of F in an algebraically closed field L. We investigate more 
closely extensions of o to E. Any such extension of o maps £ on a subfield 
of L which is algebraic over gF. Hence for our purposes, we shall assume 
that L is algebraic over gF, hence is equal to an algebraic closure of gF. 

Let Sa be the set of extensions of g to an embedding of E in L. 
Let L be another algebraically closed field, and let t: F -> L be an 

embedding. We assume as before that L' is an algebraic closure of t£. 
By Theorem 2.8, there exists an isomorphism A: L -► L extending the map 
t o cr_1 applied to the field gF. This is illustrated in the following diagram: 

L <--- L 

♦-£ —a—> 
I 

t F <-F-> gF 
x a 

We let Sz be the set of embeddings of E in L extending t. 
If g* e Sa is an extension of g to an embedding of E in L, then A o g* is 

an extension of x to an embedding of E into L', because for the restriction to 
F we have 

A o <7* = x o cr-1 o a = t. 

Thus A induces a mapping from into ST. It is clear that the inverse 
mapping is induced by A-1, and hence that Sa9 Sz are in bijection under the 
mapping 

(j*h2o <t*. 

In particular, the cardinality of Sa9 Sz is the same. Thus this cardinality 
depends only on the extension E/F9 and will be denoted by 

We shall call it the separable degree of E over F. It is mostly interesting 
when E/F is finite. 

Theorem 4.1. Let £ => F => k be a tower. Then 

[£:/c]s = [£:£]s[£:fc]s. 

Furthermore, if E is finite over k9 then [£: k]s is finite and 
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The separable degree is at most equal to the degree. 

Proof. Let a: k -► L be an embedding of k in an algebraically closed field 
L. Let {crf}ie/ be the family of distinct extensions of o to F, and for each i, let 
{t^} be the family of distinct extensions of crf to E. By what we saw before, 
each ot has precisely [F: F]s extensions to embeddings of E in L. The set of 
embeddings {t0} contains precisely 

[F:F]s[F:/c]s 

elements. Any embedding of E into L over a must be one of the xij9 and thus 
we see that the first formula holds, i.e. we have multiplicativity in towers. 

As to the second, let us assume that E/k is finite. Then we can obtain E 
as a tower of extensions, each step being generated by one element: 

k c= /c(ax) c: k(ocl9 a2) <= ••• c: /c(a1?..., ar) = E. 

If we define inductively Fv+1 = Fv(av+1) then by Proposition 2.7, 

[Fv(av+i): ^ [Fvfav+i): 

Thus our inequality is true in each step of the tower. By multiplicativity, it 
follows that the inequality is true for the extension E/k, as was to be shown. 

Corollary 4.2. Let E be finite over k, and E => F z> k. The equality 

[F:fc]s = [F:fc] 

holds if and only if the corresponding equality holds in each step of the 
tower, i.e. for E/F and F/k. 

Proof. Clear. 

It will be shown later (and it is not difficult to show) that [F: k]s divides 
the degree [F: fc] when F is finite over k. We define [F: to be the 
quotient, so that 

[F: fc]s[F: k]t = [F: k]. 

It then follows from the multiplicativity of the separable degree and of the 
degree in towers that the symbol [F: /c]f is also multiplicative in towers. We 
shall deal with it at greater length in §6. 

Let F be a finite extension of k. We shall say that F is separable over k if 
[F: k]s = [F: fc]. 

An element a algebraic over k is said to be separable over k if fc(a) is 
separable over k. We see that this condition is equivalent to saying that the 
irreducible polynomial Irr(a, k, X) has no multiple roots. 

A polynomial f{X)ek\_X~\ is called separable if it has no multiple roots. 
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If a is a root of a separable polynomial g(X)ek\_X~\ then the irreducible 
polynomial of a over k divides g and hence a is separable over k. 

We note that if k C F C K and a e K is separable over k, then a is separable 
overF. Indeed, if/is a separable polynomial in k[X] such that/(a) = 0, then 
/ also has coefficients in F, and thus a is separable over F. (We may say that a 
separable element remains separable under lifting.) 

Theorem 4.3. Let E be a finite extension of k. Then E is separable over k 
if and only if each element of E is separable over k. 

Proof. Assume E is separable over k and let oce E. We consider the 
tower 

k c= fc(a) c= E. 

By Corollary 4.2, we must have [k(a):k\ = [k(a):k]s whence a is separable 
over k. Conversely, assume that each element of E is separable over k. We 
can write E = k(aly. .., an) where each a, is separable over k. We consider 
the tower 

k a /c(ax) c= k(otl9 a2) c ••• c k(otu ..., a„). 

Since each af is separable over k, each oct is separable over /c(al5..., a^) for 
i ^ 2. Hence by the tower theorem, it follows that E is separable over k. 

We observe that our last argument shows: If E is generated by a finite 
number of elements, each of which is separable over k, then E is separable 
over k. 

Let E be an arbitrary algebraic extension of k. We define E to be 
separable over k if every finitely generated subextension is separable over 
/c, i.e., if every extension k(a1,..., ocn) with olx ,..., a„ e E is separable 
over k. 

Theorem 4.4. Let E be an algebraic extension of fc, generated by a 
family of elements {(Xi}ieI. If each at is separable over k then E is 
separable over k. 

Proof Every element of E lies in some finitely generated subfield 

fc(afi,...,ain), 

and as we remarked above, each such subfield is separable over k. Hence 
every element of E is separable over k by Theorem 4.3, and this concludes 
the proof. 

Theorem 4.5. Separable extensions form a distinguished class of exten¬ 
sions. 
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Proof. Assume that E is separable over k and let E F k. Every 
element of E is separable over F, and every element of F is an element of F, 
so separable over k. Hence each step in the tower is separable. Conversely, 
assume that E z> F => k is some extension such that E/F is separable and F/k 
is separable. If E is finite over k, then we can use Corollary 4.2. Namely, we 
have an equality of the separable degree and the degree in each step of the tower, 
whence an equality for E over k by multiplicativity. 

If E is infinite, let a g E. Then a is a root of a separable polynomial f(X) 
with coefficients in F. Let these coefficients be an,...9a0. Let F0 = 
k(an9..., a0). Then F0 is separable over /c, and a is separable over F0. We 
now deal with the finite tower 

k <= F0 c F0(a) 

and we therefore conclude that F0(a) is separable over /c, hence that a 
is separable over k. This proves condition (1) in the definition of 
“distinguished.” 

Let E be separable over k. Let F be any extension of k, and assume that 
F, F are both subfields of some field. Every element of F is separable over /c, 
whence separable over F. Since FF is generated over F by all the elements 
of F, it follows that FF is separable over F, by Theorem 4.4. This proves 
condition (2) in the definition of “distinguished,” and concludes the proof of 
our theorem. 

Let F be a finite extension of k. The intersection of all normal extensions 
K of k (in an algebraic closure Fa) containing F is a normal extension of k 
which contains F, and is obviously the smallest normal extension of k 
containing F. If <rx,..., on are the distinct embeddings of F in Fa, then the 
extension 

K = (d1F)((72F)---KF), 

which is the compositum of all these embeddings, is a normal extension of fc, 
because for any embedding of it, say t, we can apply t to each extension 
crfF. Then ..., xon) is a permutation of (ou ..., on) and thus t maps K 
into itself. Any normal extension of k containing F must contain otE for 
each i, and thus the smallest normal extension of k containing E is precisely 
equal to the compositum 

(fliF) (<r„F). 

If F is separable over fc, then from Theorem 4.5 and induction we 
conclude that the smallest normal extension of k containing F is also separ¬ 
able over k. 

Similar results hold for an infinite algebraic extension F of fe, taking an 
infinite compositum. 
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In light of Theorem 4.5, the compositum of all separable extensions of a 
field k in a given algebraic closure ka is a separable extension, which will be 
denoted by ks or fcscp, and will be called the separable closure of k. As a 
matter of terminology, if E is an algebraic extension of k, and a any 
embedding of E in fca over fc, then we call oE a conjugate of E in fca. We can 
say that the smallest normal extension of k containing E is the compositum of 
all the conjugates of E in £a. 

Let a be algebraic over k. If ,..., or are the distinct embeddings of fc(a) 
into fca over fc, then we call c^a,crra the conjugates of a in fc*. These 
elements are simply the distinct roots of the irreducible polynomial of a over 
k. The smallest normal extension of k containing one of these conjugates is 
simply fc(<j1a,..., ora). 

Theorem 4.6. (Primitive Element Theorem). Let E be a finite extension 
of a field k. There exists an element a e E such that E = k(a) if and only 
if there exists only a finite number of fields F such that k cz F a E. If E 
is separable over k, then there exists such an element a. 

Proof If k is finite, then we know that the multiplicative group of E is 
generated by one element, which will therefore also generate E over k. We 
assume that k is infinite. 

Assume that there is only a finite number of fields, intermediate between 
k and E. Let a, f e E. As c ranges over elements of fc, we can only have 
a finite number of fields of type fc(a + cf). Hence there exist elements cu 
c2 e k with cx # c2 such that 

fc(a + clfi) = k(a + c2/J). 

Note that a + cx/? and a + c2P are in the same field, whence so is (cl — c2)/J, 
and hence so is /?. Thus a is also in that field, and we see that fc(a, ft) can be 
generated by one element. 

Proceeding inductively, if E = k(oc j,..., an) then there will exist elements 
c2, ..., cn e k such that 

e = m 
where £ = ocx + c2a2 H-+ c„an. This proves half of our theorem. 

Conversely, assume that E = fc(a) for some a, and let f(X) = Irr(a, k, A'). 
Let k a F a E. Let = Irr(a, F, A). Then divides /. We have unique 
factorization in £[A], and any polynomial in E[X~\ which has leading 
coefficient 1 and divides f(X) is equal to a product of factors (X — a,) where 
«!,..., an are the roots of/in a fixed algebraic closure. Hence there is only a 
finite number of such polynomials. Thus we get a mapping 

F\-^gF 

from the set of intermediate fields into a finite set of polynomials. Let F0 be 



244 ALGEBRAIC EXTENSIONS V, §5 

the subfield of F generated over k by the coefficients of gF(X). Then gF has 
coefficients in F0 and is irreducible over F0 since it is irreducible over F. 
Hence the degree of a over F0 is the same as the degree of a over F. Hence 
F = F0. Thus our field F is uniquely determined by its associated poly¬ 
nomials gF, and our mapping is therefore injective. This proves the first 
assertion of the theorem. 

As to the statement concerning separable extensions, using induction, 
we may assume without loss of generality that E = k(a, /?) where a, /? are 
separable over k. Let al9an be the distinct embeddings of k(a, fi) in fca 
over fc. Let 

P(X) = n (Ofl + Xatp - Oja - Xcfi). 
i*j 

Then P(X) is not the zero polynomial, and hence there exists c ek such 
that P(c) # 0. Then the elements <7f(a + cfi) (i = 1,n) are distinct, whence 
fc(a + c/?) has degree at least n over k. But n = [/c(a, /?): k], and hence 

as desired. 

k(a, j?) = k(a + cj8), 

If E = k(a), then we say that a is a primitive element of E (over k). 

§5. FINITE FIELDS 

We have developed enough general theorems to describe the structure of 
finite fields. This is interesting for its own sake, and also gives us examples 
for the general theory. 

Let F be a finite field with q elements. As we have noted previously, we 
have a homomorphism 

Z-F 

sending 1 on 1, whose kernel cannot be 0, and hence is a principal ideal 
generated by a prime number p since Z/pZ is embedded in F and F has no 
divisors of zero. Thus F has characteristic p, and contains a field isomorphic 
to Z/pZ. 

We remark that Z/pZ has no automorphisms other than the identity. 
Indeed, any automorphism must map 1 on 1, hence leaves every element 
fixed because 1 generates ZjpZ additively. We identify Z/pZ with its image 
in F. Then F is a vector space over Z/pZ, and this vector space must be 
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finite since F is finite. Let its degree be n. Let cocon be a basis for F 
over Z/pZ. Every element of F has a unique expression of the form 

+ ••• + an^n 

with at e Z/pZ. Hence q = pn. 
The multiplicative group F* of F has order q — 1. Every a e F* satisfies 

the equation Xq~l = 1. Hence every element of F satisfies the equation 

f(X) = Xq - X = 0. 

This implies that the polynomial f(X) has q distinct roots in F, namely all 
elements of F. Hence / splits into factors of degree 1 in F, namely 

xq - x = n (x - 4 
a e F 

In particular, F is a splitting field for /. But a splitting field is uniquely 
determined up to an isomorphism. Hence if a finite field of order pn exists, it 
is uniquely determined, up to an isomorphism, as the splitting field of 
Xpn - X over Z/pZ. 

As a matter of notation, we denote Z/pZ by Fp. Let n be an integer ^ 1 
and consider the splitting field of 

xpn - X = f(X) 

in an algebraic closure Fp. We contend that this splitting field is the set of 
roots of f(X) in Fp. Indeed, let a, ft be roots. Then 

(a + P)pn - (a + ft) = a*" + Pp" - a - fi = 0, 

whence a + ft is a root. Also, 

(ocp)pn — ocft = oipnppn -olP = olP-(xP = 0, 

and *p is a root. Note that 0, 1 are roots of f(X). If p # 0 then 

(p-xyn - r1 = (PpTl ~ P~l = 0 

so that P 1 is a root. Finally, 

(-pr-(-p) = (-irppn + p.. 

If p is odd, then (— l)p" = — 1 and we see that — p is a root. If p is even then 
— 1 = 1 (in Z/2Z) and hence - P = P is a root. This proves our contention. 

The derivative of f(X) is 

f'(X) = pnXpn~l - 1 = -1. 

Hence /(A') has no multiple roots, and therefore has pn distinct roots in 
Fp. Hence its splitting field has exactly pn elements. We summarize our 
results: 
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Theorem 5.1. For each prime p and each integer n ^ 1 there exists a finite 
field of order pn denoted by Fpn, uniquely determined as a subfield of an 
algebraic closure Fp. It is the splitting field of the polynomial 

Xpn - X9 

and its elements are the roots of this polynomial Every finite field is 
isomorphic to exactly one field Fpn. 

We usually write pn = q and Fq instead of Fpn. 

Corollary 5.2. Let be a finite field. Let n be an integer ^1. In a 
given algebraic closure F*, there exists one and only one extension of Fq of 
degree n, and this extension is the field F^. 

Proof Let q = pm. Then qn = pmn. The splitting field of Xqn — X is 
precisely Fpmn and has degree mn over Z/pZ. Since F^ has degree m over 
Z/pZ, it follows that F9„ has degree n over F^. Conversely, any extension of 
degree n over Fq has degree mn over Fp and hence must be Fpm„. This proves 
our corollary. 

Theorem 5.3. The multiplicative group of a finite field is cyclic. 

Proof. This has already been proved in Chapter IV, Theorem 1.9. 

We shall determine all automorphisms of a finite field. 
Let q = pn and let F^ be the finite field with q elements. We consider the 

Frobenius mapping 

<P- F, - F, 

such that cp(x) = xp. Then cp is a homomorphism, and its kernel is 0 since Fq 
is a field. Hence cp is injective. Since F^ is finite, it follows that cp is 
surjective, and hence that cp is an isomorphism. We note that it leaves Fp 
fixed. 

Theorem 5.4. The group of automorphisms of Fq is cyclic of degree n, 
generated by cp. 

Proof. Let G be the group generated by cp. We note that cpn = id 
because cpn(x) = xpn = x for all x e Fq. Hence n is an exponent for cp. Let d 
be the period of <p, so d ^ 1. We have cpd(x) = xpd for all x e Fq. Hence each 
x e Fq is a root of the equation 

xpd - X = 0. 

This equation has at most pd roots. It follows that d ^ n, whence d = n. 
There remains to be proved that G is the group of all automorphisms of 

Fq. Any automorphism of F^ must leave Fp fixed. Hence it is an auto- 
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morphism of F€ over Fp. By Theorem 4.1, the number of such auto¬ 
morphisms is ^ n. Hence Fq cannot have any other automorphisms except 
for those of G. 

Theorem 5.5. Let m, n be integers ^ 1. Then in any algebraic closure of 
Fp, the subfield F^ is contained in Fpm if and only if n divides m. If that is the 
case, let q = pn, and let m = nd. Then F^ is normal and separable over Fq, 
and the group of automorphisms of¥pm over ¥q is cyclic of order d, generated 
by cpn. 

Proof All the statements are trivial consequences of what has already been 
proved and will be left to the reader. 

§6. INSEPARABLE EXTENSIONS 

This section is of a fairly technical nature, and can be omitted without 
impairing the understanding of most of the rest of the book. 

We begin with some remarks supplementing those of Proposition 2.7. 
Let f(X) = (X — oc)mg(X) be a polynomial in and assume X — oc 

does not divide g(X). We recall that m is called the multiplicity of a in /. 
We say that a is a multiple root of / if m > 1. Otherwise, we say that a is a 
simple root. 

Proposition 6.1. Let a be algebraic over k, a e /ca, and let 

f(X) = Irr(a, /c, X). 

If char k = 0, then all roots of f have multiplicity 1 (/ is separable). If 

char k = p > 0, 

then there exists an integer p^O such that every root of f has multiplicity 
pWe have 

[k(a): k] = p^\_k(ot): k]s, 

and ap" is separable over k. 

Proof Let ax, ..., ar be the distinct roots of / in ka and let a = ax. Let 
m be the multiplicity of a in /. Given 1 ^ i ^ r, there exists an isomorphism 

c\ k(ot) -► k(0Li) 

over k such that era = af. Extend a to an automorphism of fca and denote 
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this extension also by a. Since / has coefficients in k we have fa = /. We 
note that 

r 

f(X) = El (X- aaj)m> 
j= 1 

if is the multiplicity of atj in /. By unique factorization, we conclude that 
mi = ml and hence that all are equal to the same integer m. 

Consider the derivative f'(X). If / and /' have a root in common, then a 

is a root of a polynomial of lower degree than deg/. This is impossible 
unless deg/' = —oo, in other words, /' is identically 0. If the characteristic 
is 0, this cannot happen. Hence if / has multiple roots, we are in characteris¬ 
tic p, and f(X) = g(Xp) for some polynomial g(X) e k\_X~\. Therefore <xp is a 
root of a polynomial g whose degree is < deg /. Proceeding inductively, we 
take the smallest integer p ^ 0 such that ap" is the root of a separable 
polynomial in k[X~\, namely the polynomial h such that 

nx)=h(xn 
Comparing the degree of / and g, we conclude that 

(7c(a): fc( ap)] = p. 

Inductively, we find 

W:fcK)] = /. 

Since h has roots of multiplicity 1, we know that 

WO :*], = [*(« 

and comparing the degree of / and the degree of h, we see that the num¬ 
ber of distinct roots of / is equal to the number of distinct roots of h. 
Hence 

[fe(a):fc]s = [fc(an:fe]s. 

From this our formula for the degree follows by multiplicativity, and our 
proposition is proved. We note that the roots of h are 

Corollary 6.2. For any finite extension E of k, the separable degree 
[£: k]s divides the degree [E : k]. The quotient is 1 if the characteristic is 
0, and a power of p if the characteristic is p > 0. 

Proof. We decompose E/k into a tower, each step being generated by 
one element, and apply Proposition 6.1, together with the multiplicativity of 
our indices in towers. 

If E/K is finite, we call the quotient 
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[£:fc] 

the inseparable degree (or degree of inseparability), and denote it by [£: fc]f as 
in §4. We have 

[£:fe]s[£:fe]f = [£:fe]. 

Corollary 6.3. A finite extension is separable if and only if [£: /c], = 1. 

Proof By definition. 

Corollary 6.4 If E =) F =d k are two finite extensions, t/ien 

LE:k-]i = lE:FUF:k']i. 

Proof. Immediate by Theorem 4.1. 

We now assume throughout that k is a field of characteristic p > 0. 
An element a algebraic over k is said to be purely inseparable over k if 

there exists an integer n ^ 0 such that ap" lies in k. 
Let E be an algebraic extension of k. We contend that the following 

conditions are equivalent: 

P. Ins. 1. We have [£ : k]s = 1. 

P. Ins. 2. Every element a of £ is purely inseparable over k. 

P. Ins. 3. For every a e E, the irreducible equation of a over k is of type 
Xpn — a = 0 with some n}z0 and ae k. 

P. Ins. 4. There exists a set of generators {ajlg/ of E over k such that 
each af is purely inseparable over k. 

To prove the equivalence, assume P. Ins. 1. Let a e E. By Theorem 4.1, 
we conclude that [fc(a): k]s = 1. Let f(X) = Irr(a, /c, X). Then / has only one 
root since 

[/c(a): k]s 

is equal to the number of distinct roots of f(X). Let m = [fc(a):fc]. Then 
deg/=m, and the factorization of / over k(oc) is f(X) = (X — oc)m. Write 
m = pnr where r is an integer prime to p. Then 

f(X) = (Xpn - otpnY 

= Xpnr - mpnXpn{r~l) + lower terms. 

Since the coefficients of f(X) lie in k, it follows that 

mpn 
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lies in fc, and since r # 0 (in fc), then ctpn lies in k. Let a = ap". Then a is 
a root of the polynomial Xpn — a, which divides f(X). It follows that 
f(X) = Xp" - * 

Essentially the same argument as the preceding one shows that P. Ins. 2 
implies P. Ins. 3. It is trivial that the third condition implies the fourth. 

Finally, assume P. Ins. 4. Let £ be an extension generated by purely 
inseparable elements oct (i e /). Any embedding of E over k maps oct on a root 
of 

fi(X) = Irr(af, fc, X). 

But fi(X) divides some polynomial Xpn — a, which has only one root. Hence 
any embedding of E over k is the identity on each af, whence the identity on 
£, and we conclude that [£: k]s = 1, as desired. 

An extension satisfying the above four properties will be called purely 
inseparable. 

Proposition 6.5. Purely inseparable extensions form a distinguished class 
of extensions. 

Proof The tower theorem is clear from Theorem 4.1, and the lifting 
property is clear from condition P. Ins. 4. 

Proposition 6.6. Let E be an algebraic extension of k. Let E0 be the 
compositum of all subfields F of E such that F => k and F is separable 
over k. Then E0 is separable over k, and E is purely inseparable over 

E0- 

Proof Since separable extensions form a distinguished class, we know 
that E0 is separable over k. In fact, E0 consists of all elements of E which 
are separable over k. By Proposition 6.1, given ae£ there exists a power of 
p, say pn such that ocpn is separable over k. Hence E is purely inseparable 
over £0, as was to be shown. 

Corollary 6.7. If an algebraic extension E of k is both separable and 
purely inseparable, then E = k. 

Proof Obvious. 

Corollary 6.8. Let K be normal over k and let K0 be its maximal separa¬ 
ble subextension. Then K0 is also normal over k. 

Proof. Let a be an embedding of K0 in Ka over k and extend a to an 
embedding of K. Then a is an automorphism of K. Furthermore, oK0 is 
separable over k, hence is contained in X0, since K0 is the maximal separa¬ 
ble subfield. Hence oK0 = K0, as contended. 
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Corollary 6.9. Let F, F be two finite extensions of fc, and assume that 
E/k is separable, F/k is purely inseparable. Assume E, F are subfields of a 
common field. 77zen 

[FF:F] = [F:fc] = [FF:fc]s, 

[FF: F] = [F: k] = [FF : k]t. 

Proof The picture is as follows: 

The proof is a trivial juggling of indices, using the corollaries of Proposition 
6.1. We leave it as an exercise. 

Corollary 6.10. Let Ep denote the field of all elements xp, x e F. Let E 
be a finite extension of k. If Epk = F, then E is separable over k. If E is 
separable over k, then Epnk = F for all n^ 1. 

Proof Let F0 be the maximal separable subfield of F. Assume Epk = F. 
Let F = k(al5..., a„). Since F is purely inseparable over F0 there exists m 
such that oafm e F0 for each i=l,...,n. Hence Epm c= F0. But Epmk = F 
whence F = F0 is separable over k. Conversely, assume that F is separable 
over k. Then F is separable over Epk. Since F is also purely inseparable over 
Epk we conclude that E = Epk. Similarly we get F = Fp"k for n ^ 1, as was 
to be shown. 

Proposition 6.6 shows that any algebraic extension can be decomposed 
into a tower consisting of a maximal separable subextension and a purely 
inseparable step above it. Usually, one cannot reverse the order of the 
tower. However, there is an important case when it can be done. 

Proposition 6.11. Let K be normal over k. Let G be its group of automorphisms 
over k. Let K° be the fixed field of G (see Chapter VI, §1). Then KG is purely 
inseparable over k, and K is separable over K°. If Ko is the maximal separa¬ 
ble subextension of K, then K — KGKo and Ko n KG = k. 

Proof Let a e KG. Let t be an embedding of fc(a) over k in Ka and 
extend t to an embedding of Kf which we denote also by t. Then t is an 
automorphism of K because K is normal over k. By definition, ta = a and 
hence t is the identity on k(a). Hence [k(a): k]s = 1 and a is purely in¬ 
separable. Thus KG is purely inseparable over k. The intersection of K0 
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and Kg is both separable and purely inseparable over fc, and hence is equal 
to k. 

To prove that K is separable over KG, assume first that K is finite over 
fc, and hence that G is finite, by Theorem 4.1. Let ole K. Let al9 ...9ar be a 
maximal subset of elements of G such that the elements 

a, W 

are distinct, and such that o\ is the identity, and a is a root of the polynomial 

f(X) =t\(X- <Tja). 
£=1 

For any t e G we note that fx = f because t permutes the roots. We note 
that / is separable, and that its coefficients are in the fixed field KG. Hence a 
is separable over KG. The reduction of the infinite case to the finite case is 
done by observing that every ole K is contained in some finite normal 
subextension of K. We leave the details to the reader. 

We now have the following picture: 

K 

K 

K0K G 

G 

K0nKG = k 

By Proposition 6.6, K is purely inseparable over K0, hence purely insepara¬ 
ble over K0KG. Furthermore, K is separable over KG, hence separable over 
K0KG. Hence K = K0KG, thereby proving our proposition. 

We see that every normal extension decomposes into a compositum of 
a purely inseparable and a separable extension. We shall define a Galois ex¬ 
tension in the next chapter to be a normal separable extension. Then K0 
is Galois over k and the normal extension is decomposed into a Galois and a 
purely inseparable extension. The group G is called the Galois group of the 
extension K/k. 

A field k is called perfect if kp = k. (Every field of characteristic zero is 
also called perfect.) 

Corollary 6.12. If k is perfect, then every algebraic extension of k is 
separable, and every algebraic extension of k is perfect. 

Proof Every finite algebraic extension is contained in a normal exten¬ 
sion, and we apply Proposition 6.11 to get what we want. 
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EXERCISES 

1. Let F = Q(a), where a is a root of the equation 

a3 + a2 + a + 2 = 0. 

Express (a2 + a + l)(a2 + a) and (a — l)-1 in the form 

act2 + bet + c 

with a, b, c e Q. 

2. Let E = F(a) where a is algebraic over F, of odd degree. Show that E = F(a2). 

3. Let a and /? be two elements which are algebraic over F. Let /(X) = Irr(a, F, X) 
and g(X) — Irr(/?, F, X). Suppose that deg / and deg g are relatively prime. Show 
that g is irreducible in the polynomial ring F(a)[X]. 

4. Let a be the real positive fourth root of 2. Find all intermediate fields in the 
extension Q(a) of Q. 

5. If a is a complex root of X6 + X3 + 1, find all homomorphisms a\ Q(a) -+ C. 
[Hint: The polynomial is a factor of X9 — L] 

6. Show that Nfl + y/3 is algebraic over Q, of degree 4. 

7. Let E, F be two finite extensions of a field /c, contained in a larger field K. Show 
that 

[FF: fc] ^ [F: k'] [F: k\ 

If [F: /c] and [F: k] are relatively prime, show that one has an equality sign in 
the above relation. 

8. Let /(X) E k[X] be a polynomial of degree n. Let K be its splitting field. Show 
that [K:k] divides n\ 

9. Find the splitting field of XpS — 1 over the field Z/pZ. 

10. Let a be a real number such that a4 = 5. 
(a) Show that Q(ia2) is normal over Q. 
(b) Show that Q(a + ia) is normal over Q(ia2). 
(c) Show that Q(a + ia) is not normal over Q. 

11. Describe the splitting fields of the following polynomials over Q, and find the 
degree of each such splitting field. 
(a) X2 - 2 (b) X2 - 1 
(c) X3 - 2 (d) (X3 - 2)(X2 - 2) 
(e) X2 + X + 1 (f) X6 + X3 -fl 

(g) *5 - 7 

12. Let K be a finite field with p” elements. Show that every element of K has a 
unique p-th root in K. 



254 ALGEBRAIC EXTENSIONS V, Ex 

13. If the roots of a monic polynomial f(X) E k[X] in some splitting field are distinct, 
and form a field, then char k = p and f(X) = Xpn - X for some n ^ 1. 

14. Let char K = p. Let L be a finite extension of K, and suppose [L: K~\ prime to 
p. Show that L is separable over K. 

15. Suppose char K = p. Let ae K. If a has no p-th root in K, show that Xpn — a is 
irreducible in K^X] for all positive integers n. 

16. Let char K = p. Let a be algebraic over K. Show that a is separable if and only 
if K(a) = K(apn) for all positive integers n. 

17. Prove that the following two properties are equivalent: 
(a) Every algebraic extension of K is separable. 
(b) Either char K = 0, or char K = p and every element of K has a p-th root in 

K. 

18. Show that every element of a finite field can be written as a sum of two squares 
in that field. 

19. Let E be an algebraic extension of F. Show that every subring of E which 
contains F is actually a field. Is this necessarily true if E is not algebraic over F? 
Prove or give a counterexample. 

20. (a) Let E = F(x) where x is transcendental over F. Let K ^ F be a subfield of E 
which contains F. Show that x is algebraic over K. 

(b) Let E = F(x). Let y = f(x)/g{x) be a rational function, with relatively prime 
polynomials /, g e F[x]. Let n = max(deg /, deg g). Suppose n}> 1. Prove 
that 

[F(x): F(y)] = n. 

21. Let Z+ be the set of positive integers, and A an additive abelian group. Let 
/: Z+ -* A and g:Z+ -* A be maps. Suppose that for all n, 

/(«) = X 9(d). 
d\n 

Let p be the Mobius function (cf. Exercise 12 of Chapter II). Prove that 

g(n) = z 9(n/d)f(d). 
d\n 

22. Let k be a finite field with q elements. Let f(X) e k[X~\ be irreducible. Show that 
f{X) divides Xqn — X if and only if deg / divides n. Show the multiplication 
formula 

^'-^nn un 
d\n fd irr 

where the inner product is over all irreducible polynomials of degree d with 
leading coefficient 1. Counting degrees, show that 

q" = X #(<*)> 
d\n 

where i//{d) is the number of irreducible polynomials of degree d. Invert by 
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Exercise 21 and find that 

#(«) = Z M'Wd■ 
d\n 

23. (a) Let k be a finite field with q elements. Define the zeta function 

zw = (i-rino-‘d-'r\ 
p 

where p ranges over all irreducible polynomials p = p(X) in k[X~\ with leading 
coefficient 1. Prove that Z(t) is a rational function and determine this rational 
function. 

(b) Let nq(n) be the number of primes p as in (a) of degree ^ n. Prove that 

q qm 
na(m) ~ —-for m -* oo. 

q — 1 m 

Remark. This is the analogue of the prime number theorem in number theory, 
but it is essentially trivial in the present case, because the Riemann hypothesis is 
trivially verified. Things get more interesting fast after this case. Consider an 
equation y2 = x3 + ax + b over a finite field of characteristic ^ 2, 3, and 
having q elements. Assume —4a3 — 21b2 ^ 0, in which case the curve defined by 
this equation is called an elliptic curve. Define Nn by 

Nn — 1 = number of points (x, y) satisfying the above equation with 
x, y g Fqn (the extension of Fq of degree n). 

Define the zeta function Z(t) to be the unique rational function such that Z(0) = 1 
and 

Z'/Z(t) = X Nntn~K 

A famous theorem of Hasse asserts that Z(t) is a rational function of the form 

Z(0 = 
(l-aO(l-gf) 

(1-0(1-40’ 

where a is an imaginary quadratic number (not real, quadratic over Q), a is its 
complex conjugate, and oca = q, so |a| = ql/2. See Hasse, “Abstrakte Bergrundung 
der komplexen Multiplikation und Riemannsche Vermutung in Funktionen- 
korpern,” Abh. Math. Sem. Univ. Hamburg 10 (1934) pp. 325-348. 

24. Let k be a field of characteristic p and let t, u be algebraically independent over 
k. Prove the following: 
(a) k(t, u) has degree p2 over k(tp, up). 
(b) There exist infinitely many extensions between k(t, u) and k(tp, up). 

25. Let £ be a finite extension of k and let pr = [£: k]t. We assume that the 
characteristic is p > 0. Assume that there is no exponent ps with s <r such that 
EpSk is separable over k (i.e., such that a^ is separable over k for each a in E). 
Show that E can be generated by one element over k. [Hint: Assume first that 
E is purely inseparable.] 
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26. Let it be a field,/(X) an irreducible polynomial in k[X], and let K be a finite normal 
extension of k. If g, h are monic irreducible factors of /(X) in X[X], show that there 
exists an automorphism a of K over k such that g = HP. Give an example when this 
conclusion is not valid if K is not normal over k. 

27. Let Xj, ..., xn be algebraically independent over a field k. Let y be algebraic over 
k(x) = k(xxj. Let P(Xn+l) be the irreducible polynomial of y over k(x). 
Let cp(x) be the least common multiple of the denominators of the coefficients of 
P. Then the coefficients of cp(x)P are elements of /c[x]. Show that the polynomial 

/(Xj,..., Xn+1) = <p(XlyXn)P(Xn+1) 

is irreducible over k, as a polynomial in n + 1 variables. 
Conversely, let f{Xl be an irreducible polynomial over k. Let 

xl9 ...,xn be algebraically independent over k. Show that 

/(xt,...,x„, X„+l) 

is irreducible over k(xl9.xj. 
If / is a polynomial in n variables, and (b) = (bl9b„) is an n-tuple of 

elements such that f(b) = 0, then we say that (b) is a zero of /. We say that {b) is 
non-trivial if not all coordinates b( are equal to 0. 

28. Let f(Xl9..., XJ be a homogeneous polynomial of degree 2 (resp. 3) over a field 
k. Show that if / has a non-trivial zero in an extension of odd degree (resp. 
degree 2) over k, then / has a non-trivial zero in k. 

29. Let /(X, Y) be an irreducible polynomial in two variables over a field k. Let t be 
transcendental over k, and assume that there exist integers m, n ^ 0 and elements 
a, bek, ab ^ 0, such that f(atn, brm) = 0. Show that after inverting possibly X or 
7, and up to a constant factor, / is of type 

XmYn - c 

with some cek. 

The answer to the following exercise is not known. 

30. (Artin conjecture). Let / be a homogeneous polynomial of degree d in n vari¬ 
ables, with rational coefficients. If n > d, show that there exists a root of unity (, 
and elements 

X,, ...,x„eQ[C] 

not all 0 such that f(xx,..., xj = 0. 

31. Difference equations. Let ul9 ..., ud be elements of a field K. We want to solve 
for infinite vectors (x0, xx,..., x„,...) satisfying 

(*) = WiX„-i + • * * + udxn-d for n^d. 

Define the characteristic polynomial of the system to be 

+ ••• + «,) =/(*). 
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Suppose a is a root of /. 
(a) Show that x„ = a" (n ^ 0) is a solution of (*). 
(b) Show that the set of solutions of (*) is a vector space of dimension d. 
(c) Assume that the characteristic polynomial has d distinct roots a x,..., <xd. 

Show that the solutions (aj),(aj) form a basis for the space of solutions. 
(d) Let xn = bl<x" + • • • 4- bdad for n ^ 0, show how to solve for bl9 ..., bd in terms 

of a1?ocd and x0,..., xd_x. (Use the Vandermonde determinant.) 
(e) Under the conditions of (d), let F(T) = Show that F(T) represents a 

rational function, and give its partial fraction decomposition. 

32. Let d = 2 for simplicity. Given a0, au u, v9 w, t e K, we want to find the solutions 
of the system 

an = w<3n_! - vtan-2 - for n ^ 2. 

Let aj, a2 be the root of the characteristic polynomial, that is 

1 -uX + vtX2 = (1 - ai20(l - a2X). 

Assume that a1? a2 are distinct, and also distinct from t. Let 

F(X) = £ a.*'. 
n=0 

(a) Show that there exist elements A, B, C of K such that 

1-y + Z-— + Z-—• 
1 — a i X 1 (x2X 1 — tX 

(b) Show that there is a unique solution to the difference equation given by 

an = Aa" + B0L2 + Ctn for n ^ 0. 

(To see an application of this formalism to modular forms, as in the work of 
Manin, Mazur, and Swinnerton-Dyer, cf. my Introduction to Modular Forms, 
Springer-Verlag, New York, 1976, Chapter XII, §2.) 

33. Let R be a ring which we assume entire for simplicity. Let 

g(T)=Td-ad.lTd-1 - - - a0 

be a polynomial in R[T], and consider the equation 

Td = aQ + a^T + * * * 4- Td 1. 

Let x be a root of g(T). 
(a) For any integer n ^ d there is a relation 

x" = a0,n + 01,n* +-1" 0d-l,nx<,_1 

with coefficients aitj in Z[<z0,..., ad-{] c= R. 
(b) Let F(T) e F[T] be a polynomial. Then 

F(x) = a0(F) + a,(F)x + ••• + a(l-1(F)x‘'~1 

where the coefficients at(F) lie in R and depend linearly on F. 
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(c) Let the Vandermonde determinant be 

1 Xj ••• xf-1 

v(Xl,...,Xd)=1 x.2 xi~l -n<*,-*«)• 
: : : «<; 
1 Xd ••• x*'1 

Suppose that the equation g(T) = 0 has d roots and that there is a factoriza¬ 
tion 

g(T)=f[(T~xi). 
1 = 1 

Substituting x, for x with i = 1,..., d and using Cramer’s rule on the resulting 
system of linear equations, yields 

A aj(F) = Aj(F) 

where A is the Vandermonde determinant, and Aj(F) is obtained by replacing 

the j-th column by r(F(xt),...» F(xd)), so 

1 xx •• F(Xl) - xf"1 

1 x2 F(x2) x2_1 

1 xd • • • F(xd) • * • xd~1 

If A 0 then we can write 

fl,(F) = Aj(F)/A. 

Remark. If F(T) is a power series in R[[T]] and if R is a complete local ring, 
with Xj, xd in the maximal ideal, and x = xf for some i, then we can evaluate 
F{x) because the series converges. The above formula for the coefficients aj{F) 
remains valid. 

34. Let xxd be independent variables, and let A be the ring 

q[o..*d]]m/n (T—x(). 
i=i 

Substituting some xf for T induces a natural homomorphism <p{ of A onto 

Q[[z1(...,x,,]] = R, 

and the map zi-»((ju1(z),(pd(z)) gives an embedding of A into the product of R 
with itself d times. 

Let k be an integer, and consider the formal power series 

d (T — x )e^~Xi * 
F(T) = e- n = e‘r n h(T - Xt) 

i=i e — t i=i 

where h(t) = tel/(ex — 1). It is a formal power series in T, T — xi9 ..., T— xd. 
Under substitution of some x} for T it becomes a power series in Xj and x, — xt, 
and thus converges in Q[[xx,..., xd]j. 
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(a) Verify that 

F(T) = a0(F) + ••• + aJ.1(F)T,‘~1 mod f] (T - xt) 
i=1 

where a0(F), ..., ad_1(F)e Q[[Xi,xd]], and that the formula given in the 
preceding exercise for these coefficients in terms of Vandermonde determi¬ 
nants is valid. 

(b) Show that ad_1(/r) = 0 if -(d - 1) ^ k < 0 and ad_x(F) = 1 if k = 0. 

Remark. The assertion in (a) is a simple limit. The assertion in (b) is a fact 
which has been used in the proof of the Hirzebruch-Grothendieck-Riemann- 
Roch theorem and as far as I know there was no simple known proof until Roger 
Howe pointed out that it could be done by the formula of the preceding exercise 
as follows. We have 

V(x» 

Furthermore, 

xn)ad^(F) 

1 xt 

1 xd 

xt1 F(Xl) 

F(Xd) 

F(Xj) = ekx‘ [I 
n*j 

(Xj ~ x„)exi *" 

exrx- - 1 

We use the inductive relation of Vandermonde determinants 

F(Xi,..., xd) = V(xx,..., .xj(- irj n (Xj - Xn). 
n±j 

We expand the determinant for ad_t(F) according to the last column to get 

j=i n*j e i — e 

Using the inductive relation backward, and replacing xf by eXi which we denote 
by y, for typographical reasons, we get 

F(y1?...,ydK_i(F) = 
y i ■ - yt2 

yk+d 1 

* 

(S
 

. 
. 

1 

SS
p +
 
..

 
Cu 1 

If k # 0 then two columns on the right are the same, so the determinant is 0. If 
k = 0 then we get the Vandermonde determinant on the right, so ad_i(F) = 1. 

This proves the desired value. 





CHAPTER VI_ 
Galois Theory 

This chapter contains the core of Galois theory. We study the group of 
automorphisms of a finite (and sometimes infinite) Galois extension at length, 
and give examples, such as cyclotomic extensions, abelian extensions, and even 
non-abelian ones, leading into the study of matrix representations of the Galois 
group and their classifications. We shall mention a number of fundamental 
unsolved problems, the most notable of which is whether given a finite group 
G, there exists a Galois extension of Q having this group as Galois group. Three 
surveys give recent points of view on those questions and sizeable bibliographies: 

B. Matzat, Konstruktive Galoistheorie, Springer Lecture Notes 1284, 1987 

B. Matzat, Uber das Umkehrproblem der Galoisschen Theorie, JahrsberichtDeutsch. 
Mat.-Verein. 90 (1988), pp. 155-183 

J. P. Serre, Topics in Galois theory, course at Harvard, 1989, Jones and Bartlett, 
Boston 1992 

More specific references will be given in the text at the appropriate moment 
concerning this problem and the problem of determining Galois groups over 
specific fields, especially the rational numbers. 

§1. GALOIS EXTENSIONS 

Let K be a field and let G be a group of automorphisms of K. We denote 
by Kg the subset of K consisting of all elements xeK such that xa = x for all 
g e G. It is also called the fixed field of G. It is a field because if x,ye KG then 

(x + y)° = xa + f = x + y 

261 
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for all a e G, and similarly, one verifies that K is closed under multiplication, 
subtraction, and multiplicative inverse. Furthermore, KG contains 0 and 1, 
hence contains the prime field. 

An algebraic extension K of a field k is called Galois if it is normal and 
separable. We consider K as embedded in an algebraic closure. The group of 
automorphisms of K over k is called the Galois group of K over k, and is denoted 
by G(K/k), GK/k, Ga\(K/k), or simply G. It coincides with the set of embeddings 

of K in K* over k. 

For the convenience of the reader, we shall now state the main result of the 
Galois theory for finite Galois extensions. 

Theorem 1.1. Let K be a finite Galois extension of /c, with Galois group G. 

There is a bijection between the set of subfields E of K containing k, and the 

set of subgroups H of G, given by E = KH. The field E is Galois over k if and 

only if H is normal in G, and if that is the case, then the map o\—kt\E induces 

an isomorphism of G/H onto the Galois group of E over k. 

We shall give the proofs step by step, and as far as possible, we give them for 
infinite extensions. 

Theorem 1.2. Let K be a Galois extension of k. Let G be its Galois group. 

Then k = KG. If F is an intermediate field, k «= F a K, then K is Galois over 

F. The map 

F^G(K/F) 

from the set of intermediate fields into the set of subgroups of G is injective. 

Proof. Let a e KG. Let o be any embedding of k{ot) in Ka, inducing the 
identity on k. Extend a to an embedding of K into Ka, and call this extension o 

also. Then o is an automorphism of K over k, hence is an element of G. By 
assumption, <r leaves a fixed. Therefore 

[fc(a):fc]s = 1. 

Since a is separable over fc, we have/c(a) = k and a is an element of k. This proves 
our first assertion. 

Let F be an intermediate field. Then K is normal and separable over F by 
Theorem 3.4 and Theorem 4.5 of Chapter V. Hence K is Galois over F. If H = 

G(K/F) then by what we proved above we conclude that F = KH. If F, F' are 
intermediate fields, and H = G(K/F), H' = G(K/F'), then 

F = KH and F' = KH. 

If H = H' we conclude that F = F\ whence our map 

F^G(K/F) 

is injective, thereby proving our theorem. 
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We shall sometimes call the group G(K/F) of an intermediate field the group 
associated with F. We say that a subgroup H of G belongs to an intermediate 
field F if H = G(K/F). 

Corollary 1.3. Let K/k be Galois with group G. Let F, F' be two inter¬ 

mediate fields, and let H, H' be the subgroups of G belonging to F, F' respec¬ 

tively. Then H n H' belongs to FF'. 

Proof Every element of H n H' leaves FF' fixed, and every element of G 

which leaves FF' fixed also leaves F and F' fixed and hence lies in H n H\ 

This proves our assertion. 

Corollary 1.4. Let the notation be as in Corollary 1.3. The fixed field of the 

smallest subgroup of G containing H, H' is F n F'. 

Proof Obvious. 

Corollary 1.5. Let the notation be as in Corollary 1.3. Then F a F' if 

and only if H' c H. 

Proof If F c= F' and oeH' leaves F' fixed then a leaves F fixed, so a lies 
in H. Conversely, if H' cz H then the fixed field of H is contained in the fixed 
field of H', soFc F'. 

Corollary 1.6. Let E be a finite separable extension of a field k. Let K be 

the smallest normal extension of k containing E. Then K is finite Galois over 

k. There is only a finite number of intermediate fields F such that k cz F cz E. 

Proof We know that K is normal and separable, and K is finite over k 

since we saw that it is the finite compositum of the finite number of conjugates 
of E. The Galois group of K/k has only a finite number of subgroups. Hence 
there is only a finite number of subfields of K containing k, whence a fortiori a 
finite number of subfields of E containing k. 

Of course, the last assertion of Corollary 1.6 has been proved in the preceding 
chapter, but we get another proof here from another point of view. 

Lemma 1.7. Let E be an algebraic separable extension of k. Assume that 

there is an integer n ^ 1 such that every element otofE is of degree ^ n over k. 

Then E is finite over k and [E : /c] ^ n. 

Proof Let a be an element of E such that the degree [/c(a): k] is maximal, 
say m ^ n. We contend that k(ot) = E. If this is not true, then there exists an 
element such that P $ k(oc), and by the primitive element theorem, there 
exists an element y e k(ot, p) such that k(a, p) = k(y). But from the tower 

k cz k(oc) cz k(a, p) 

we see that [/c(a, P): k] > m whence y has degree > m over k, contradiction. 
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Theorem 1.8. (Artin). Let K be a field and let G be a finite group of auto¬ 

morphisms of K, of order n. Let k = KG be the fixed field. Then K is a finite 

Galois extension of /c, and its Galois group is G. We have [X: fc] = n. 

Proof Let a e X and let al9 ..., or be a maximal set of elements of G such 
that dja, Grcc are distinct. If r eG then (ro^a,..., tcrra) differs from 
(dja,..., crra) by a permutation, because t is injective, and every ter* a is among 
the set {o-ja,..., <xra}; otherwise this set is not maximal. Hence a is a root of 
the polynomial 

nx) = n (x - a.a), 
i= 1 

and for any t e G, /T = /. Hence the coefficients of / lie in KG = k. Further¬ 
more, / is separable. Hence every element a of X is a root of a separable 
polynomial of degree ^n with coefficients in k. Furthermore, this poly¬ 
nomial splits in linear factors in X. Hence X is separable over k, is normal 
over k, hence Galois over k. By Lemma 1.7, we have [X : /c] ^ n. The Galois 
group of X over k has order K\k] (by Theorem 4.1 of Chapter V), and hence 
G must be the full Galois group. This proves all our assertions. 

Corollary 1.9. Let K be a finite Galois extension of k and let G be its Galois 

group. Then every subgroup of G belongs to some subfield F such that 

k c F c K. 

Proof. Let H be a subgroup of G and let F = KH. By Artin’s theorem we 
know that K is Galois over F with group H. 

Remark. When K is an infinite Galois extension of /c, then the preceding 
corollary is not true any more. This shows that some counting argument 
must be used in the proof of the finite case. In the present treatment, we have 

used an old-fashioned argument. The reader can look up Artin’s own proof in 
his book Galois Theory. In the infinite case, one defines the Krull topology on 
the Galois group G (cf. exercises 43-45), and G becomes a compact totally 
disconnected group. The subgroups which belong to the intermediate fields are 
the closed subgroups. The reader may disregard the infinite case entirely through¬ 
out our discussions without impairing understanding. The proofs in the infinite 
case are usually identical with those in the finite case. 

The notions of a Galois extension and a Galois group are defined completely 
algebraically. Hence they behave formally under isomorphisms the way one 
expects from objects in any category. We describe this behavior more explicitly 
in the present case. 

Let K be a Galois extension of k. Let 

X: K XK 
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be an isomorphism. Then AK is a Galois extension of kk. 

k—aa: 

k -x » A k 

Let G be the Galois group of K over k. Then the map 

G I—► A o (J o X~1 

gives a homomorphism of G into the Galois group of kK over kk, whose inverse 
is given by 

X 1 O T O A <—I T. 

Hence G(kK/kk) is isomorphic to G(K/k) under the above map. We may write 

G(XK/Xk)x = G(K/k) 

or 

G(XK/Xk) = XG(K/k)X~\ 

where the exponent X is “conjugation,” 

= X~ 1 o a o X. 

There is no avoiding the contravariance if we wish to preserve the rule 

when we compose mappings X and a>. 

In particular, let F be an intermediate field, k c F c= K, and let X :F -+ XF 

be an embedding of F in K, which we assume is extended to an automorphism 
of K. Then XK = X. Hence 

G(K/XFY = G(K/F) 

and 

G(K/XF) = XG(K/F)X~l. 

Theorem 1.10. Let K be a Galois extension of k with group G. Let F be a 

subfield, k a F a K, and let H = G(K/F). Then F is normal over k if and 

only if H is normal in G. IfF is normal over k, then the restriction map g\->g\F 
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is a homomorphism of G onto the Galois group of F over k, whose kernel is H. 

We thus have G(F/k) « G/H. 

Proof Assume F is normal over k, and let G' be its Galois group. The 
restriction map a -> o\F maps G into G\ and by definition, its kernel is H. 

Hence H is normal in G. Furthermore, any element t e G' extends to an em¬ 
bedding of K in Ka, which must be an automorphism of K, so the restriction 
map is surjective. This proves the last statement. Finally, assume that F is not 
normal over k. Then there exists an embedding X of F in K over k which is not 
an automorphism, i.e. XF # F. Extend X to an automorphism of K over k. 

The Galois groups G(K/XF) and G(K/F) are conjugate, and they belong to 
distinct subfields, hence cannot be equal. Hence H is not normal in G. 

A Galois extension K/k is said to be abelian (resp. cyclic) if its Galois group G 

is abelian (resp. cyclic). 

Corollaryl.il. Let K/k be abelian (resp. cyclic). If F is an intermediate 

field, k cz F a K, then F is Galois over k and abelian (resp. cyclic). 

Proof. This follows at once from the fact that a subgroup of an abelian 
group is normal, and a factor group of an abelian (resp. cyclic) group is abelian 
(resp. cyclic). 

Theorem 1.12. Let K be a Galois extension of k, let F be an arbitrary exten¬ 

sion and assume that K, F are subfields of some other field. Then KF is Galois 

over F, and K is Galois over K n F. Let H be the Galois group of KF over F, 
and G the Galois group of K over k. IfoeH then the restriction of a to K is 

in G, and the map 

o*-+c\K 

gives an isomorphism of H on the Galois group of K over K n F. 

Proof Let ae H. The restriction of a to K is an embedding of K over fc, 
whence an element of G since K is normal over k. The map a i—► a | K is clearly a 
homomorphism. If a\K is the identity, then a must be the identity of KF 

(since every element of KF can be expressed as a combination of sums, products, 
and quotients of elements in K and F). Hence our homomorphism a \-+ a \ K is 
injective. Let H' be its image. Then H' leaves XnF fixed, and conversely, if an 
element a e K is fixed under H\ we see that a is also fixed under H, whence 
a g F and a e K n F. Therefore K n F is the fixed field. If K is finite over fc, 
or even KF finite over F, then by Theorem 1.8, we know that H' is the Galois 
group of K over K n F, and the theorem is proved in that case. 

(In the infinite case, one must add the remark that for the Krull topology, 
our map a i-» cr\ K is continuous, whence its image is closed since H is compact. 
See Theorem 14.1; Chapter I, Theorem 10.1; and Exercise 43.) 
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The diagram illustrating Theorem 1.12 is as follows: 

K nf 

k 

It is suggestive to think of the opposite sides of a parallelogram as being equal. 

Corollary 1.13. Let K be a finite Galois extension ofk. Let F be an arbitrary 

extension of k. Then \_KF : F] divides IK : k~\. 

Proof Notation being as above, we know that the order of H divides the 
order of G, so our assertion follows. 

Warning. The assertion of the corollary is not usually valid if K is not 
Galois over k. For instance, let a = be the real cube root of 2, let £ be a 
cube root of 1, £ # 1, say 

r = zl+^El 
2 

and let /? = £a. Let E = Q(/?). Since /? is complex and a real, we have 

Q(/J) # Q(oO- 

Let F = Q(a). Then E n F is a subfield of E whose degree over Q divides 3. 
Hence this degree is 3 or 1, and must be 1 since E # F. But 

EF = Q(a, P) = Q(a, Q = Q(a, 7^3). 

Hence EF has degree 2 over F. 

Theorem 1.14. Let Kx and K2 be Galois extensions of a field /c, with Galois 

groups Gx and G2 respectively. Assume Ku K2 are subfields of some field. 

Then K{K2 is Galois over k. Let G be its Galois group. Map G -► Gj x G2 

by restriction, namely 

o\-^(o\Ku <j\K2). 

This map is injective. If Kx r\K2 — k then the map is an isomorphism. 
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Proof. Normality and separability are preserved in taking the compositum 
of two fields, so KxK2 is Galois over k. Our map is obviously a homomorphism 
of G into Gj x G2. If an element oeG induces the identity on Kx and K2 

then it induces the identity on their compositum, so our map is injective. Assume 
that Kx n K2 = k. According to Theorem 1.12, given an element oi e Gx there 
exists an element a of the Galois group of KXK2 over K2 which induces a1 on 
K1. This cr is a fortiori in G, and induces the identity on K2. Hence Gx x {e2} 

is contained in the image of our homomorphism (where e2 is the unit element of 
G2). Similarly, {ex} x G2 is contained in this image. Hence their product is 
contained in the image, and their product is precisely G{ x G2. This proves 
Theorem 1.14. 

Corollary 1.15. Let Kl,...,Kn be Galois extensions of k with Galois 

groups Gj,..., Gn. Assume that Ki+1 n (Kt • • • Kt) = k for each 

i = 1,..., n — 1. Then the Galois group of Kx • • • Kn is isomorphic to the 

product Gx x • • ♦ x Gn in the natural way. 

Proof. Induction. 

Corollary 1.16. Let K be a finite Galois extension of k with group G, and 

assume that G can be written as a direct product G = Gx x • • • x Gn. Let 

Ki be the fixed field of 

Gx x •• x {1} x ••• x Gn 

where the group with 1 element occurs in the i-th place. Then K{ is Galois over 

k, and Ki+1 r\(Kx • • • K() = k. Furthermore K = Kt • Kn. 

Proof. By Corollary 1.3, the compositum of all Kt belongs to the intersection 
of their corresponding groups, which is clearly the identity. Hence the composi¬ 
tum is equal to K. Each factor of G is normal in G, so K{ is Galois over k. By 
Corollary 1.4, the intersection of normal extensions belongs to the product of 
their Galois groups, and it is then clear that Ki+1 n(Kx • • • Kt) = k. 
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Theorem 1.17. Assume all fields contained in some common field. 

(i) If K, L are abelian over k, so is the composite KL. 

(ii) If K is abelian over k and E is any extension ofk, then KE is abelian over E. 

(iii) If K is abelian over k and K => £ => k w her e E is an inter mediate field, then 

E is abelian over k and K is abelian over E. 

Proof Immediate from Theorems 1.12 and 1.14. 

If k is a field, the composite of all abelian extensions of k in a given algebraic 
closure kd is called the maximum abelian extension of k, and is denoted by k*b. 

Remark on notation. We have used systematically the notation: 

/ca = algebraic closure of k\ 

ks = separable closure of k; 

/cab = abelian closure of k = maximal abelian extension. 

We have replaced other people’s notation k (and mine as well in the first edition) 
with ka in order to make the notation functorial with respect to the ideas. 

§2. EXAMPLES AND APPLICATIONS 

Let k be a field and f{X) a separable polynomial of degree ^ 1 in k[X\. Let 

f(X) = (X-aJ-'-iX 

be its factorization in a splitting field K over k. Let G be the Galois group of K 

over k. We call G the Galois group of/over k. Then the elements of G permute 
the roots off Thus we have an injective homomorphism of G into the symmetric 
group Sn on n elements. Not every permutation need be given by an element 
of G. We shall discuss examples below. 

Example 1. Quadratic extensions. Let k be a field and a e k. If a is not 
a square in k, then the polynomial X2 - a has no root in k and is therefore 
irreducible. Assume char k ¥= 2. Then the polynomial is separable (because 
2 =k 0), and if a is a root, then k(a) is the splitting field, is Galois, and its 
Galois group is cyclic of order 2. 

Conversely, given an extension K of k of degree 2, there exists a e k such that 

K = k(a) and a2 = a. This comes from completing the square and the quadratic 
formula as in elementary school. The formula is valid as long as the characteristic 
of k is 2. 
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Example 2. Cubic extensions. Let k be a field of characteristic =£ 2 or 
3. Let 

f(X) = X3 + aX + b. 

Any polynomial of degree 3 can be brought into this form by completing the 

cube. Assume that / has no root in k. Then /is irreducible because any factoriza¬ 
tion must have a factor of degree 1. Let a be a root of f(X). Then 

[*(«): k] = 3. 

Let K be the splitting field. Since char k =£ 2, 3,/is separable. Let G be the 
Galois group. Then G has order 3 or 6 since G is a subgroup of the symmetric 
group S3. In the second case, k(a) is not normal over k. 

There is an easy way to test whether the Galois group is the full symmetric 
group. We consider the discriminant. If al5 a2, a3 are the distinct roots of 
f(X), we let 

S = (aj — a2)(a2 — a3)(ai - a3) and A = S2. 

If G is the Galois group and a e G then cr(<5) = ±5. Hence o leaves A fixed. 
Thus A is in the ground field k, and in Chapter IV, §6, we have seen that 

A = -4a3 ~ 21b2. 

The set of cr in G which leave 8 fixed is precisely the set of even permutations. 
Thus G is the symmetric group if and only if A is not a square in k. We may 
summarize the above remarks as follows. 

Letf(X) be a cubic polynomial in k[X], and assume char k =£ 2, 3. Then: 

(a) f is irreducible over k if and only if f has no root in k. 

(b) Assume f irreducible. Then the Galois group of f is S3 if and only if the 

discriminant off is not a square in k. If the discriminant is a square, then 

the Galois group is cyclic of order 3, equal to the alternating group A3 as 

a permutation of the roots of f. 

For instance, consider 

f(X) = X3 - X + 1 

over the rational numbers. Any rational root must be 1 or — 1, and so f{X) is 
irreducible over Q. The discriminant is - 23, and is not a square. Hence the 
Galois group is the symmetricgroup. The splitting field contains a subfield of 
degree 2, namely k(8) = fc(VA). 

On the other hand, let f{X) = X3 - 3X + 1. Then/has no root in Z, whence 
no root in Q, so /is irreducible. The discriminant is 81, which is a square, so 
the Galois group is cyclic of order 3. 

Example 3. We consider the polynomial /(X) = X4 - 2 over the 
rationals Q. It is irreducible by Eisenstein’s criterion. Let a be a real root. 



VI, §2 EXAMPLES AND APPLICATIONS 271 

Let i = Then ±a and + ioc are the four roots of f{X\ and 

[Q(«) : Q] = 4. 

Hence the splitting field off(X) is 

K = Q(a, i). 

The field Q(a) n Q(i) has degree 1 or 2 over Q. The degree cannot be 2 otherwise 
i e Q(a), which is impossible since a is real. Hence the degree is 1. Hence i has 
degree 2 over Q(a) and therefore [K : Q] = 8. The Galois group off(X) has 
order 8. 

There exists an automorphism r of K leaving Q(a) fixed, sending i to — i, 
because K is Galois over Q(a), of degree 2. Then t2 = id. 

Q(a, i) = K 

By the multiplicativity of degrees in towers, we see that the degrees are as 
indicated in the diagram. Thus X4 - 2 is irreducible over Q(f). Also, K is 
normal over Q(i). There exists an automorphism a of K over Q(i) mapping the 
root a of X4 - 2 to the root ia. Then one verifies at once that 1, cr, cr2, o3 are 
distinct and a4 = id. Thus a generates a cyclic group of order 4. We denote it 
by <cr>. Since t ^ <<r> it follows that G = <<r, t> is generated by a and r because 
<cr> has index 2. Furthermore, one verifies directly that 

T G = <73T, 

because this relation is true when applied to a and i which generate K over Q. 
This gives us the structure of G. It is then easy to verify that the lattice of sub¬ 
groups is as follows: 
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Example 4. Let k be a field and let tl9 ..., t„ be algebraically independent 
over k. Let K = k(tl9..., tn). The symmetric group G on n letters operates on 
K by permuting (t1#..., tn) and its fixed field is the field of symmetric functions, 
by definition the field of those elements of K fixed under G. Let sl9..., sn be the 
elementary symmetric polynomials, and let 

f(X) = fl(AT - t,). 
i = 1 

Up to a sign, the coefficients of/are sl9..., s„. We let F = KG. We contend 
that F = k(sl9..., sn). Indeed, 

k(sl9...9sn) c= F. 

On the other hand, K is the splitting field off(X), and its degree over F is n\. 

Its degree over k(sl9..., sn) is ^ n! and hence we have equality, F = k(sl9..., sn). 

The polynomial /(X) above is called the general polynomial of degree n. 

We have just constructed a Galois extension whose Galois group is the sym¬ 
metric group. 

Using the Hilbert irreducibility theorem, one can construct a Galois extension 
of Q whose Galois group is the symmetric group. (Cf. Chapter VII, end of §2, 
and [La 83], Chapter IX.) It is unknown whether given a finite group G, there 
exists a Galois extension of Q whose Galois group is G. By specializing para¬ 
meters, Emmy Noether remarked that one could prove this if one knew that every 
field E such that 

Q(s,,...,s„) c E cz Q(fj, ■. - ,tn) 

is isomorphic to a field generated by n algebraically independent elements. 
However, matters are not so simple, because Swan proved that the fixed field 
of a cyclic subgroup of the symmetric group is not necessarily generated by 
algebraically independent elements over k [Sw 69], [Sw 83]. 

Example 5. We shall prove that the complex numbers are algebraically 

closed. This will illustrate almost all the theorems we have proved previously. 
We use the following properties of the real numbers R: It is an ordered field, 

every positive element is a square, and every polynomial of odd degree in R[X] 
has a root in R. We shall discuss ordered fields in general later, and our argu¬ 
ments apply to any ordered field having the above properties. 

Let i = (in other words a root of I2 + 1). Every element in R(/) 
has a square root. If a + bi e R(i), a9 be R, then the square root is given by 
c + di9 where 

2 a + yja2 ~+ b2 2 -a + \/a2 + b2 
c =--- and d =--. 

Each element on the right of our equalities is positive and hence has a square root 
in R. It is then trivial to determine the sign of c and d so that (c + di)2 = a + bi. 
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Since R has characteristic 0, every finite extension is separable. Every finite 
extension of R(i) is contained in an extension K which is finite and Galois over 
R. We must show that K = R(i). Let G be the Galois group over R and let H 

be a 2-Sylow subgroup of G. Let F be its fixed field. Counting degrees and 
orders, we find that the degree of F over R is odd. By the primitive element 
theorem, there exists an element a e F such that F = R(a). Then a is the root of 
an irreducible polynomial in R[X~\ of odd degree. This can happen only if this 
degree is 1. Hence G = H is a 2-group. 

We now see that K is Galois over R(i). Let Gx be its Galois group. Since Gj 
is a p-group (with p = 2), if G{ is not the trivial group, then G{ has a subgroup 
G2 of index 2. Let F be the fixed field of G2. Then F is of degree 2 over R(/); it 
is a quadratic extension. But we saw that every element of R(i) has a square 
root, and hence that R(/) has no extensions of degree 2. It follows that Gj is the 
trivial group and K = R(i), which is what we wanted. 

(The basic ideas of the above proof were already in Gauss. The variation 
of the ideas which we have selected, making a particularly efficient use of the 
Sylow group, is due to Artin.) 

Example 6. Let f(X) be an irreducible polynomial over the field /c, and 
assume that / is separable. Then the Galois group G of the splitting field is 
represented as a group of permutations of the n roots, where n = deg/ When¬ 
ever one has a criterion for this group to be the full symmetric group then 
one can see if it applies to this representation of G. For example, it is an easy 
exercise (cf. Chapter I, Exercise 38) that for p prime, Sp is generated by 
[123 • • • p] and any transposition. We then have the following result. 

Let f(X) be an irreducible polynomial with rational coefficients and of degree 

p prime. If f has precisely two nonreal roots in the complex numbers, then the 

Galois group off is Sp. 

Proof The order of G is divisible by p, and hence by Sylow’s theorem, G 
contains an element of order p. Since G is a subgroup of Sp which has order p!, 
it follows that an element of order p can be represented by a p-cycle [123 • • * p] 
after a suitable ordering of the roots, because any smaller cycle has order less 
than p, so relatively prime to p. But the pair of complex conjugate roots shows 
that complex conjugation induces a transposition in G. Hence the group is all 
of Sp. 

A specific case is easily given. Drawing the graph of 

f(X) = X5 - 4X + 2 

shows that/has exactly three real roots, so exactly two complex conjugate roots. 
Furthermore /is irreducible over Q by Eisenstein’s criterion, so we can apply 
the general statement proved above to conclude that the Galois group of / 
over Q is S5. See also Exercise 17 of Chapter IV. 
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Example 7. The preceding example determines a Galois group by finding 
some subgroups passing to an extension field of the ground field. There are 
other possible extensions of Q rather than the reals, for instance p-adic fields 
which will be discussed later in this book. However, instead of passing to an 
extension field, it is possible to use reduction mod p. For our purposes here, we 
assume the following statement, which will be proved in Chapter VII, theorem 
2.9. 

Let f (X) e Z[X] be a polynomial with integral coefficients, and leading 

coefficient 1. Let p be a prime number. Let f(X) = f{X) mod p be the 

polynomial obtained by reducing the coefficients mod p. Assume that f has 

no multiple roots in an algebraic closure of ¥p. Then there exists a bijection 

(al9 i—>(al5..., an) 

of the roots of f onto those of /, and an embedding of the Galois group of f as a 

subgroup of the Galois group of f, which gives an isomorphism of the action of 

those groups on the set of roots. 

The embedding will be made precise in Chapter VII, but here we just want to 
use this result to compute Galois groups. 

For instance, consider X5 — X — l over Z. Reducing mod 5 shows that 
this polynomial is irreducible. Reducing mod 2 gives the irreducible factors 

(X2 + X + \)(X3 + X2 + 1) (mod 2). 

Hence the Galois group over the rationals contains a 5-cycle and a product of a 
2-cycle and a 3-cycle. The third power of the product of the 2-cycle and 3-cycle 
is a 2-cycle, which is a transposition. Hence the Galois group contains a trans¬ 
position and the cycle [123 • * • p], which generate Sp (cf. the exercises of Chapter 
I on the symmetric group). Thus the Galois group of X5 - X - 1 is Sp. 

Example 8. The technique of reducing mod primes to get lots of elements 
in a Galois group was used by Schur to determine the Galois groups of classical 
polynomials [Schur 31]. For instance, Schur proves that the Galois group over 
Q of the following polynomials over Q is the symmetric group: 

n 

(a) f(X) — 2 Xm/m\ (in other words, the truncated exponential series), if 
m=o 

n is not divisible by 4. If n is divisible by 4, he gets the alternating group. 

(b) Let 

Hm(X) = (-iy"e*2/2 J^(e-*2/2) 

be the m-th Hermite polynomial. Put 

H2n(X) = Kf\X2) and H2n+l(X) = XK(n'\X2). 

Then the Galois group of K%\X) over Q is the symmetric group S„ for i = 0, 
1, provided n > 12. The remaining cases were settled in [Schulz 37]. 
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Example 9. This example is addressed to those who know something 
about Riemann surfaces and coverings. Let t be transcendental over the com¬ 
plex numbers C, and let k = C(t). The values of t in C, or oo, correspond to the 
points of the Gauss sphere 5, viewed as a Riemann surface. Let Pl9...,Pn+l be 
distinct points of S. The finite coverings of 5 - {Pi,, Pn_x} are in bijection 
with certain finite extensions of C(t), those which are unramified outside 
Pi , • • •, Pn-1 • Let K be the union of all these extension fields corresponding to 
such coverings, and let nbe the fundamental group of 

S — {P^ , Pn+i}- 

Then it is known that n{?] is a free group on n generators, and has an embedding 
in the Galois group of K over C(t), such that the finite subfields of K over 
C(f) are in bijection with the subgroups of 7i{”] which are of finite index. Given a 
finite group G generated by n elements al9 ..., an we can find a surjective 

homomorphism —> G mapping the generators of n^ on ... ,on. Let H 

be the kernel. Then H belongs to a subfield KH of K which is normal over C(t) 
and whose Galois group is G. In the language of coverings, H belongs to a 
finite covering of 

S — {Pi > • • • j 1 }• 

Over the field G(t) one can use analytic techniques to determine the Galois 
group. The Galois group is the completion of a free group, as proved by 
Douady [Dou 64]. For extensions to characteristic p, see [Pop 95]. A funda¬ 
mental problem is to determine the Galois group over Q(t), which requires 
much deeper insight into the number theoretic nature of this field. Basic con¬ 
tributions were made by Belyi [Be 80], [Be 83], who also considered the field 
Q(p)(0, where Q(p) is the field obtained by adjoining all roots of unity to the 
rationals. Belyi proved that over this latter field, essentially all the classical fi¬ 
nite groups occur as Galois groups. See also Conjecture 14.2 below. 

For Galois groups over Q(r), see the survey [Se 88], which contains a 
bibliography. One method is called the rigidity method, first applied by Shih 
[Shi 74], which I summarize because it gives examples of various notions defined 
throughout this book. The problem is to descend extensions of C(f) with a given 
Galois group G to extensions of Q(t) with the same Galois group. If this extension 
is K over Q(t), one also wants the extension to be regular over Q (see the 
definition in Chapter VIII, §4). To give a sufficient condition, we need some 
definitions. Let G be a finite group with trivial center. Let Cl9C2, C3 be conjugacy 
classes. Let P = P(Cl9 C2, C3) be the set of elements 

(0i > 02> 03) E Cj x C2 x C3 

such that g\g292> = 1. Let P' be the subset of P consisting of all elements 
(0i, g2, g3) e P such that G is generated by gl9 g2i g3. We say that the family 
(Cj, C2, C3) is rigid if G operates transitively on P\ and P' is not empty. 
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We define a conjugacy class C of G to be rational if given g e C and a 
positive integer s relatively prime to the order of g, then gs e C. (Assuming that 
the reader knows the terminology of characters defined in Chapter XVIII, this 
condition of rationality is equivalent to the condition that every character \ of 
G has values in the rational numbers Q.) One then has the following theorem, 
which is contained in the works of Shih, Fried, Belyi, Matzat and Thompson. 

Rigidity theorem. Let G be a finite group with trivial center, and let 

Cj, C2, C3 be conjugacy classes which are rational, and such that the family 

(Cj, C2, C3) is rigid. Then there exists a Galois extension ofQ(t) with Galois 

group G (and such that the extension is regular over Q). 
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§3. ROOTS OF UNITY 

Let He a field. By a root of unity (in k) we shall mean an element £ e k 

such that C” = 1 for some integer n ^ 1. If the characteristic of k is p, then the 
equation 

Xpm = 1 

has only one root, namely 1, and hence there is no pm-th root of unity except 1. 
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Let n be an integer > 1 and not divisible by the characteristic. The polynomial 

X" - 1 

is separable because its derivative is nXn~ 1 # 0, and the only root of the deriva¬ 
tive is 0, so there is no common root. Hence in ka the polynomial Xn — 1 has n 

distinct roots, which are roots of unity. They obviously form a group, and we 
know that every finite multiplicative group in a field is cyclic (Chapter IV, 
Theorem 1.9). Thus the group of n-th roots of unity is cyclic. A generator for 
this group is called a primitive n-th root of unity. 

IfX denotes the group of all n-th roots of unity in ka and m, n are relatively 
prime integers, then 

Vmn « Urn X . 

This follows because pm, \in cannot have any element in common except 1, 
and because pmp„ consequently has mn elements, each of which is an mn-th 
root of unity. Hence = \imn, and the decomposition is that of a direct 
product. 

As a matter of notation, to avoid double indices, especially in the prime 
power case, we write jx[n] for \kn. So if p is a prime, |x[/?r] is the group of 
pr-th roots of unity. Then [k[px] denotes the union of all |n[pr] for all 
positive integers r. See the comments in §14. 

Let k be any field. Let n be not divisible by the characteristic p. Let £ = 
be a primitive n-th root of unity in ka. Let a be an embedding of k(£) in ka 

over k. Then 

«)" = o(n = 1 

so that is an n-th root of unity also. Hence <j£ = C for some integer i = i(cr), 
uniquely determined mod n. It follows that o maps /c(() into itself, and hence 
that Zc(0 is normal over k. If t is another automorphism of /c(Q over k then 

(TtC = C/(<T),'(T). 

Since o and x are automorphisms, it follows that i(o) and i(x) are prime to n 

(otherwise, would have a period smaller than n). In this way we get a homo¬ 
morphism of the Galois group G of /c(() over k into the multiplicative group 
(Z/nZ)* of integers prime to n, mod n. Our homomorphism is clearly injective 
since i(o) is uniquely determined by c mod n, and the effect of a on /c(Q is 
determined by its effect on (. We conclude that /c(Q is abelian over k. 

We know that the order of (Z/nZ)* is (p(n). Hence the degree [/c(0: /c] 
divides cp(n). 

For a specific field k, the question arises whether the image of Gk{c)/k in 
(Z/nZ)* is all of (ZlnZy. Looking at k = R or C, one sees that this is not 
always the case. We now give an important example when it is the case. 
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Theorem 3.1. Let £ be a primitive n-th root of unity. Then 

[Q(0:Q] = <?("), 

where (p is the Euler function. The map cr i-> i(o) gives an isomorphism 

GQ(0/Q (Z/nZ)*- 

Proof. Let j\X) be the irreducible polynomial of £ over Q. Then f(X) 

divides^" - LsayA''1 - 1 = f(X)h(X), where both/, h have leading coefficient 
1. By the Gauss lemma, it follows that f h have integral coefficients. We shall 
now prove that if p is a prime number not dividing n, then £p is also a root off. 
Since £p is also a primitive n-ih root of unity, and since any primitive n-th root of 
unity can be obtained by raising £ to a succession of prime powers, with primes 
not dividing n, this will imply that all the primitive n-th roots of unity are roots 
off which must therefore have degree ^ <p(n), and hence precisely cp(n). 

Suppose £p is not a root of f Then £p is a root of h, and £ itself is a root 
of h(Xp). Hence/(X) divides h(Xp\ and we can write 

h(Xp) =f(X)g(X). 

Since / has integral coefficients and leading coefficient 1, we see that g has 
integral coefficients. Since ap = a (mod p) for any integer a, we conclude that 

h(Xp) = h(X)p (mod p), 

and hence 

h(X)p=f(X)g(X) (mod p). 

In particular, if we denote by f and h the polynomials in Z/pZ obtained by 
reducing / and h respectively mod p, we see that / and h are not relatively 
prime, i.e. have a factor in common. But Xn - T = /(X)h(X\ and hence 
Xn — T has multiple roots. This is impossible, as one sees by taking the de¬ 
rivative, and our theorem is proved. 

Corollary 3.2. If n, m are relative prime integers ^ 1, then 

Q(O n Q(Cm) = Q. 

Proof We note that £„ and (m are both contained in Q((m„) since Cnmn is a 
primitive m-th root of unity. Furthermore, £m£„ is a primitive mn-th root of 
unity. Hence 

Q(C*)Q(CJ = Q(CmJ- 

Our assertion follows from the multiplicativity cp(mn) = (p(m)cp(n). 

Suppose that n is a prime number p (having nothing to do with the character¬ 
istic). Then 

xp - 1 = (X - l)(Xp~l +-••+!). 
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Any primitive p-th root of unity is a root of the second factor on the right of this 
equation. Since there are exactly p - 1 primitive p-th roots of unity, we con¬ 
clude that these roots are precisely the roots of 

X'-1 + ••• + 1. 

We saw in Chapter IV, §3 that this polynomial could be transformed into 
an Eisenstein polynomial over the rationals. This gives another proof that 

[QUp): Q1 =P - 1. 
We investigate more closely the factorization of Xn - 1, and suppose that 

we are in characteristic 0 for simplicity. 
We have 

-1 = ri(x - o, 
f 

where the product is taken over all n-th roots of unity. Collect together all terms 
belonging to roots of unity having the same period. Let 

o/x) = n (x-o 
period £=d 

Then 

x« -1 = n^d(X). 
d\n 

We see that ^(X) = X — 1, and that 

xn - 1 

n <mx) 
d\n 
d<n 

From this we can compute 3> (X) recursively, and we see that 4>„(X) is a polynomial 
in Q[X] because we divide recursively by polynomials having coefficients in Q. 
All our polynomials have leading coefficient 1, so that in fact 4>„(X) has integer 

coefficients by Theorem 1.1 of Chapter IV. Thus our construction is essentially 
universal and would hold over any field (whose characteristic does not divide 
n). 

We call 4>„(X) the n-th cyclotomic polynomial. 
The roots of 3>„ are precisely the primitive n-th roots of unity, and hence 

deg <Pn = <p(n). 

From Theorem 3.1 we conclude that is irreducible over Q, and hence 

<D„(X) = Irr(£„, Q, X). 
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We leave the proofs of the following recursion formulas as exercises: 

1. If p is a prime number, then 

<&p(X) = XP~l 4- XP~2 + • • • + 1, 

and for an integer r ^ 1, 

%r(X) = %(XPr~\ 

2. Let n = p\l • • • prss be a positive integer with its prime factorization. Then 

<D„(X) = <PPi..Ps(X^'1 

3. If n is odd > 1, then (J)2«(^) = —^)- 

4. If p is a prime number, not dividing n, then 

<*>P„(X) = *„(*) 

On the other hand, if p\n, then = 0„(XP). 

5. We have 

0„(X) = Y\(Xnld - l)^w>. 
d\n 

As usual, /i is the Mobius function: 10 if n is divisible by p2 for some prime p, 
( — l)r if n = Pi • pr is a product of distinct primes, 
1 if n = 1. 

As an exercise, show that 

if n = 1, 

if n > 1. 

Example. In light of Exercise 21 of Chapter V, we note that the association 
n i-» 4>„(X) can be viewed as a function from the positive integers into the 
multiplicative group of non-zero rational functions. The multiplication formula 
Xn - 1 = n^CX) can therefore be inverted by the general formalism of 
convolutions. Computations of a number of cyclotomic polynomials show that 
for low values of n, they have coefficients equal to 0 or ±1. However, I am 
indebted to Keith Conrad for bringing to my attention an extensive literature on 
the subject, starting with Bang in 1895. I include only the first and last items: 

A. S. Bang, Om Ligningen 4>OT(X) = 0, Nyt Tidsskrift for Matematik (B) 6 (1895), 
pp. 6-12 

H. L. Montgomery and R. C. Vaughn, The order of magnitude of the m-th coef¬ 
ficients of cyclotomic polynomials, Glasgow Math. J. 27 (1985), pp. 143-159 
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In particular, if <t>n(X) = ^anjXf define L(j) = log max* | anj |. Then Montgomery 
and Vaughn prove that 

;l/2 ,*1/2 

isbr<s 
where the sign « means that the left-hand side is at most a positive constant 
times the right-hand side for j —» Bang also points out that ^iosC^O is a 
cyclotomic polynomial of smallest degree having coefficients ^ 0 or ±1: the 
coefficient of X1 and X41 is -2 (all others are 0 or ±1). 

If C is an n-th root of unity and ( # 1, then 

1 - in 
= 1 + C + ... + C"-1 =o. 

This is trivial, but useful. 
Let ¥q be the finite field with q elements, q equal to a power of the odd prime 

number p. Then F* has q - 1 elements and is a cyclic group. Hence we have 
the index 

(F*:Ff) = 2. 

If v is a non-zero integer not divisible by p, let 

M f 1 if v = x2 (mod p) for some x, 

[pj l - 1 if v ^ x2 (mod p) for all jc. 

This is known as the quadratic symbol, and depends only on the residue class 
of v mod p. 

From our preceding remark, we see that there are as many quadratic residues 
as there are non-residues mod p. 

Theorem 3.3. Let C be a primitive p-th root of unity, and let 

S 

the sum being taken over non-zero residue classes mod p. Then 

S2 = (t> 
Every quadratic extension of Q is contained in a cyclotomic extension. 

Proof. The last statement follows at once from the explicit expression of 
± p as a square in Q(0, because the square root of an integer is contained in the 
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field obtained by adjoining the square root of the prime factors in its factoriza¬ 

tion, and alsoyf—l- Furthermore, for the prime 2, we have(1 + i)2 — 21 We 
now prove our assertion concerning S2. We have 

S2 -I 
v + n 

= 1 rv + n 

As v ranges over non-zero residue classes, so does vfi for any fixed \i, and hence 
replacing v by vfi yields 

But 1 +( + ••• + 1 = 0, and the sum on the right over fi consequently 
yields —1. Hence 

as desired. 

We see that Q(^p) is contained in Q(C, or Q(Q, depending on the 
sign of the quadratic symbol with —1. An extension of a field is said to be 
cyclotomic if it is contained in a field obtained by adjoining roots of unity. 
We have shown above that quadratic extensions of Q are cyclotomic. A 
theorem of Kronecker asserts that every abelian extension of Q is cyclotomic, 
but the proof needs techniques which cannot be covered in this book. 

§4. LINEAR INDEPENDENCE OF 
CHARACTERS 

Let G be a monoid and K a field. By a character of G in K (in this chapter), 
we shall mean a homomorphism 

X-G^K* 

of G into the multiplicative group of K. The trivial character is the homo- 
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morphism taking the constant value 1. Functions f:G -* K are called linearly 
independent over K if whenever we have a relation 

a\f\ + • * * + anfn = 0 

with a-, e K, then all a{ = 0. 

Examples. Characters will occur in various contexts in this book. First, 
the various conjugate embeddings of an extension field in an algebraic closure 
can be viewed as characters. These are the characters which most concern us in 
this chapter. Second, we shall meet characters in Chapter XVIII, when we shall 
extend the next theorem to a more general kind of character in connection with 
group representations. 

Next, one meets characters in analysis. For instance, given an integer m, the 
function/: R/Z —» C* such that/(jc) = e2mmx is a character on R/Z. It can be 
shown that all continuous homomorphisms of R/Z into C* are of this type. 
Similarly, given a real numbery, the function x i-> e2mxy is a continuous character 
on R, and it is shown in Fourier analysis that all continuous characters of absolute 
value 1 on R are of this type. 

Further, let X be a compact space and let ft be the ring of continuous complex¬ 
valued functions on X. Let ft* be the group of units of ft. Then given x e X the 
evaluation map/i-> f(x) is a character of ft* into C*. (Actually, this evaluation 
map is a ring homomorphism of ft onto C.) 

Artin found a neat way of expressing a linear independence property which 
covers all these cases, as well as others, in the following theorem [Ar 44]. 

Theorem 4.1. (Artin). Let G be a monoid and K a field. Let X\, • • •, Xn 
be distinct characters of G in K. Then they are linearly independent over K. 

Proof One character is obviously linearly independent. Suppose that we 
have a relation 

a1*1 + •• + a„x„= 0 

with at e K, not all 0. Take such a relation with n as small as possible. Then 
n ^ 2, and no a{ is equal to 0. Since XuXi are distinct, there exists zeG such 
that xfz) # z2(z)* F°r all x e G we have 

«iXi (xz) + ■■■ + a„x„(xz) = 0, 

and since Xx is a character, 

aiXi(z)Xi + • • • + a„Xn(z)xn = 0. 

Divide by Xt(z) and subtract from our first relation. The term a^Xi cancels, and 
we get a relation 

(“! ~ “2)'!+""° 
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The first coefficient is not 0, and this is a relation of smaller length than our first 
relation, contradiction. 

As an application of Artin’s theorem, one can consider the case when X is a 
finite normal extension of a field k, and when the characters are distinct auto¬ 
morphisms (jj,..., an of X over k, viewed as homomorphisms of X* into X*. 
This special case had already been considered by Dedekind, who, however, 
expressed the theorem in a somewhat different way, considering the determinant 
constructed from cr - co7 where Oj is a suitable set of elements of X, and proving in 
a more complicated way the fact that this determinant is not 0. The formulation 
given above and its particularly elegant proof are due to Artin. 

As another application, we have: 

Corollary 4.2. Let a1? ..., an be distinct non-zero elements of a field X. If 

are elements of K such that for all integers v ^ 0 we have 

ai<x\ + ••• + anotvn = 0 

then a{ = 0 for all i. 

Proof We apply the theorem to the distinct homomorphisms 

V h-► ocj 

of Z^0 into X*. 

Another interesting application will be given as an exercise (relative in¬ 
variants). 

§5. THE NORM AND TRACE 

Let £ be a finite extension of k. Let [E : /c]s = r, and let 

P" = lE:kl 

if the characteristic is p > 0, and 1 otherwise. Let al9 ..., or be the distinct 
embeddings of E in an algebraic closure ka of k. If a is an element of £, we 
define its norm from E to k to be 

NE/k(a) = Wf(a) = fl <rvap" = ( fl <rva 
V = 1 \v= 1 

Similarly, we define the trace 

y E:kh 

TrE/k(a) = Trf(a) = [£: /c], ^ ava. 
v = 1 

The trace is equal to 0 if [E: /c], > 1, in other words, if E/k is not separable. 
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Thus if E is separable over fc, we have 

Nfa) = 

a 

where the product is taken over the distinct embeddings of E in ka over k. 

Similarly, if E/k is separable, then 

Trf (a) = £ <r*. 
a 

Theorem 5.1. Let E/k be a finite extension. Then the norm Nf is a multi¬ 

plicative homomorphism of E* into k* and the trace is an additive homo¬ 

morphism of E into k. If E => F => k is a tower of fields, then the two maps are 

transitive, in other words, 

Nf = /V[ o Nf and Trf = Trf o Trf. 

IfE = k(a), andf(X) = Irr(a, k, X) = X" + a„_1A'n~1 + • • • + a0, then 

Nkk<*\a) = (— l)"a0 and Trf(“>(a) = -a.-,. 

Proof For the first assertion, we note that ap“ is separable over k if 
p* = [E: fc]t. On the other hand, the product 

flavctp“ 
V — 1 

is left fixed under any isomorphism into /ca because applying such an iso¬ 
morphism simply permutes the factors. Hence this product must lie in k since 

is separable over k. A similar reasoning applies to the trace. 
For the second assertion, let {t;} be the family of distinct embeddings of F 

into /ca over k. Extend each zi to an automorphism of fc3, and denote this 
extension by Zj also. Let {<tJ be the family of embeddings of E in ka over F. 
(Without loss of generality, we may assume that E cz ka.) If cr is an embedding 
of E over k in /ca, then for some 7, zj lo leaves F fixed, and hence zj ld = cr, for 
some i. Hence cr = zjo[ and consequently the family {ijcr,} gives all distinct 
embeddings of E into ka over k. Since the inseparability degree is multiplicative 
in towers, our assertion concerning the transitivity of the norm and trace is 
obvious, because we have already shown that Np maps E into F, and similarly 
for the trace. 

Suppose now that E = fc(a). We have 

/(X) = ((X-a1)--(^-ar))[£:fel* 

if a j,..., ar are the distinct roots off Looking at the constant term off gives us 
the expression for the norm, and looking at the next to highest term gives us the 
expression for the trace. 

We observe that the trace is a /c-linear map of E into /c, namely 

Trf(ca) = c Trf (a) 
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for all a e E and cek. This is clear since c is fixed under every embedding of 
E over k. Thus the trace is a /c-linear functional of E into k. For simplicity, 
we write Tr = Tr*. 

Theorem 5.2. Let E be a finite separable extension of k. Then Tr: E -* k is 
a non-zero functional. The map 

(x, y) i ► Tr(xy) 

ofE x E -> kis bilinear, and identifies E with its dual space. 

Proof That Tr is non-zero follows from the theorem on linear indepen¬ 
dence of characters. For each xeE, the map 

Trx : E -> k 

such that Trx(y) = Tr(xy) is obviously a /c-linear map, and the map 

x i—► Trx 

is a /e-homomorphism of E into its dual space £v. (We don’t write E* for the 
dual space because we use the star to denote the multiplicative group of E.) 
If Trx is the zero map, then Tr(x£) = 0. If x # 0 then xE = E. Hence the 
kernel of x i—► Trx is 0. Hence we get an injective homomorphism of E into 
the dual space E. Since these spaces have the same finite dimension, it follows 
that we get an isomorphism. This proves our theorem. 

Corollary 5.3. Let col, ..., con be a basis of E over k. Then there exists a 
basis co\,..., a>'„ of E over k such that Tr(co, coj) = 5^. 

Proof. The basis co'u ..., co'n is none other than the dual basis which we 
defined when we considered the dual space of an arbitrary vector space. 

Corollary 5.4. Let E be a finite separable extension of k, and let al9..., <x„ 
be the distinct set of embeddings of E into /ca over k. Let wl5 ..., wn be ele¬ 
ments of E. Then the vectors 

fl = (fflW!, . . . , 

L = (<T„W j,..., <T„W„) 

are linearly independent over E if wu ..., wnform a basis of E over k. 

Proof. Assume that wl5..., wn form a basis of E/k. Let ocu ..., a„ be ele¬ 
ments of E such that 

“lfi + ••• + <x„£„ = 0. 

Then we see that 

0Ci<7i + 4* CCn(Tf 
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applied to each one of wl9..., wn gives the value 0. But ..., an are linearly 
independent as characters of the multiplicative group £* into /ca*. It follows that 
a, = 0 for i = 1,..., n, and our vectors are linearly independent. 

Remark. In characteristic 0, one sees much more trivially that the trace is 
not identically 0. Indeed, if c e k and c # 0, then Tr(c) = nc where n = [E: /c], 
and n # 0. This argument also holds in characteristic p when n is prime to p. 

Proposition 5.5. Let E = k(ot) be a separable extension. Let 

f(X) = Irr(a, /c, X\ 

and let f\X) be its derivative. Let 

(jx — a) = + + • • • + Pn-iXn~1 

with Pi e E. Then the dual basis of 1, a,..., a" -1 is 

Jo_ Pn- 1 

/'(a)’‘“’/'(a)* 

Proo/. Let a j,..., aM be the distinct roots of/ Then 

” /(X) «? 

A (Jf " «i) /f(«t) 
for 0^r^n-l. 

To see this, let g(X) be the difference of the left- and right-hand side of this 
equality. Then g has degree ^ n - 1, and has n roots al9..., a„. Hence g is 
identically zero. 

The polynomials 
mo a? 

(X - a,) /'(af) 

are all conjugate to each other. If we define the trace of a polynomial with 
coefficients in E to be the polynomial obtained by applying the trace to the 
coefficients, then 

Tr ; jvo g ~ 
(X - a) /'(a); 

= Xr. 

Looking at the coefficients of each power of X in this equation, we see that 

thereby proving our proposition. 

Finally we establish a connection with determinants, whose basic properties 
we now assume. Let £ be a finite extension of k, which we view as a finite 
dimensional vector space over k. For each a e E we have the k-linear map 
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multiplication by a, 

ma: E —» E such that ma(x) = ax. 

Then we have the determinant det(ma), which can be computed as the determinant 
of the matrix Ma representing ma with respect to a basis. Similarly we have the 
trace Tr(mJ, which is the sum of the diagonal elements of the matrix Ma. 

Proposition 5.6. Let E be a finite extension ofk and let a e E. Then 

det(ma) = Nm(a) and Tr (ma) = TrE/k(a). 

Proof. Let F = k(a). If [F : k] = d, then 1, a,. . . , ad~x is a basis 
for F over k. Let {wu ..., wr} be a basis for E over F. Then {alWj} 
(/ = 0,..., d — 1; j = 1,.. ., r) is a basis for E over k. Let 

f(X) =Xd+ ad- {Xd~1 + ... + a0 

be the irreducible polynomial of a over k. Then NF/k(a) = (— l)da0, and by the 
transitivity of the norm, we have 

NE/k(a) = NF/k(<x)r- 

The reader can verify directly on the above basis that NF/k(u)r is the determinant 
of ma on F, and then that NF/k(a)d is the determinant of ma on F, thus concluding 
the proof for the determinant. The trace is handled exactly in the same way, 
except that TrE/k(a) = r • TrF/k(a). The trace of the matrix for ma on F is equal 
to — ad-x. From this the statement identifying the two traces is immediate, as it 
was for the norm. 

§6. CYCLIC EXTENSIONS 

We recall that a finite extension is said to be cyclic if it is Galois and its 
Galois group is cyclic. The determination of cyclic extensions when enough roots 
of unity are in the ground field is based on the following fact. 

Theorem 6.1. (Hilbert’s Theorem 90). Let Kjk be cyclic of degree n 
with Galois group G. Let o be a generator of G. Let f e K. The norm 
Nk(P) = N(/3) is equal to 1 if and only if there exists an element ol # 0 in K 
such that P = a/cra. 

Proof Assume such an element a exists. Taking the norm of ft we get 
N(<x)/N((j<x). But the norm is the product over all automorphisms in G. Inserting 
a just permutes these automorphisms. Hence the norm is equal to 1. 

It will be convenient to use an exponential notation as follows. If t, t' g G 
and K we write 

+ T' = £r£r'. 
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By Artin’s theorem on characters, the map given by 

id + pa + + ••• + p1+a+' •+*"-V-i 

on K is not identically zero. Hence there exists 9 e K such that the element 

a = 9 + pda 4- pl+a9a2 + ••• + pl +*+ •+<r"-20<x"-1 

is not equal to 0. It is then clear that /?a* = a using the fact that iV(j?) = 1, and 
hence that when we apply cr to the last term in the sum, we obtain 9. We divide 
by of to conclude the proof. 

Theorem 6.2. Let k be a field, n an integer > 0 prime to the characteristic 

of k, and assume that there is a primitive n-th root of unity in k. 

(i) Let K be a cyclic extension of degree n. Then there exists a e K such that 

K = k(a), and a satisfies an equation Xn — a = 0for some ask. 

(ii) Conversely, let ask. Let a be a root of Xn — a. Then fc(a) is cyclic over 

k, of degree d,d\n, and ocd is an element of k. 

Proof Let £ be a primitive n-th root of unity in k, and let K/k be cyclic with 
group G. Let o be a generator of G. We have N(C~*) = (£_1)n = 1. By Hilbert’s 
theorem 90, there exists a e K such that era = £ a. Since £ is in k, we have 
<xla = £*a for i = 1,..., n. Hence the elements £la are n distinct conjugates of a 
over /c, whence [/c(a): /c] is at least equal to n. Since [K : /c] = n, it follows that 
K = /c(a). Furthermore, 

<7(a") = <r(a)" = (£a)" = a”. 

Hence a” is fixed under <r, hence is fixed under each power of cr, hence is fixed 
under G. Therefore a" is an element of /c, and we let a = a”. This proves the 
first part of the theorem. 

Conversely, let ask. Let a be a root of Xn - a. Then a£* is also a root for 
each i = 1,. . . , n, and hence all roots lie in k(a) which is therefore normal over 
k. All the roots are distinct so k(a) is Galois over k. Let G be the Galois group. 

If cr is an automorphism of k(<x)/k then era is also a root of Xn — a. Hence 
ooc = coaoc where coa is an n-th root of unity, not necessarily primitive. The map 
o i—► ojg is obviously a homomorphism of G into the group of n-th roots of unity, 
and is injective. Since a subgroup of a cyclic group is cyclic, we conclude that 
G is cyclic, of order d, and d\n. The image of G is a cyclic group of order d. 

If cr is a generator of G, then (oa is a primitive d\h root of unity. Now we get 

o{oid) = (<ra)d = (coaot)d = ocd. 

Hence ocd is fixed under cr, and therefore fixed under G. It is an element of fc, and 
our theorem is proved. 
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We now pass to the analogue of Hilbert’s theorem 90 in characteristic p for 
cyclic extensions of degree p. 

Theorem 6.3. (Hilbert’s Theorem 90, Additive Form). Let k be a field and 

K/k a cyclic extension of degree n with group G. Let o be a generator of G. 

Let /? g K. The trace Tr*(/?) is equal to 0 if and only if there exists an element 

a e K such that /? = a — era. 

Proof If such an element a exists, then we see that the trace is 0 because 
the trace is equal to the sum taken over all elements of G, and applying a per¬ 
mutes these elements. 

Conversely, assume Tr(/?) = 0. There exists an element 9 e K such that 
Tr(0) # 0. Let 

a = ^ W + (£ + + ••• + (/? + <r/? + ••• + 
ir(to 

From this it follows at once that /? = a - era. 

Theorem 6.4. (Artin-Schreier) Let k be a field of characteristic p. 

(i) Let K be a cyclic extension of k of degree p. Then there exists a e K such 

that K = k(a) and a satisfies an equation Xp — X — a = 0 with some 

aek. 

(ii) Conversely, given aek, the polynomial f(X) = Xp — X — a either has 

one root in /c, in which case all its roots are in k, or it is irreducible. In 

this latter case, if oc is a root then /c(a) is cyclic of degree p over k. 

Proof Let K/k be cyclic of degree p. Then Trf( — 1) = 0 (it is just the sum 
of — 1 with itself p times). Let cr be a generator of the Galois group. By the 
additive form of Hilbert’s theorem 90, there exists a e K such that era — a = 1, 
or in other words, era = a + 1. Hence cr'a = a -f i for all integers i = 1,..., p 
and a has p distinct conjugates. Hence [/c(a): k] ^ p. It follows that K = k(a). 
We note that 

cr(ap — a) = cr(a)p — cr(a) = (a + \)p — (a -f 1) = <xp — a. 

Hence ap — a is fixed under cr, hence it is fixed under the powers of cr, and 
therefore under G. It lies in the fixed field k. If we let a = <xp — oc we see that 
our first assertion is proved. 

Conversely, let aek. If a is a root of Xp — X — a then a + i is also a 
root for i = 1,..., p. Thus f(X) has p distinct roots. If one root lies in k 

then all roots lie in k. Assume that no root lies in k. We contend that the 
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polynomial is irreducible. Suppose that 

f(X) = g(X)h(X) 

with g,he k\_X] and 1 ^ deg g < p. Since 

f(X) = f\(X-cc- 0 
i= 1 

we see that g(X) is a product over certain integers i. Let d = deg g. The co¬ 
efficient of Xd~l in g is a sum of terms —(a 4- i) taken over precisely d integers 
i. Hence it is equal to —da 4- j for some integer j. But d =£ 0 in k, and hence 
a lies in k, because the coefficients of g lie in k, contradiction. We know therefore 
that/(X) is irreducible. All roots lie in k(a), which is therefore normal over k. 

Since f(X) has no multiple roots, it follows that /c(a) is Galois over k. There 
exists an automorphism a of k(a) over k such that era = a 4- 1 (because a 4- 1 
is also a root). Hence the powers a1 of a give a1 a = a 4- i for i = 1,..., p and 
are distinct. Hence the Galois group consists of these powers and is cyclic, 
thereby proving the theorem. 

For cyclic extensions of degree pr, see the exercises on Witt vectors and the 
bibliography at the end of §8. 

§7. SOLVABLE AND RADICAL EXTENSIONS 

A finite extension E/k (which we shall assume separable for convenience) is 
said to be solvable if the Galois group of the smallest Galois extension K of k 

containing £ is a solvable group. This is equivalent to saying that there exists a 
solvable Galois extension L of k such that k cz E c L. Indeed, we have 
k c E c= K c L and G(K/k) is a homomorphic image of G(L/k). 

Proposition 7.1. Solvable extensions form a distinguished class of extensions. 

Proof Let E/k be solvable. Let F be a field containing k and assume £, F 

are subfields of some algebraically closed field. Let K be Galois solvable over k, 
and E a K. Then KF is Galois over F and G(KF/F) is a subgroup of G(K/k) 

by Theorem 1.12. Hence EF/F is solvable. It is clear that a subextension of a 
solvable extension is solvable. Let E F k be a tower, and assume that E/F 

is solvable and F/k is solvable. Let K be a finite solvable Galois extension of k 

containing F. We just saw that EK/K is solvable. Let L be a solvable Galois 
extension of K containing EK. If cr is any embedding of L over k in a given 
algebraic closure, then oK = K and hence oL is a solvable extension of K. We 
let M be the compositum of all extensions oL for all embeddings a of L over k. 
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Then M is Galois over fc, and is therefore Galois over K. The Galois group of 
M over K is a subgroup of the product 

FI G(aL/K) 
a 

by Theorem 1.14. Hence it is solvable. We have a surjective homomorphism 
G(M/k) -► G(K/k) by Theorem 1.10. Hence the Galois group of M/k has a 
solvable normal subgroup whose factor group is solvable. It is therefore 
solvable. Since E a M, our proof is complete. 

EK 

E | 
I K 

F 

k 

A finite extension F of k is said to be solvable by radicals if it is separable and 
if there exists a finite extension E of k containing F, and admitting a tower 
decomposition 

k = E0 c= E{ c= E2 c • • • c= Em = E 

such that each step F,+ ,/£,• is one of the following types: 

1. It is obtained by adjoining a root of unity. 

2. It is obtained by adjoining a root of a polynomial Xn — a with ae Ex and 
n prime to the characteristic. 

3. It is obtained by adjoining a root of an equation Xp — X — a with 
a e E( if p is the characteristic > 0. 

One can see at once that the class of extensions which are solvable by 
radicals is a distinguished class. 

Theorem 7.2. Let E be a separable extension of k. Then E is solvable by 

radicals if and only if E/k is solvable. 

Proof Assume that E/k is solvable, and let K be a finite solvable Galois 
extension of k containing E. Let m be the product of all primes unequal to the 
characteristic dividing the degree \_K : k], and let F = fc(Q where £ is a primitive 
m-th root of unity. Then F/k is abelian. We lift K over F. Then KF is solvable 
over F. There is a tower of subfields between F and KF such that each step is 
cyclic of prime order, because every solvable group admits a tower of sub- 
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groups of the same type, and we can use Theorem 1.10. By Theorems 6.2 and 
6.4, we conclude that KF is solvable by radicals over F, and hence is solvable 
by radicals over k. This proves that E/k is solvable by radicals. 

KF 

Conversely, assume that E/k is solvable by radicals. For any embedding a 

of E in Fa over fc, the extension aE/k is also solvable by radicals. Hence the 
smallest Galois extension K of E containing /c, which is a composite of E and 
its conjugates is solvable by radicals. Let m be the product of all primes unequal 
to the characteristic dividing the degree \_K : k~] and again let F = k(0 where ( 
is a primitive m-th root of unity. It will suffice to prove that KF is solvable over 
F, because it follows then that KF is solvable over k and hence G(K/k) is solvable 
because it is a homomorphic image of G(KF/k). But KF/F can be decomposed 
into a tower of extensions, such that each step is prime degree and of the type 
described in Theorem 6.2 or Theorem 6.4, and the corresponding root of unity 
is in the field F. Hence KF/F is solvable, and our theorem is proved. 

Remark. One could modify our preceding discussion by not assuming 
separability. Then one must deal with normal extensions instead of Galois 
extensions, and one must allow equations Xp — a in the solvability by radicals, 
with p equal to the characteristic. Then we still have the theorem corresponding 
to Theorem 7.2. The proof is clear in view of Chapter V, §6. 

For a proof that every solvable group is a Galois group over the rationals, I 
refer to Shafarevich [Sh 54], as well as contributions of Iwasawa [Iw 53]. 

[Iw 53] K. Iwasawa, On solvable extension of algebraic number fields, Ann. of Math. 

58 (1953), pp. 548-572 

[Sh 54] I. Shafarevich, Construction of fields of algebraic numbers with given solvable 
Galois group, Izv. Akad. Nauk SSSR 18 (1954), pp. 525-578 (Amer. Math. 

Soc. Transl. 4 (1956), pp. 185-237) 

§8. ABELIAN KUMMER THEORY 

In this section we shall carry out a generalization of the theorem concerning 
cyclic extensions when the ground field contains enough roots of unity. 

Let k be a field and m a positive integer. A Galois extension K of k with 
group G is said to be of exponent /w if crm = 1 for all a e G. 
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We shall investigate abelian extensions of exponent m. We first assume 
that m is prime to the characteristic of /c, and that k contains a primitive m-th 
root of unity. We denote by \im the group of m-th roots of unity. We assume 
that all our algebraic extensions in this section are contained in a fixed algebraic 
closure /ca. 

Let ask. The symbol ai,m (or j/a) is not well defined. If am = a and ( is 
an m-th root of unity, then (£oc)m = a also. We shall use the symbol a1,m to 
denote any such element a, which will be called an m-th root of a. Since the 
roots of unity are in the ground field, we observe that the field k(oc) is the same 
no matter which m-th root a of a we select. We denote this field by k(al,m). 

We denote by /c*m the subgroup of k* consisting of all m-th powers of non¬ 
zero elements of k. It is the image of /c* under the homomorphism x i—► xm. 

Let B be a subgroup of k* containing k*m. We denote by k(B1/m) or KB the 
composite of all fields k(al/m) with a e B. It is uniquely determined by B as a 
subfield of /ca. 

Let aeB and let a be an m-th root of a. The polynomial Xm — a splits into 
linear factors in KB, and thus KB is Galois over k, because this holds for all 
aeB. Let G be the Galois group. Let o eG. Then gol = coaoL for some m-th 
root of unity coa e \im c= k*. The map 

G f—► (JL)a 

is obviously a homomorphism of G into pm, i.e. for t, g e G we have 

TGOC = 0)x(Da a = COa<JJTOC. 

We may write coa = gol/ol. This root of unity a>a is independent of the choice 
of m-th root of a, for if a' is another m-th root, then a' = (a for some £ epm, 
whence 

cra'/a' = £(ja/£a = gol/cl. 

We denote coa by <<x, a). The map 

(g, a) i ► <<7, a> 

gives us a map 
G x £->pm. 

If a, b e B and am = a, pm = b then (a/?)m = ab and 

G(oLp)/ocp = (goc/ol)(gP/P). 

We conclude that the map above is bilinear. Furthermore, if a e fc*m it follows 
that <cr, a) = 1. 

Theorem 8.1. Let kbea field, m an integer > 0 prime to the characteristic of 

/c, and assume that a primitive m-th root of unity lies in k. Let B be a subgroup 

of fc* containing k*m and let KB = k(B1,m). Then KB is Galois, and abelian 

of exponent m. Let G be its Galois group. We have a bilinear map 

G x B \im given by (<r, a) i-> <<j, a}. 
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If (teG and aeB, and ocm = a then <<r, a> = croc/a. The kernel on the left is 1 
and the kernel on the right is k*m. The extension KB/k is finite if and only if 

(B : k*m) is finite. If that is the case, then 

B/k*m « G\ 

and in particular we have the equality 

lKB:k] = (B:k*m)- 

Proof Let o e G. Suppose <<r, a) = 1 for all aeB. Then for every gener¬ 
ator a of Kb such that am = ae B we have era = a. Hence a induces the identity 
on Kb and the kernel on the left is L Let aeB and suppose <cr, a} = 1 for all 
oeG. Consider the subfield k(a1/m) of KB. If allm is not in k, there exists an 
automorphism of k(a1/m) over k which is not the identity. Extend this auto¬ 
morphism to Kb, and call this extension cr. Then clearly <cr, a} # 1. This 
proves our contention. 

By the duality theorem of Chapter I, §9 we see that G is finite if and only 
if B/k*m is finite, and in that case we have the isomorphism as stated, so that 
in particular the order of G is equal to (B : k*m), thereby proving the theorem. 

Theorem 8.2. Notation being as in Theorem 8.1, the map B\-+ KB gives a 

bijection of the set of subgroups ofk* containing k*m and the abelian extensions 

of k of exponent m. 

Proof. Let Bu B2 be subgroups of k* containing k*m. If Bx c B2 then 
k(B\,m) c= k(B\/m). Conversely, assume that k(B\/m) <= k(B2/m). We wish to 
prove Bx a B2. Let b e Bx. Then k(bi/m) a k(B\/m) and k(b1/m) is contained in 
a finitely generated subextension of k(B\/m). Thus we may assume without loss 
of generality that B2/k*m is finitely generated, hence finite. Let B3 be the sub¬ 
group of k* generated by B2 and b. Then k(B\/m) = k(B\lm) and from what we 
saw above, the degree of this field over k is precisely 

(B2:k*m) or (B3: k*m). 

Thus these two indices are equal, and B2 = B3. This proves that Bx a B2. 

We now have obtained an injection of our set of groups B into the set of 
abelian extensions of k of exponent m. Assume finally that K is an abelian 
extension of k of exponent m. Any finite subextension is a composite of cyclic 
extensions of exponent m because any finite abelian group is a product of 
cyclic groups, and we can apply Corollary 1.16. By Theorem 6.2, every cyclic 
extension can be obtained by adjoining an m-th root. Hence K can be obtained 
by adjoining a family of m-th roots, say m-th roots of elements {bj}jeJ with 
bj e k*. Let B be the subgroup of k* generated by all bj and k*m. If V = bam 

with a,bek then obviously 

k(b'1/m) = k(b1/m). 

Hence k(B1/m) = X, as desired. 
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When we deal with abelian extensions of exponent p equal to the char¬ 
acteristic, then we have to develop an additive theory, which bears the same 
relationship to Theorems 8.1 and 8.2 as Theorem 6.4 bears to Theorem 6.2. 

If/c is a field, we define the operator p by 

p(x) = xp - x 

for xek. Then p is an additive homomorphism of k into itself. The subgroup 
p(k) plays the same role as the subgroup k*m in the multiplicative theory, 
whenever m is a prime number. The theory concerning a power of p is slightly 

more elaborate and is due to Witt. 
We now assume k has characteristic p. A root of the polynomial Xp — X — a 

with aek will be denoted by p~1a. If B is a subgroup of k containing pk 

we let Kb = k(p~ lB) be the field obtained by adjoining p~ la to k for all a e B. 

We emphasize the fact that B is an additive subgroup of k. 

Theorem 8.3. Let k be a field of characteristic p. The map £i—► k(p~lB) 

is a bijection between subgroups of k containing pk and abelian extensions of 

k of exponent p. Let K = KB = k(p~ lB\ and let G be its Galois group. 

If o eG and a e £, and pot = a, let <<r, a} = aot - ot. Then we have a bilinear 

map 

G x B -+ Z/pZ given by (<r, a) -► <a, a). 

The kernel on the left is 1 and the kernel on the right is pk. The extension 

KB/k is finite if and only if (B : pk) is finite and if that is the case, then 

[Kb : /c] = (B : pk). 

Proof. The proof is entirely similar to the proof of Theorems 8.1 and 8.2. 
It can be obtained by replacing multiplication by addition, and using the “ p-th 

root” instead of an m-th root. Otherwise, there is no change in the wording of 
the proof. 

The analogous theorem for abelian extensions of exponent pn requires 
Witt vectors, and will be developed in the exercises. 
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§9. THE EQUATION Xn - a = 0 

When the roots of unity are not in the ground field, the equation Xn - a = 0 
is still interesting but a little more subtle to treat. 

Theorem 9.1. Let kbea field and n an integer ^ 2. Let a e k, a # 0. Assume 

that for all prime numbers p such that p\n we have a$kp, and if 4\n then 

a ^ —4k4. Then Xn — a is irreducible in k[X~\. 

Proof Our first assumption means that a is not a p-th power in k. We 
shall reduce our theorem to the case when n is a prime power, by induction. 

Write n = prm with p prime to m, and p odd. Let 

m 

X" - a = n (* - «.) 
V= 1 

be the factorization of Xm — a into linear factors, and say a = a,. Substituting 
Xpr for X we get 

X” — a = Xp"m - a = n (Xp" - av). 
v = 1 

We may assume inductively that Xm — a is irreducible in k[Xf We contend 
that a is not a p-th power in k(a). Otherwise, a = /?p, f e /c(a). Let N be the 
norm from k{a) to k. Then 

-a = (- l)"W(a) = ( -1 )mN(fip) = (-l)mN(P)p. 

If m is odd, a is a p-th power, which is impossible. Similarly, if m is even and p 
is odd, we also get a contradiction. This proves our contention, because m is 
prime to p. If we know our theorem for prime powers, then we conclude that 
Xpr — a is irreducible over /c(a). If A is a root of Xpr — a then k c= k(a) c= k(A) 

gives a tower, of which the bottom step has degree m and the top step has degree 
pr. It follows that A has degree n over k and hence that Xn — a is irreducible. 

We now suppose that n = pr is a prime power. 
If p is the characteristic, let a be a p-th root of a. Then Xp — a = (X — oc)p 

and hence Xpr — a = (Xpr~1 — ot)p if r ^ 2. By an argument even more trivial 
than before, we see that a is not a p-th power in k(a), hence inductively 
XPr — a is irreducible over k(a). Hence XPr — a is irreducible over k. 

Suppose that p is not the characteristic. We work inductively again, and 
let a be a root of Xp — a. 

Suppose a is not a p-th power in k. We claim that Xp — a is irreducible. 
Otherwise a root a of Xp — a generates an extension k(a) of degree d < p 

and ap = a. Taking the norm from k(a) to k we get N(a)p = ad. Since d is 
prime to p, it follows that a is a p-th power in k, contradiction. 
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Let r ^ 2. We let a = ar We have 

p 

X”-a = n (* - av) 
v — 1 

and 
p 

XPr - a = n (XPr~' - av). 
V= 1 

Assume that a is not a p-th power in /c(a). Let A be a root of Xpr~1 — a. If p 
is odd then by induction, A has degree pr~ 1 over /c(a), hence has degree pr over 
k and we are done. If p = 2, suppose a = - 4/?4 with /? e /c(a). Let N be the 

norm from k(a) to k. Then — a = N(a) = 16A(/3)4, so —a is a square in Since 
p = 2 we get V-T e &(a) and a = (V—T 2/32)2, a contradiction. Hence again 
by induction, we find that A has degree pr over k. We therefore assume that 
a = 0p with some 3 e k(a), and derive the consequences. 

Taking the norm from k(ot) to k we find 

-a = (-i)PN(oc) = (-1 )pN(fip) = (-1)PN(/?)P. 

If p is odd, then a is a p-th power in k, contradiction. Hence p = 2, and 

-a = N(P)2 

is a square in k. Write —a = b2 with bek. Since a is not a square in k we con¬ 
clude that — 1 is not a square in k. Let i2 — — 1. Over k(i) we have the factoriza¬ 
tion 

*2r - a = X2” + b2 = (X2r~l + ibXX2"-1 - ib). 

Each factor is of degree 2r~1 and we argue inductively. If X2r~1 ± ib is reducible 
over k(i) then ± ib is a square in k(i) or lies in — 4(/c(i))4. In either case, + ib is a 
square in k(i), say 

±ib = (c* + di)2 = c2 -f 2cdi — d2 

with c, d e k. We conclude that c2 = d2 or c = ±d, and ±ib = 2cdi = ±2c2i. 

Squaring gives a contradiction, namely 

a = —b2— -4c4. 

We now conclude by unique factorization that Ar+ fr2 cannot factor in 
/c[A"], thereby proving our theorem. 

The conditions of our theorem are necessary because 

*4 f = (X2 + 2bX + 2b2)(X2 - 2bX + 2b2). 

If n = 4m and a e — 4/c4 then X" — a is reducible. 
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Corollary 9.2. Let k be afield and assume that aek,a^0, and that a is not 

a p-th power for some prime p. If p is equal to the characteristic, or if p is odd, 
then for every integer r ^ 1 the polynomial Xpr - a is irreducible over k. 

Proof The assertion is logically weaker than the assertion of the theorem. 

Corollary 9.3. Let k be a field and assume that the algebraic closure ka of k 

is of finite degree > 1 over k. Then ka = k(i) where i2 = -1, and k has 

characteristic 0. 

Proof. We note that k* is normal over k. If 1? is not separable over k, so 
char k = p > 0, then k* is purely inseparable over some subfield of degree > 
1 (by Chapter V, §6), and hence there is a subfield E containing ky and an element 
a e E such that Xp - a is irreducible over E. By Corollary 9.2, k* cannot be of 
finite degree over E. (The reader may restrict his or her attention to characteristic 
0 if Chapter V, §6 was omitted.) 

We may therefore assume that ka is Galois over k. Let kt = k(i). Then /ca 
is also Galois over kv Let G be the Galois group of ka/kv Suppose that there 
is a prime number p dividing the order of G, and let H be a subgroup of order p. 

Let F be its fixed field. Then [/ca: F] = p. Up is the characteristic, then Exercise 
29 at the end of the chapter will give the contradiction. We may assume that p 

is not the characteristic. The p-th roots of unity # 1 are the roots of a poly¬ 
nomial of degree ^ p — 1 (namely Xp~1 + ■ • • + 1), and hence must lie in F. 

By Theorem 6.2, it follows that ka is the splitting field of some polynomial 
Xp — a with ae F. The polynomial Xpl — a is necessarily reducible. By the 
theorem, we must have p = 2 and a = -4b* with beF. This implies 

ka = F(a112) = F(i). 

But we assumed ieku contradiction. 
Thus we have proved k* = k(i). It remains to prove that char k = 0, and for 

this I use an argument shown to me by Keith Conrad. We first show that a sum 
of squares in k is a square. It suffices to prove this for a sum of two squares, 
and in this case we write an element x + iy e Jfc(i) = as a square. 

x + iy = (u + /v)2, x, y, u9 v e k, 

and then x2 + y2 = (u2 + v2)2. Then to prove k has characteristic 0, we merely 
observe that if the characteristic is > 0, then —1 is a finite sum 1 + ... + 1, 
whence a square by what we have just shown, but I? = k(i)> so this concludes 
the proof. 

Corollary 9.3 is due to Artin; see [Ar 24], given at the end of Chapter XI. 
In that chapter, much more will be proved about the field k. 

Example 1. Let k = Q and let Gq = G(Qa/Q). Then the only non-trivial 
torsion elements in Gq have order 2. It follows from Artin’s theory (as given 
in Chapter XI) that all such torsion elements are conjugate in Gq. One uses 
Chapter XI, Theorems 2.2, 2.4, and 2.9.) 



300 GALOIS THEORY VI, §9 

Example 2. Let it be a field of characteristic not dividing n. Let a e k, 

a =£ 0 and let K be the splitting field of Xn — a. Let a be one root of 
Xn - a, and let £ be a primitive n-th root of unity. Then 

K = k(a, C) = k(a, m). 

We assume the reader is acquainted with matrices over a commutative ring. Let 
ct e GK/k. Then (cra)n = a, so there exists some integer b = 6(cr) uniquely 
determined mod n, such that 

cr(a) = atf^. 

Since <7 induces an automorphism of the cyclic group [Ln, there exists an integer 
d{&) relatively prime to n and uniquely determined mod n such that a(£) = 

£^(<7). Let G(n) be the subgroup of GL2(Z/nZ) consisting of all matrices 

M = ^ with b e Z/nZ and d E (Z/nZ)*. 

Observe that #G(n) = n<p(n). We obtain an injective map 

which is immediately verified to be an injective homomorphism. The question 
arises, when is it an isomorphism? The next theorem gives an answer over some 
fields, applicable especially to the rational numbers. 

Theorem 9.4. Let k be a field. Let n be an odd positive integer prime to the 

characteristic, and assume that [/c((x„) : k] = (p(n). Let a e k, and suppose that 

for each prime p\n the element a is not a p-th power in k. Let K be the splitting 

field of Xn — a over k. Then the above homomorphism cr i—> M(&) is an 

isomorphism of GK/k with G(n). The commutator group is Ga\(K/k(pLn))9 so 

k(pin) is the maximal abelian subextension of K. 

Proof. This is a special case of the general theory of § 11, and Exercise 39, 
taking into account the representation of GK/k in the group of matrices. One need 
only use the fact that the order of GK/k is n<p(ri)9 according to that exercise, and 
so #{GKik) = #G(n), so GK/k = G(n). However, we shall given an independent 
proof as an example of techniques of Galois theory. We prove the theorem by 
induction. 

Suppose first n = p is prime. Since [k(pLp) : k] = p — 1 is prime to /?, it 
follows that if a is a root of Xp - a, then k{a) fl k(\kp) = k because 
[k(a) : k] = p. Hence [K : k] = p(p - 1), so GK/k = G(p). 

A direct computation of a commutator of elements in G(n) for arbitrary n 

shows that the commutator subgroup is contained in the group of matrices 

(‘ °),i6Z/»Z, 
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and so must be that subgroup because its factor group is isomorphic to (Z/nZ)* 
under the projection on the diagonal. This proves the theorem when n = p. 

Now \ztp\n and write n = pm. Then [A:(|xm) : k\ = <p(m), immediately from 
the hypothesis that [^(ix^) : k] = <p(n). Let a be a root of Xn - a, and let 
(3 = ap. Then (3 is a root of Xm — a, and by induction we can apply the theorem 
to Xm — a. The field diagram is as follows. 

Since a has degree pm over k, it follows that a cannot have lower degree than 
p over k((3), so [k(a) : k([3)] = p and Xp - (3 is irreducible over k{f3). We apply 
the first part of the proof to Xp - (3 over k((3). The property concerning the 
maximal abelian subextension of the splitting field shows that 

k(a) fl k(/3, iaJ = k(p). 

Hence [k(a, jjiJ : £(/3, |xj] = p. By induction, [k{f3, **„) : ^(ixj] = m, again 
because of the maximal abelian subextension of the splitting field of Xm - a 

over k. This proves that [K :k] = n<p(n), whence GK/k = G(n), and the commutator 
statement has already been proved. This concludes the proof of Theorem 9.4. 

Remarks. When n is even, there are some complications, because for 
instance Q(V2) is contained in Q(jx8), so there are dependence relations among 
the fields in question. The non-abelian extensions, as in Theorem 9.4, are of 
intrinsic interest because they constitute the first examples of such extensions 
that come to mind, but they arose in other important contexts. For instance, 
Artin used them to give a probabilistic model for the density of primes p such 
that 2 (say) is a primitive root mod p (that is, 2 generates the cyclic group 
(Z/pZ)*. Instead of 2 he took any non-square integer ^ ±l. At first, Artin did 
not realize explicitly the above type of dependence, and so came to an answer 
that was off by some factor in some cases. Lehmer discovered the discrepancy 
by computations. As Artin then said, one has to multiply by the “obvious” factor 
which reflects the field dependencies. Artin never published his conjecture, but 
the matter is discussed in detail by Lang-Tate in the introduction to his collected 
papers (Addison-Wesley, Springer Verlag). 

Similar conjectural probabilistic models were constructed by Lang-Trotter in 
connection with elliptic curves, and more generally with certain /?-adic repre¬ 
sentations of the Galois group, in “Primitive points on elliptic curves”, Bull. 

AMS 83 No. 2 (1977), pp. 289-292; and [LaT 75] (end of §14). 
For further comments on the p-adic representations of Galois groups, see §14 

and §15. 
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§10. GALOIS COHOMOLOGY 

Let G be a group and A an abelian group which we write additively for the 
general remarks which we make, preceding our theorems. Let us assume that 
G operates on A, by means of a homomorphism G -► Aut(A). By a 1-cocycle of 
G in A one means a family of elements {oia}a€G with ocffe A, satisfying the relations 

aff + (j(xr = otar 

for all <t, t e G. If {oca}aeG and {Po}oeG are 1-cocycles, then we can add them to 
get a 1-cocycle {ocff + fa}aeG. It is then clear that 1-cocycles form a group, 
denoted by Zl(G, A). By a 1-coboundary of G in A one means a family of ele¬ 
ments {aff}ffe(; such that there exists an element /?e A for which oca = op — p 

for all a eG. It is then clear that a 1-coboundary is a 1-cocycle, and that the 
1-coboundaries form a group, denoted by Bl(G, A). The factor group 

Z'(G, A)/Bl(G, A) 

is called the first cohomology group of G in A and is denoted by Hl(G, A). 

Remarks. Suppose G is cyclic. Let 

TrG: A A be the homomorphism a i-> 2 <r(a). 
cr<=G 

Let y be a generator of G. Let (1 - y)A be the subgroup of A consisting of all 
elements a - y(a) with a e A. Then (1 - y)A is contained in ker TrG. The 
reader will verify as an exercise that there is an isomorphism 

ker TrG/(l - y)A « H\G, A). 

Then the next theorem for a cyclic group is just Hilbert’s Theorem 90 of §6. 
Cf. also the cohomology of groups, Chapter XX, Exercise 4, for an even more 
general context. 

Theorem 10.1. Let K/k be a finite Galois extension with Galois group G. 

Then for the operation of G on X* we have H\G, X*) = 1 ,and for the 

operation of G on the additive group of X we have Hl(G, X) = 0. In other 

words, the first cohomology group is trivial in both cases. 

Proof Let {ota}aeG be a 1-cocycle of G in X*. The multiplicative cocycle 
relation reads 
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By the linear independence of characters, there exists 6 e K such that the element 

0 = Z 
r g G 

is # 0. Then 

°P = Z = Z «««. W0) 
reG reG 

= a;1 Z a<rr<”(0) = aff 
reG 

We get a, = P/op, and using /T1 instead of ft gives what we want. 
For the additive part of the theorem, we find an element 6 e K such that the 

trace Tr(0) is not equal to 0. Given a 1-cocycle {a^} in the additive group of K, 
we let 

P = 
1 

TW 
Z arT(0)' 

reG 

It follows at once that CLa = P — a/?, as desired. 

The next lemma will be applied to the non-abelian Kummer theory of the 
next section. 

Lemma 10.2. (Sah). Let G be a group and let E be a G-module. Let t be in 

the center of G. Then Hl(G, E) is annihilated by the map x i—► rx — x on E. 

In particular, if this map is an automorphism of E, then Hl(G, £) = 0. 

Proof. Let / be a 1-cocycle of G in E. Then 

/(<*) =/(t(tt"1) =/(t) + T(/(aT_1) 

= /(*) + t[/(<t) + (j/(T-1)]. 

Therefore 

*/(<*) -/(*) = — o-xf(x *) -/(t). 

But/(l) =/(l) + /(1) implies/(l) = 0, and 

0=/(1)=/(tt"1)=/(t) + t/(t-1). 

This shows that (t — l)/(cr) = (<r — 1)/(t), so/is a coboundary. This proves 
the lemma. 
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§11. NON-ABELIAN KUMMER EXTENSIONS 

We are interested in the splitting fields of equations Xn — a = 0 when the 
n-th roots of unity are not contained in the ground field. More generally, we 
want to know roughly (or as precisely as possible) the Galois group of simul¬ 
taneous equations of this type. For this purpose, we axiomatize the pattern 
of proof to an additive notation, which in fact makes it easier to see what is 
going on. 

We fix an integer N > 1, and we let M range over positive integers divid¬ 
ing N. We let P be the set of primes dividing N. We let G be a group, and let: 

A = G-module such that the isotropy group of any element of A is of finite 
index in G. We also assume that A is divisible by the primes p\N, 

that is 

pA = A for all pe P. 

r = finitely generated subgroup of A such that T is pointwise fixed by G. 

We assume that AN is finite. Then -j- T is also finitely generated. Note that 

Example. For our purposes here, the above situation summarizes the 
properties which hold in the following situation. Let K be a finitely generated 
field over the rational numbers, or even a finite extension of the rational numbers. 
We let A be the multiplicative group of the algebraic closure Ka. We let G = GK 

be the Galois group Gal(Ka/K). We let T be a finitely generated subgroup of 
the multiplicative group K*. Then all the above properties are satisfied. We 

see that AN = \iN is the group of iV-th roots of unity. The group written ^ T 

in additive notation is written T1/N in multiplicative notation. 

Next we define the appropriate groups analogous to the Galois groups of 
Kummer theory, as follows. For any G-submodule B of A, we let: 

G(B) = image of G in Aut(£), 

G(N) = G(An) = image of G in Aut(/1N), 

H(N) = subgroup of G leaving AN pointwise fixed, 

Hr(M, N) (for M\N) = image of H(N) in f\ 
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Then we have an exact sequence: 

r + an^J -* G(N) -* o. 

Example. In the concrete case mentioned above, the reader will easily 
recognize these various groups as Galois groups. For instance, let A be the 
multiplicative group. Then we have the following lattice of field extensions 
with corresponding Galois groups: 

0 -► Hr(M, N)-+G i 
\M 

G(r1/MnJV) 

K(nN, r1/M)l 

K(IIn) \ 

K 

Hr(M, N) 

G(N) 

In applications, we want to know how much degeneracy there is when we trans¬ 
late X(pM, T1/M) over K(\in) with M\N. This is the reason we play with the 
pair M, N rather than a single N. 

Let us return to a general Kummer representation as above. We are in¬ 
terested especially in that part of (Z/NZ)* contained in G(N), namely the group 
of integers n (mod N) such that there is an element [n] in G(N) such that 

[ri]a = na for all a e AN. 

Such elements are always contained in the center of G(N\ and are called 
homotheties. 

Write 

n = n pn(p) 

Let S be a subset of P. We want to make some non-degeneracy assumptions 
about G(N). We call S the special set. 

There is a product decomposition 

(Z/NZ)* = n (Z/p^Z)*. 
p\N 

If 21N we suppose that 2 e S. For each peS we suppose that there is an integer 
c(p) = pf(p) with/(p) ^ 1 such that 

g(an)^ n^,„x n(z/Pn(p,z)*, 
peS piS 

where Uc{p) is the subgroup of Z(p"(p)) consisting of those elements = 1 mod c(p). 



306 GALOIS THEORY VI, §11 

The product decomposition on the right is relative to the direct sum decom¬ 
position 

Atf = Apn(p). 

p\N 

The above assumption will be called the non-degeneracy assumption. The 
integers c(p) measure the extent to which G(AN) is degenerate. 

Under this assumption, we observe that 

[2] e G(Am) if M | N and M is not divisible by primes of 5; 

[1 + c] e G(Am) if M\N and M is divisible only by primes of S, 

where 

c = c(s) = n c(p)- 
peS 

We can then use [2] - [1] = [1] and [1 + c] - [1] = [c] in the context of 
Lemma 10.2, since [1] and [c] are in the center of G. 

For any M we define 

cm = n c(p). 
P\M 

peS 

Define 

and the exponent 

e(T'/r) = smallest positive integer e such that eV c T. 

It is clear that degeneracy in the Galois group Hr(M, N) defined above can 
arise from lots of roots of unity in the ground field, or at least degeneracy in 
the Galois group of roots of unity; and also if we look at an equation 

XM - a = 0, 

from the fact that a is already highly divisible in K. This second degeneracy 
would arise from the exponent e(T'/T), as can be seen by looking at the Galois 
group of the divisions of T. The next theorem shows that these are the only 
sources of degeneracy. 

We have the abelian Kummer pairing for M \ N, 

Hr(M, N) x T/MT -► Am given by (t, x) > xy — y, 

where y is any element such that My = x. The value of the pairing is indepen- 
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dent of the choice of y. Thus for x e T, we have a homomorphism 

<PX: Hr(M, N) -* Am 

such that 

(px{t) = xy — y, where My = x. 

Theorem 11.1. LetM\N. Let cp be the homomorphism 

(p •* T -► Hom(tf r(M, N), 

and let be its kernel. Let eM(0 = g.c.d. (e(ryr), M). t/nder t/ic non¬ 

degeneracy assumption, we /wwe 

c(M)cM(nr^ c MT. 

Pro(9/. Let x g T and suppose = 0. Let My = x. For cr g G let 

y* = tfy - y- 

Then {ya} is a 1-cocycle of G in AM, and by the hypothesis that cpx = 0, this 
cocycle depends only on the class of a modulo the subgroup of G leaving the 
elements of AN fixed. In other words, we may view {ya} as a cocycle of G(N) in 
Am. Let c = c(N). By Lemma 10.2, it follows that {cya} splits as a cocycle of 
G(N) in Am. In other words, there exists t0e AM such that 

cya = <rt0 — t0i 

and this equation in fact holds for cr g G. Let t be such that ct = t0. Then 

coy - cy = oct - cy, 

whence c(y — t) is fixed by all a e G, and therefore lies in ~ T. Therefore 

e(r/T)c(y - 0 g r. 

We multiply both sides by M and observe that cM(y — t) = cMy = cx. This 
shows that 

c(iVMryr)r, c mt. 

Since T/MT has exponent M, we may replace KT'/T) by the greatest common 
divisor as stated in the theorem, and we can replace c(N) by c(M) to conclude 
the proof. 

Corollary 11.2. Assume that M is prime to 2(F : T) and is not divisible by 

any primes of the special set S. Then we have an injection 

<p : r/Mf Horn(H^M, AT), AM). 
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If in addition T is free with basis {au.ar}, and we let <p, = (pa., then the map 

Hr(M, N) -> Aft given by z -► {(pfz\ ..., cpfz)) 

is injective. If A M is cyclic of order M, this map is an isomorphism. 

Proof Under the hypotheses of the corollary, we have c(M) = 1 and 
cM(T) = 1 in the theorem. 

Example. Consider the case of Galois theory when A is the multiplicative 
group of Ka. Let au...9ar be elements of K* which are multiplicatively inde¬ 
pendent. They generate a group as in the corollary. Furthermore, AM — \iM 

is cyclic, so the corollary applies. If M is prime to 2(F : T) and is not divisible 
by any primes of the special set 5, we have an isomorphism 

cp: r/MT - Horn(//r(M, TV), M- 

§12. ALGEBRAIC INDEPENDENCE OF 
HOMOMORPHISMS 

Let A be an additive group, and let K be a field. Let Xl9..., A„: A -► K be 
additive homomorphisms. We shall say that A,, ..., Xn are algebraically 
dependent (over K) if there exists a polynomial f(Xu...,Xn) in 
K [A\, . . . , Xn\ such that for all x e A we have 

/(Aj(x),..., A„(x)) = 0, 

but such that / does not induce the zero function on K(n\ i.e. on the direct 
product of K with itself n times. We know that with each polynomial we can 
associate a unique reduced polynomial giving the same function. If K is 
infinite, the reduced polynomial is equal to / itself. In our definition of de¬ 
pendence, we could as well assume that / is reduced. 

A polynomial f(Xlf..., Xn) will be called additive if it induces an additive 
homomorphism of K{n) into K. Let (y) = (Yu..., Yn) be variables inde¬ 
pendent from (A"). Let 

g(X, Y)=f(X+ Y)-f(X)-f(Y) 

where X -f Y is the componentwise vector addition. Then the total degree of 
g viewed as a polynomial in (X) with coefficients in X[T] is strictly less than 
the total degree off and similarly, its degree in each X{ is strictly less than the 
degree of/ in each X,. One sees this easily by considering the difference of 
monomials, 
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MUX + Y) - Miv)(X) ~ Miv)(Y) 

= (x1 + Yx)"---(xm + Yj"-yv---y;*. 

A similar assertion holds for g viewed as a polynomial in (7) with coefficients in 
K[X]. 

If/ is reduced, it follows that g is reduced. Hence if/ is additive, it follows 
that g is the zero polynomial. 

Example. Let K have characteristic p. Then in one variable, the map 

for a e K and m ^ 1 is additive, and given by the additive polynomial aXpm. 

We shall see later that this is a typical example. 

Theorem 12.1. (Artin). Let Al9..., : A -► K be additive homomorph- 

isms of an additive group into a field. If these homomorphisms are alge¬ 

braically dependent over K, then there exists an additive polynomial 

f(Xl9...9Xn)* 0 

in K[X] such that 

/(-* l(x), • • •, A„(x)) = 0 

for all x e A. 

Proof Let f(X) =f{Xx,..., Xn) e K[X] be a reduced polynomial of 
lowest possible degree such that /# 0 but for all xeA,f(A(x)) = 0, where 
A(x) is the vector (^(x),..., A„(x)). We shall prove that/is additive. 

Let g(X9 Y) =f(X + 7) - f(X) - f(Y). Then 

g(A(x), A(y» =/(A(x + y)) -/(A(x)) -f(A(y)) = 0 

for all x, y e A. We shall prove that g induces the zero function on K{n) x K(n). 

Assume otherwise. We have two cases. 
Case 1. We have g{^9 A(y)) = 0 for all ^eK(n) and all ye A. By 

hypothesis, there exists e Kin) such that g{^\ Y) is not identically 0. Let 
P(Y) = g(t;\ Y). Since the degree of g in (7) is strictly smaller than the degree 
of /, we have a contradiction. 

Case 2. There exist £ e K(n) and y' e A such that g(£\ A(y')) # 0. Let 
P(X) = g(X, A(y')). Then P is not the zero polynomial, but P(A(x)) = 0 for all 
x e A, again a contradiction. 
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We conclude that g induces the zero function on K{n) x K(n\ which proves 
what we wanted, namely that/is additive. 

We now consider additive polynomials more closely. 
Let/be an additive polynomial in n variables over K, and assume that /is 

reduced. Let 

fi(Xi) =/(0,..., Xi9..., 0) 

with Xt in the i-th place, and zeros in the other components. By additivity, it 
follows that 

because the difference of the right-hand side and left-hand side is a reduced 
polynomial taking the value 0 on K(n). Furthermore, each / is an additive 
polynomial in one variable. We now study such polynomials. 

Let f(X) be a reduced polynomial in one variable, which induces a linear 
map of K into itself. Suppose that there occurs a monomial arXr in /with 
coefficient ar ^ 0. Then the monomials of degree r in 

g(X9 Y) =f(X + Y)-f(X)-f(Y) 

are given by 

ar(X + YJ — arXr — ar Yr. 

We have already seen that g is identically 0. Hence the above expression is 
identically 0. Hence the polynomial 

(X + YJ - Xr - Yr 

is the zero polynomial. It contains the term rXr~1Y. Hence if r > 1, our field 
must have characteristic p and r is divisible by p. Write r = pms where s is 
prime to p. Then 

o = (x + yj - xr - Yr = (xpm + Yprny - (xpy - (Ypy. 

Arguing as before, we conclude that s = 1. 
Hence if /is an additive polynomial in one variable, we have 

m 

f(X)= 
v = 0 

with av e K. In characteristic 0, the only additive polynomials in one variable 
are of type aX with ae K. 

As expected, we define Xl9..., kn to be algebraically independent if, whenever 
/ is a reduced polynomial such that/(A(x)) = 0 for all xe K, then /is the zero 
polynomial. 
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We shall apply Theorem 12.1 to the case when Al9...,An are automorphisms 
of a field, and combine Theorem 12.1 with the theorem on the linear indepen¬ 
dence of characters. 

Theorem 12.2. Let K be an infinite field, and let ol9 ..., on be the distinct 
elements of a finite group of automorphisms of K. Then ol9..., on are alge¬ 
braically independent over K. 

Proof (Artin). In characteristic 0, Theorem 12.1 and the linear inde¬ 
pendence of characters show that our assertion is true. Let the characteristic 
be p > 0, and assume that ol9 ..., on are algebraically dependent. 

There exists an additive polynomial /(Xl9...9Xn) in K[X] which is 
reduced, f # 0, and such that 

/(ffiW> • • •, = 0 

for all x e K. By what we saw above, we can write this relation in the form 

Z Z air°i(x)pr = 0 
i= 1 r= 1 

for all xe K, and with not all coefficients air equal to 0. Therefore by the linear 
independence of characters, the automorphisms 

{of} with i=l, ...,n and r = 1,..., m 

cannot be all distinct. Hence we have 

with either i ^ j or r # s. Say r ^ s. For all x e K we have 

oW = ofxY. 

Extracting p-th roots in characteristic p is unique. Hence 

°i{x) = ofxy- = o fxpS ~r) 

for all x e K. Let o = oJlOi. Then 

o(x) = xpS 

for all xe K. Taking on = id shows that 

x = xpMs~r) 

for all xe K. Since K is infinite, this can hold only if s = r. But in that case, 
o{ = Oj, contradicting the fact that we started with distinct automorphisms. 
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§13. THE NORMAL BASIS THEOREM 

Theorem 13.1. Let K/k be a finite Galois extension oj degree n. Let ol9...,on 

be the elements of the Galois group G. Then there exists an element w e K 

such that oxw,..., onw form a basis of K over k. 

Proof We prove this here only when k is infinite. The case when k is 
finite can be proved later by methods of linear algebra, as an exercise. 

For each a e G, let Xa be a variable, and let ta x = Xa-it. Let Xt = Xai. Let 

f(Xu ..., Xn) = det(ta. 

Then /is not identically 0, as one sees by substituting 1 for Xid and 0 for Xa if 
o # id. Since k is infinite,/is reduced. Hence the determinant will not be 0 for 
all x e K if we substitute ofx) for X{ in /. Hence there exists we K such that 

det(orlGj{w)) ^ 0. 

Suppose aan e k are such that 

tfi<Ti(w) + ••• + anan{w) = 0. 

Apply of1 to this relation for each i = 1,..., n. Since af e k we get a system of 
linear equations, regarding the a} as unknowns. Since the determinant of the 
coefficients is / 0, it follows that 

aj = 0 for j = 1,..., n 

and hence that w is the desired element. 

Remark. In terms of representations as in Chapters III and XVIII, the 
normal basis theorem says that the representation of the Galois group on the 
additive group of the field is the regular representation. One may also say that 
K is free of dimension 1 over the group ring k[G]. Such a result may be viewed 
as the first step in much more subtle investigations having to do with algebraic 
number theory. Let K be a number field (finite extension of Q) and let o* be 
its ring of algebraic integers, which will be defined in Chapter VII, §1. Then 
one may ask for a description of as a Z[G] module, which is a much more 
difficult problem. For fundamental work about this problem, see A. Frohlich, 
Galois Module Structures of Algebraic Integers, Ergebnisse der Math. 3 Folge 
Vol. 1, Springer Verlag (1983). See also the reference [CCFT 91] given at the 
end of Chapter III, §1. 
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§14. INFINITE GALOIS EXTENSIONS 

Although we have already given some of the basic theorems of Galois theory 
already for possibly infinite extensions, the non-finiteness did not really appear 
in a substantial way. We now want to discuss its role more extensively. 

Let K/k be a Galois extension with group G. For each finite Galois subex¬ 
tension F, we have the Galois groups GK/F and GF/k. Put H = GK/F. 

Then H has finite index, equal to #(GF/k) = [F : k\. This just comes as a special 
case of the general Galois theory. We have a canonical homomorphism 

G G/H = Gm. 

Therefore by the universal property of the inverse limit, we obtain a 
homomorphism 

G lim G/H, 

where the limit is taken for H in the family of Galois groups GK/F as above. 

Theorem 14.1. The homomorphism G —> lim G/H is an isomorphism. 

Proof. First the kernel is trivial, because if a is in the kernel, then a restricted 
to every finite subextension of K is trivial, and so is trivial on K. Recall that an 
element of the inverse limit is a family {aH} with crH e G/H, satisfying a certain 
compatibility condition. This compatibility condition means that we may define 
an element a of G as follows. Let a e K. Then a is contained in some finite 
Galois extension F C K. Let H = Gal(K/F). Let era = aHa. The compatibility 
condition means that crHa is independent of the choice of F. Then it is immediately 
verified that a is an automorphism of K over k9 which maps to each aH in the 
canonical map of G into G/H. Hence the map G —> lim G/H is surjective, thereby 
proving the theorem. 

Remark. For the topological interpretation, see Chapter I, Theorem 10.1, 
and Exercise 43. 

Example. Let \k[p*] be the union of all groups of roots of unity |\i[pn], 

where p is a prime and n — 1,2,... ranges over the positive integers. Let 
K = QCixIp00]). Then K is an abelian infinite extension of Q. Let Zp be the ring 
of p-adic integers, and Z* the group of units. From §3, we know that (Z/p^Z)* 
is isomorphic to GaKQCixIp^l/Q)). These isomorphisms are compatible in the 
tower of p-th roots of unity, so we obtain an isomorphism 

Z^GaKQCpi^/Q)). 
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Towers of cyclotomic fields have been extensively studied by Iwasawa. Cf. 
a systematic exposition and bibliography in [La 90]. 

For other types of representations in a group GL2(Zp), see Serre [Se 68], 
[Se 72], Shimura [Shi 71], and Lang-Trotter [LaT 75]. One general framework 
in which the representation of Galois groups on roots of unity can be seen has 
to do with commutative algebraic groups, starting with elliptic curves. Specif¬ 
ically, consider an equation 

y2 = 4x3 - g2x - g3 

with g2, 93 e Q and non-zero discriminant: A = g2 - 21g\ + 0. The set of 
solutions together with a point at infinity is denoted by E. From complex analysis 
(or by purely algebraic means), one sees that if K is an extension of Q, then the 
set of solutions E(K) with x, y e K and 00 form a group, called the group of 
rational points of E in K. One is interested in the torsion group, say E(Qa)tor of 
points in the algebraic closure, or for a given prime p> in the group £(Qa)[pr] 
and EiQ^lp00]. As an abelian group, there is an isomorphism 

E(Q*)[pr] « (Z/p'Z) x (Z/p'Z), 

so the Galois group operates on the points of order pr via a representation in 
GL2(Z/prZ), rather than GLx{Z/prZ) = (Z/prZ)* in the case of roots of unity. 
Passing to the inverse limit, one obtains a representation of Gal(Qa/Q) = Gq 

in GL2(Zp). One of Serre’s theorems is that the image of Gq in GL2(Zp) is a 
subgroup of finite index, equal to GL2{Zp) for all but a finite number of primes 
p, if End C (E) = Z. 

More generally, using freely the language of algebraic geometry, when A is 
a commutative algebraic group, say with coefficients in Q, then one may consider 
its group of points A(Qa)tor, and the representation of Gq in a similar way. 
Developing the notions to deal with these situations leads into algebraic geometry. 

Instead of considering cyclotomic extensions of a ground field, one may also 
consider extensions of cyclotomic fields. The following conjecture is due to 
Shafarevich. See the references at the end of §7. 

Conjecture 14.2. Let k0 = Q(jji) be the compositum of all cyclotomic exten¬ 

sions of Q in a given algebraic closure Qa. Let k be a finite extension of k0. 

Let Gk = Gal(Qa/k). Then Gk is isomorphic to the completion of a free group 

on countably many generators. 

If G is the free group, then we recall that the completion is the inverse limit 
lim G/H, taken over all normal subgroups H of finite index. Readers should 
view this conjecture as being in analogy to the situation with Riemann surfaces, 
as mentioned in Example 9 of §2. It would be interesting to investigate the extent 
to which the conjecture remains valid if Q(|Ji) is replaced by Q(A(Qa)tor), where 
A is an elliptic curve. For some results about free groups occurring as Galois 
groups, see also Wingberg [Wi 91]. 
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§15. THE MODULAR CONNECTION 

This final section gives a major connection between Galois theory and the 
theory of modular forms, which has arisen since the 1960s. 

One fundamental question is whether given a finite group G, there exists a 
Galois extension K of Q whose Galois group is G. In Exercise 23 you will prove 
this when G is abelian. 

Already in the nineteenth century, number theorists realized the big difference 
between abelian and non-abelian extensions, and started understanding abelian 
extensions. Kronecker stated and gave what are today considered incomplete 
arguments that every finite abelian extension of Q is contained in some extension 
Q(£), where £ is a root of unity. The difficulty lay in the peculiarities of the 
prime 2. The trouble was fixed by Weber at the end of the nineteenth century. 
Note that the trouble with 2 has been systematic since then. It arose in Artin’s 
conjecture about densities of primitive roots as mentioned in the remarks after 
Theorem 9.4. It arose in the Grunwald theorem of class field theory (corrected 
by Wang, cf. Artin-Tate [ArT 68], Chapter 10). It arose in Shafarevich’s proof 
that given a solvable group, there exists a Galois extension of Q having that 
group as Galois group, mentioned at the end of §7. 

Abelian extensions of a number field F are harder to describe than over the 
rationals, and the fundamental theory giving a description of such extensions is 
called class field theory (see the above reference). I shall give one significant 
example exhibiting the flavor. Let RF be the ring of algebraic integers in F. It 
can be shown that RF is a Dedekind ring. (Cf. [La 70], Chapter I, §6, Theorem 
2.) Let P be a prime ideal of RF. Then P fl Z = (p) for some prime number p. 
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Furthermore, RF/P is a finite field with q elements. Let K be a finite Galois 
extension of F. It will be shown in Chapter VII that there exists a prime Q of 
Rk such that Q fl RF = P. Furthermore, there exists an element 

¥rQeG = Ga\(K/F) 

such that Frq(Q) = Q and for all a e RK we have 

FrQa = oft mod Q. 

We call Frq a Frobenius element in the Galois group G associated with Q. (See 
Chapter VII, Theorem 2.9.) Furthermore, for all but a finite number of Q, two 
such elements are conjugate to each other in G. We denote any of them by FrP. 
If G is abelian, then there is only one element FrP in the Galois group. 

Theorem 15.1. There exists a unique finite abelian extension K of F having 

the following property. If Px, P2 are prime ideals of RF, then 

FrPl = FrP2 if and only if there is an element a of K such that olPx = P2. 

In a similar but more complicated manner, one can characterize all abelian 
extensions of F. This theory is known as class field theory, developed by Kro- 
necker, Weber, Hilbert, Takagi, and Artin. The main statement concerning the 
Frobenius automorphism as above is Artin’s Reciprocity Law. Artin-Tate’s notes 
give a cohomological account of class field theory. My Algebraic Number Theory 

gives an account following Artin’s first proof dating back to 1927, with later 
simplifications by Artin himself. Both techniques are valuable to know. 

Cyclotomic extensions should be viewed in the light of Theorem 15.1. Indeed, 
let K = Q(£), where £ is a primitive n-th root of unity. For a prime pfn, we 
have the Frobenius automorphism Frp, whose effect on £ is Fr/7(^) = Then 

Fr^j = Frp2 if and only if px = p2 mod n. 

To encompass both Theorem 15.1 and the cyclotomic case in one framework, 
one has to formulate the result of class field theory for generalized ideal classes, 
not just the ordinary ones when two ideals are equivalent if and only if they 
differ multiplicatively by a non-zero field element. See my Algebraic Number 

Theory for a description of these generalized ideal classes. 
The non-abelian case is much more difficult. I shall indicate briefly a special 

case which gives some of the flavor of what goes on. The problem is to do for 
non-abelian extensions what Artin did for abelian extensions. Artin went as far 
as saying that the problem was not to give proofs but to formulate what was to 
be proved. The insight of Langlands and others in the sixties shows that actually 
Artin was mistaken. The problem lies in both. Shimura made several computations 
in this direction involving ‘‘modular forms” [Sh 66]. Langlands gave a number 
of conjectures relating Galois groups with “automorphic forms”, which showed 
that the answer lay in deeper theories, whose formulations, let alone their proofs, 
were difficult. Great progress was made in the seventies by Serre and Deligne, 
who proved a first case of Langland’s conjecture [DeS 74]. 
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The study of non-abelian Galois groups occurs via their linear “representa¬ 
tions”. For instance, let / be a prime number. We can ask whether GLn(Fz), or 
GL2(F/), or PGL2(F/) occurs as a Galois group over Q, and “how”. The problem 
is to find natural objects on which the Galois group operates as a linear map, 
such that we get in a natural way an isomorphism of this Galois group with one 
of the above linear groups. The theories which indicate in which direction to 
find such objects are much beyond the level of this course, and lie in the theory 
of modular functions, involving both analysis and algebra, which form a back¬ 
ground for the number theoretic applications. Again I pick a special case to give 
the flavor. 

Let AT be a finite Galois extension of Q, with Galois group 

G = Gal (A/Q). 

Let 

p\ G GL2(F/) 

be a homomorphism of G into the group of 2 x 2 matrices over the finite field 
F/ for some prime /. Such a homomorphism is called a representation of G. 

From elementary linear algebra, if 

is a 2 x 2 matrix, we have its trace and determinant defined by 

tr(M) = a + d and det M = ad — be. 

Thus we can take the trace and determinant tr p(&) and det p{&) for cr e G. 
Consider the infinite product with a variable q: 

oc oc 

A (q) = ?ri(l - qn)24 = 2 anq\ 
n =1 n=1 

The coefficients an are integers, and ax = 1. 

Theorem 15.2. For each prime l there exists a unique Galois extension K of 

Q, with Galois group G, and an injective homomorphism 

p: G GL2(F/) 

having the following property. For all but a finite number of primes /?, if ap is 

the coefficient of qp in A(q), then we have 

tr p(Fvp) = ap mod / and det p(Frp) = pn mod /. 

Furthermore, for all primes l =£ 2, 3, 5, 7, 23, 691, the image p(G) in GL2(F/) 
consists of those matrices M e GL2(F/) such that det M is an eleventh power 

in Ff. 
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The above theorem was conjectured by Serre in 1968 [Se 68]. A proof of 
the existence as in the first statement was given by Deligne [De 68]. The second 
statement, describing how big the Galois group actually is in the group of matrices 
GL2(F/) is due to Serre and Swinnerton-Dyer [Se 72], [SwD 73]. 

The point of A(g) is that if we put q = e2mz, where z is a variable in the 
upper half-plane, then A is a modular form of weight 12. For definitions and an 
introduction, see the last chapter of [Se 73], [La 73], [La 76], and the following 
comments. The general result behind Theorem 15.2 for modular forms of weight 
^ 2 was given by Deligne [De 73]. For weight 1, it is due to Deligne-Serre 
[DeS 74]. We summarize the situation as follows. 

Let A be a positive integer. To N we associate the subgroups 

T(N) c rm c r0(N) 

of SL2(Z) defined by the conditions for a matrix a = ^ e SL2{7j): 

a e T(N) if and only if a = d = 1 mod N and b = c = 0 mod A; 

a e TX(N) if and only if a = d = 1 mod N and c = 0 mod A; 

a e r0(N) if and only if c = 0 mod N. 

Let /be a function on the upper half-plane $ = {z e C, Im(z) > 0}. Let k 

be an integer. For 

r = (“ ‘) e SLiR), 

define f° [y]k (an operation on the right) by 

/° [y]*(z) = (CZ + dykf(yz) where yz = - 
cz -r a 

Let T be a subgroup of SL2( Z) containing F(N). We define /to be modular of 
weight k on T if: 

Mk 1. / is holomorphic on £>; 

Mk l.f is holomorphic at the cusps, meaning that for all a e SL2(Z), the 
function f° [a]k has a power series expansion 

00 

f° [a]*(z) = 2 ane2™/N-, 
n=0 

Mk 3. We have/0 [y]* = /for all yeL 

One says that/is cuspidal if in Mk 2 the power series has a zero; that is, the 
power starts with n ^ 1. 
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Suppose that /is modular of weight k on T(N). Then /is modular on TX{N) 

if and only if /(z + 1) = /(z), or equivalently / has an expansion of the form 

oc 

/(z) = Mqz) = 2 anqn where q = q2 = e2m2. 
«=0 

This power series is called the ^-expansion of /. 

Suppose / has weight /: on r,(N). If y e T0(N) and y is the above written 
matrix, then f° [y]k depends only on the image of d in (Z/NZ)*, and we then 
denote/° [y]* by /° [d]k. Let 

e: (Z/NZ)* C* 

be a homomorphism (also called a Dirichlet character). One says that e is odd 
if e(— 1) = —1, and even if e(— 1) = 1. One says that /is modular of type 
(k, e) on T 0(N) if /has weight k on rx(N), and 

fo [d]k = e(d)f for all d e (Z/NZ)*. 

It is possible to define an algebra of operators on the space of modular forms 
of given type. This requires more extensive background, and I refer the reader 
to [La 76] for a systematic exposition. Among all such forms, it is then possible 
to distinguish some of them which are eigenvectors for this Hecke algebra, or, 
as one says, eigenfunctions for this algebra. One may then state the Deligne- 
Serre theorem as follows. 

Let f =£ 0 be a modular form of type (1, e) on T0(N), so f has weight 1. Assume 

that e is odd. Assume that f is an eigenfunction of the Hecke algebra, with q- 

expansion fx = 2 tinqn9 normalized so that ax = 1. Then there exists a unique 

finite Galois extension K of Q with Galois group G, and a representation 

p: G —> GL2(C) (actually an injective homomorphism), such that for all 

primes pJ(N the characteristic polynomial of p(Fvp) is 

X2 ~ apX + e(p). 

The representation p is irreducible if and only if f is cuspidal. 

Note that the representation p has values in GL2(C). For extensive work of Serre 
and his conjectures concerning representations of Galois groups in GL2(F) when 
F is a finite field, see [Se 87]. Roughly speaking, the general philosophy started 
by a conjecture of Taniyama-Shimura and the Langlands conjectures is that 
everything in sight is “modular”. Theorem 15.2 and the Deligne-Serre theorem 
are prototypes of results in this direction. For “modular” representations in GL2(F), 
when F is a finite field, Serre’s conjectures have been proved, mostly by Ribet 
[Ri 90]. As a result, following an idea of Frey, Ribet also showed how the 
Taniyama-Shimura conjecture implies Fermat’s last theorem [Ri 90b]. Note that 
Serre’s conjectures that certain representations in GL2(F) are modular imply the 
Taniyama-Shimura conjecture. 
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EXERCISES 

1. What is the Galois group of the following polynomials? 

(a) X3 - X - 1 over Q. 
(b) X3 - 10 over Q. 
(c) X3 - lOoverQ^). 

(d) X3 - 10 over Q(y^3). 

(e) A-3 — X - 1 over Q(v/ - 23). 

(f) X4 - 5 over Q, Q(v'5), Q(/^5), Q(«). 
(g) X4 — a where a is any integer ^ 0, # ± 1 and is square free. Over Q. 
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(h) X3 — a where a is any square-free integer ^ 2. Over Q. 
(i) X4 + 2 over Q, Q(i). 
(j) (X2 - 2)(X2 - 3)(X2 - 5)(X2 - 7) over Q. 
(k) Let pl9 ..., pn be distinct prime numbers. What is the Galois group of 

(*2 - Pi) -(X2 - />„)overQ? _ 
(l) (X3 - 2)(X3 - 3)(X2 - 2) over Q(J-3). 

(m) Xn - t, where t is transcendental over the complex numbers C and n is a 
positive integer. Over C(t). 

(n) X4 - t, where t is as before. Over R(t). 

2. Find the Galois groups over Q of the following polynomials. 
(a) X3 + X + 1 (b) X3 - X + 1 (g) X3 + X2 - 2X - 1 
(c) X3 + 2X + 1 (d) X3 - 2X + 1 
(e) X3 - X - 1 (f) X3 - 12X + 8 

3. Let k = C(t) be the field of rational functions in one variable. Find the Galois group 
over k of the following polynomials: 

(a) X3 + X + t (b) X3 - X + t 

(c) X3 + tX + 1 (d) X3 -2tX + t 

(e) X3 — X — t (f) X3 + t2X - t3 

4. Let k be a field of characteristic =£ 2. Let c E k, c £ k2. Let F = k(Vc). Let 
a = a + b Vc with a, b E k and not both a, b = 0. Let E = F(Va). Prove that 
the following conditions are equivalent. 

(1) E is Galois over k. 

(2) E = FCVo7), where a ~ a — b\Tc. 

(3) Either aa - a1 - cb2 E k2 or caa' E k2. 

Show that when these conditions are satisfied, then E is cyclic over k of degree 4 if 
and only if caa' E k2. 

5. Let k be a field of characteristic i= 2, 3. Let /(X), g(X) = X2 - c be irreducible 
polynomials over k, of degree 3 and 2 respectively. Let D be the discriminant of/. 
Assume that 

[k(D112) : k] = 2 and k(Dm) ± k(c112). 

Let ct be a root of / and a root of g in an algebraic closure. Prove: 
(a) The splitting field of fg over k has degree 12. 
(b) Let y = a + Then [k(y) : k] = 6. 

6. (a) Let K be cyclic over k of degree 4, and of characteristic ^ 2. Let GK/k = (cr). 
Let E be the unique subfield of K of degree 2 over k. Since [K : E] = 2, there 
exists a E K such that a2 = y E E and K = E(a). Prove that there exists 
z E E such that 

zcrz = — 1, era = za, z2 = ery/y. 

(b) Conversely, let E be a quadratic extension of k and let GE/k = (t). Let z E E 

be an element such that ztz = -1. Prove that there exists y E E such that 
z2 = ry/y. Then E = k(y). Let a2 = y, and let K = k(a). Show that K is 
Galois, cyclic of degree 4 over k. Let cr be an extension of t to K. Show that 
cr is an automorphism of K which generates GK/k9 satisfying er2a = -a and 
crct = ±za. Replacing z by -z originally if necessary, one can then have 
era = za. 
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7. (a) Let K = Q(Va) where a E Z, a < 0. Show that K cannot be embedded in a 
cyclic extension whose degree over Q is divisible by 4. 

(b) Let/(X) = X4 4- 30X2 + 45. Let a be a root of F. Prove that Q(a) is cyclic of 

degree 4 over Q. 
(c) Let/(X) = X4 + 4jc2 + 2. Prove that/ is irreducible over Q and that the Galois 

group is cyclic. 

g Let/(X) = X4 + aX2 + b be an irreducible polynomial over Q, with roots + a, ± /?, 

and splitting field K. 
(a) Show that Gal(K/Q) is isomorphic to a subgroup of D8 (the non-abelian group 

of order 8 other than the quaternion group), and thus is isomorphic to one of the 

following: 
(i) Z/4Z (ii) Z/2Z x Z/2Z (iii) Z)8. 

(b) Show that the first case happens if and only if 

Case (ii) happens if and only if a/3 e Q or a2 - /32 e Q. Case (iii) happens 

otherwise. (Actually, in (ii), the case a2 — /32 E Q cannot occur. It corresponds 

to a subgroup Ds C S4 which is isomorphic to Z/2Z x Z/2Z, but is not 

transitive on {1, 2, 3, 4}). 
(c) Find the splitting field K in C of the polynomial 

X4 - 4X2 - 1. 

Determine the Galois group of this splitting field over Q, and describe fully 
the lattices of subfields and of subgroups of the Galois group. 

9. Let K be a finite separable extension of a field /c, of prime degree p. Let 0 e K be 
such that K = /c(0), and let 6U...,0P be the conjugates of 6 over k in some algebraic 
closure. Let 0 = 0,. If 02 e /c(0), show that K is Galois and in fact cyclic over k. 

10. Let/(X) 6 Q[X] be a polynomial of degree n, and let K be a splitting field off over Q. 

Suppose that Gal(X/Q) is the symmetric group Sn with n > 2. 

(a) Show that /is irreducible over Q. 
(b) If a is a root off show that the only automorphism of Q(a) is the identity. 

(c) If n ^ 4, show that a” £ Q. 

11. A polynomial /(X) is said to be reciprocal if whenever a is a root, then 1/oc is also a 
root. We suppose that / has coefficients in a real subfield k of the complex numbers. If 
j is irreducible over k, and has a nonreal root of absolute value 1, show that j is 
reciprocal of even degree. 

12. What is the Galois group over the rationals of X5 — 4X + 2? 

13. What is the Galois group over the rationals of the following polynomials: 

(a) X4 + 2X2 + X + 3 
(b) X4 + 3X3 - 3X - 2 
(c) X6 + 22X5 - 9X4 + 12X3 - 37X2 - 29X - 15 

{Hint: Reduce mod 2, 3, 5.] 

14. Prove that given a symmetric group S„, there exists a polynomial/(X) e Z[X] with 
leading coefficient 1 whose Galois group over Q is Sn. {Hint: Reducing mod 2, 3, 5, 
show that there exists a polynomial whose reductions are such that the Galois group 
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contains enough cycles to generate 5„. Use the Chinese remainder theorem, also to 
be able to apply Eisenstein’s criterion.] 

15. Let K/k be a Galois extension, and let F be an intermediate field between k and K. 
Let H be the subgroup of GdX{K/k) mapping F into itself. Show that H is the normal- 
izer of Gal(A/F) in Gal (K/k). 

16. Let K/k be a finite Galois extension with group G. Let a e K be such that 
{era}(r(EG is a normal basis. For each subset 5 of G let 5(a) = 2 ^cra. Let H be a 
subgroup of G and let F be the fixed field of H. Show that there exists a basis of F 
over k consisting of elements of the form 5(a). 

Cyclotomic fields 

17. (a) Let k be a field of characteristic /2n, for some odd integer n ^ 1, and let £ be 
a primitive n-th root of unity, in k. Show that k also contains a primitive 2n-th 
root of unity. 

(b) Let & be a finite extension of the rationals. Show that there is only a finite number 
of roots of unity in k. 

18. (a) Determine which roots of unity lie in the following fields: Q(j‘), Q(V^2), 

Q(V2), Q(V—3), Q(V3), Q(V—5). 

(b) For which integers m does a primitive m-th root of unity have degree 2 over Q? 

19. Let £ be a primitive n-th root of unity. Let K = Q(£). 
(a) If n = pr (r ^ 1) is a prime power, show that NKIQ( 1 -£)=/?. 

(b) If n is composite (divisible by at least two primes) then Nk/q{\ - £) = 1. 

20. Let f(X) E Z[X] be a non-constant polynomial with integer coefficients. Show that 
the values f(a) with a E Z+ are divisible by infinitely many primes. 

[Note: This is trivial. A much deeper question is whether there are infinitely many 
a such that f(a) is prime. There are three necessary conditions: 

The leading coefficient of /is positive. 
The polynomial is irreducible. 
The set of values /(Z+) has no common divisor > 1. 

A conjecture of Bouniakowski [Bo 1854] states that these conditions are sufficient. 
The conjecture was rediscovered later and generalized to several polynomials by 
Schinzel [Sch 58]. A special case is the conjecture that X2 + 1 represents infinitely 
many primes. For a discussion of the general conjecture and a quantitative version 
giving a conjectured asymptotic estimate, see Bateman and Horn [BaH 62]. Also see 
the comments in [HaR 74]. More precisely, let/i,... ,/r be polynomials with integer 
coefficients satisfying the first two conditions (positive leading coefficient, irre¬ 

ducible). Let 

be their product, and assume that /satisfies the third condition. Define: 

tt^Oc) = number of positive integers n ^ x such that//«),... ,/r(n) are all primes. 

(We ignore the finite number of values of n for which some/(w) is negative.) The 
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Bateman-Hom conjecture is that 

X 

7T(/)W ~ (d, ■ ■ • dr)-'C(f ) I dt, 

0 

where 

the product being taken over all primes p, and Nf{p) is the number of solutions of 
the congruence 

f(n) = 0 mod p. 

Bateman and Horn show that the product converges absolutely. When r = 1 and 
f(n) = an + b with a, b relatively prime integers, a > 0, then one gets Dirichlet’s 
theorem that there are infinitely many primes in an arithmetic progression, together 
with the Dirichlet density of such primes. 

[BaH 62] P. T. Bateman and R. Horn, A heuristic asymptotic formula concerning 
the distribution of prime numbers, Math. Comp. 16 (1962) pp. 363-367 

[Bo 1854] V. Bouniakowsky, Sur les diviseurs numeriques invariables des fonc- 
tions rationnelles enti&res, Memoires sc. math, et phys. T. VI (1854- 

1855) pp. 307-329 
[HaR 74] H. Halberstam and H.-E. Richert, Sieve methods, Academic Press, 

1974 
[Sch 58] A. Schinzel and W. Sierpinski, Sur certaines hypotheses concernant 

les nombres premiers, Acta Arith. 4 (1958) pp. 185-208 

21. (a) Let a be a non-zero integer, p a prime, n a positive integer, and p X n. Prove 
that p | <J>„(a) if and only if a has period n in (Z/pZ)*. 

(b) Again assume pX n Prove that p | 4>„(a) for some a E. Z if and only if p = 1 
mod n. Deduce from this that there are infinitely many primes = 1 mod n, a 
special case of Dirichlet’s theorem for the existence of primes in an arithmetic 
progression. 

22. Let F = Fp be the prime field of characteristic p. Let K be the field obtained from 
F by adjoining all primitive /-th roots of unity, for all prime numbers / =£ p. Prove 
that K is algebraically closed. [Hint: Show that if q is a prime number, and r an 
integer ^ 1, there exists a prime / such that the period of p mod / is qry by using 
the following old trick of Van der Waerden: Let / be a prime dividing the number 

b = \ =(p,r" ~ ir' +q(pr~' - 1 y-2+ - +q. 
Pq ~ 1 

If / does not divide pqr~' — 1, we are done. Otherwise, / = q. But in that case q2 does 
not divide b, and hence there exists a prime / # q such that / divides b. Then the degree 
of F(£j) over F is qr, so K contains subfields of arbitrary degree over F.] 

23. (a) Let G be a finite abelian group. Prove that there exists an abelian extension of 
Q whose Galois group is G. 
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(b) Let k be a finite extension of Q, and let G be a finite abelian group. Prove that 
there exist infinitely many abelian extensions of k whose Galois group is G. 

24. Prove that there are infinitely many non-zero integers a, b 0 such that 

— 4a3 — 21b1 is a square in Z. 

25. Let it be a field such that every finite extension is cyclic. Show that there exists an 
automorphism cr of ka over k such that k is the fixed field of cr. 

26. Let Qa be a fixed algebraic closure of Q. Let E be a maximal subfield of Qa not 
containing V2 (such a subfield exists by Zorn’s lemma). Show that every finite 
extension of E is cyclic. (Your proof should work taking any algebraic irrational 

number instead of v2.) 

27. Let it be a field, ka an algebraic closure, and cr an automorphism of ka leaving k 
fixed. Let F be the fixed field of cr. Show that every finite extension of F is cyclic. 

(The above two problems are examples of Artin, showing how to dig holes in an 
algebraically closed field.) 

28. Let E be an algebraic extension of k such that every non-constant polynomial f(X) 

in k[Y] has at least one root in E. Prove that £ is algebraically closed. [Hint : Discuss 
the separable and purely inseparable cases separately, and use the primitive element 
theorem.] 

29. (a) Let K be a cyclic extension of a field F, with Galois group G generated by a. Assume 

that the characteristic is p, and that \_K: F] = pm~l for some integer m ^ 2. 
Let P be an element of K such that Tr£(/?) = 1. Show that there exists an element 

a in K such that 

OCL — OL = PP — P. 

(b) Prove that the polynomial Xp — X — a is irreducible in K[Y]. 

(c) If 6 is a root of this polynomial, prove that F(9) is a Galois, cyclic extension of 
degree pm of F, and that its Galois group is generated by an extension a* of a 

such that 

o*(0) = 6 + p. 

30. Let A be an abelian group and let G be a finite cyclic group operating on A [by means 
of a homomorphism G —► Aut(4)]. Let a be a generator of G. We define the trace 
TrG = Tr on A by Tr(x) = £ zx. Let ATr denote the kernel of the trace, and let 

zeG 

(1 — o)A denote the subgroup of A consisting of all elements of type y — ay. Show that 

Hl(G,A)*ATJ(l-a)A. 

31. Let F be a finite field and K a finite extension of F. Show that the norm N* and the 
trace Tr£ are surjective (as maps from K into F). 

32. Let E be a finite separable extension of k, of degrees. Let IF = (w,,..., w„) be elements 
of E. Let aJf . . . , a„ be the distinct embeddings of E m ka over k. Define the dis¬ 
criminant of W to be 

Dm(W) = det(cr,vv/)2. 
Prove: 

(a) If V = (i>j,..., vn) is another set of elements of E and C = (c,y) is a matrix 
of elements of k such that w, = ^CyVj, then 

DE/k(W) = det (C)2DE/k(V). 
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(b) The discriminant is an element of k. 
(c) Let E = k(a) and let f(X) = Irr(a, /c, X). Let oq,..., a„ be the roots of/and 

say a = oq. Then 

/'(a) = fl (a ~ a,). 
j=2 

Show that 

Dm{ 1, a""1) = (- 1)"("- ,)/2Nf (/'(«))• 

(d) Let the notation be as in (a). Show that det(Tr(w, w7)) = (det(crt w^))2. [//mr: 
Let /I be the matrix (tr, w,). Show that XAA is the matrix (Tr(w, w,)).] 

Rational functions 

33. Let K = C(x) where x is transcendental over C, and let £ be a primitive cube root of 
unity in C. Let o be the automorphism of K over C such that ox = £x. Let r be the 
automorphism of K over C such that tx = x-1. Show that 

a3 = 1 = r2 and rcr = cr“ 1r. 

Show that the group of automorphisms G generated by a and r has order 6 and the 
subfield F of K fixed by G is the field C(y) where y = x3 + x“3. 

34. Give an example of a field K which is of degree 2 over two distinct subfields E and F 
respectively, but such that K is not algebraic over E n F. 

35. Let k be a field and X a variable over k. Let 

<P(X) = 
f(X) 

g(X) 

be a rational function in k(X), expressed as a quotient of two polynomials/, g which 
are relatively prime. Define the degree of (p to be max(deg /, deg g). Let Y = (p(X). 

(a) Show that the degree of (p is equal to the degree of the field extension k(X) over k(Y) 

(assuming Y $ k). (b) Show that every automorphism of k(X) over k can be represented 
by a rational function ip of degree 1, and is therefore induced by a map 

Xv 
aX + b 

cX + d 

with a,b,c,dek and ad — be # 0. (c) Let G be the group of automorphisms of k(X) 

over k. Show that G is generated by the following automorphisms: 

zb:X\-*X + b, oa:Xi->aX (a # 0), X^X~l 

with a,bek. 

36. Let k be a finite field with q elements. LetX = k(X) be the rational field in one variable. 
Let G be the group of automorphisms of K obtained by the mappings 

Xv 
aX + b 

cX + d 



VI, §Ex EXERCISES 327 

with a, b, c, d in k and ad - be ^ 0. Prove the following statements: 
(a) The order of G is q3 — q. 

(b) The fixed field of G is equal to k(Y) where 

v _ (xql - xy+1 
- jxq - xy2+v 

(c) Let Hx be the subgroup of G consisting of the mappings X t—>aX + b with 
a # 0. The fixed field of is k(T) where T = (Xq - X)q~l. 

(d) Let H2 be the subgroup of Hx consisting of the mappings X -> X + b with 

bek. The fixed field of H2 is equal to k(Z) where Z = Xq - X. 

Some aspects of Kummer theory 

37. Let k be a field of characteristic 0. Assume that for each finite extension E of k, the 
index (£* : E*n) is finite for every positive integer n. Show that for each positive integer 
n, there exists only a finite number of abelian extensions of k of degree n. 

38. Let a # 0, # ± 1 be a square-free integer. For each prime number p, let Kp be 
the splitting field of the polynomial Xp - a over Q. Show that [Kp : Q] = p(p - 1). 
For each square-free integer m > 0, let 

= n 
p\m 

be the compositum of all fields Kp for p\m. Let dm = [Km: Q] be the degree of Km 
over Q. Show that if m is odd then dm = Y[dpi and if m is even, m = 2n then d2n = dn 

PIm 

or 2dn according as Va is or is not in the field of m-th roots of unity Q(fm). 

39. Let K be a field of characteristic 0 for simplicity. Let T be a finitely generated subgroup 
of K*. Let N be an odd positive integer. Assume that for each prime p| N we have 

r = rllpnK, 

and also that Ga\(K(nN)/K) « Z(N)*. Prove the following. 

(a) T/TN * T/(T n K*N) « TK*N/K*N. 
(b) Let Kn = K(|iN). Then 

r n K%n = TN. 

[Hint: If these two groups are not equal, then for some prime p \ N there exists 
an element aeT such that 

a — bp with beKN but b$K. 

In other words, a is not a p-th power in K but becomes a p-th power in KN. The 
equation xp — a is irreducible over K. Show that b has degree p over K(np), 
and that K(np,allp) is not abelian over K, so allp has degree p over K(plp). 
Finish the proof yourself.] 
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(c) Conclude that the natural Kummer map 

T/r" -* Horn (HAN), |i„) 

is an isomorphism. 
(d) Let Gr(N) = Gal(K(T1/iV, \in)/K). Then the commutator subgroup of Gr(N) 

is Hr(N), and in particular G3l\(Kn/K) is the maximal abelian quotient of 
Cp(N). 

40. Let K be a field and p a prime number not equal to the characteristic of K. Let T be a 
finitely generated subgroup of K*, and assume that T is equal to its own p-division 
group in K, that is if z e K and zp e T, then z e T. If p is odd, assume that \ip c= K, and 
if p = 2, assume that ji4 c- K. Let 

(T : rp) = pr+l. 

Show that rllp is its own p-division group in K(r1/P), and 

[K(r'/pm):K] = Pm(r+1) 

for all positive integers m. 

41. Relative invariants (Sato). Let k be a field and K an extension of k. Let G be a group 
of automorphisms of K over /c, and assume that k is the fixed field of G. (We do not 
assume that K is algebraic over k.) By a relative invariant of G in K we shall mean an 
element PeK, P ^ 0, such that for each oeG there exists an element X(o)ek for 
which Pa = #(cr)P. Since a is an automorphism, we have /(cr) e k*. We say that the 
map x-G -* k* belongs to P, and call it a character. Prove the following statements: 

(a) The map x above is a homomorphism. 
(b) If the same character x belongs to relative invariants P and Q then there 

exists c e k* such that P = cQ. 
(c) The relative invariants form a multiplicative group, which we denote by /. 

Elements PPm of / are called multiplicatively independent mod k* if 

their images in the factor group I/k* are multiplicatively independent, i.e. if 
given integers vt,..., vm such that 

P\' • • • = cek*, 

then V! = • = vm = 0. 
(d) If Pj, ..., Pm are multiplicatively independent mod k* prove that they are 

algebraically independent over k. [Hint: Use Artin’s theorem on characters.] 
(e) Assume that K = k(Xl9..., X„) is the quotient field of the polynomial ring 

k[Xl9..., X„] = /c[X], and assume that G induces an automorphism of the 
polynomial ring. Prove: If Fx (X) and F2(X) are relative invariant polynomials, 
then their g.c.d. is relative invariant. If P(X) = F{(X)/F2(X) is a relative 
invariant, and is the quotient of two relatively prime polynomials, then Ft(X) 
and F2(X) are relative invariants. Prove that the relative invariant poly¬ 
nomials generate I/k*. Let S be the set of relative invariant polynomials which 
cannot be factored into a product of two relative invariant polynomials of 
degrees ^ 1. Show that the elements of S/k* are multiplicatively independent, 

and hence that I/k* is a free abelian group. [If you know about transcendence 
degree, then using (d) you can conclude that this group is finitely generated.] 
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42. Let /(z) be a rational function with coefficients in a finite extension of the rationals. 
Assume that there are infinitely many roots of unity f such that/(0 is a root of unity. 
Show that there exists an integer n such that/(z) = cz" for some constant c (which is in 
fact a root of unity). 

This exercise can be generalized as follows: Let T0 be a finitely generated multi¬ 
plicative group of complex numbers. Let T be the group of all complex numbers y 
such that ym lies in T0 for some integer m # 0. Let /(z) be a rational function with 
complex coefficients such that there exist infinitely many y e T for which f(y) lies in T. 
Then again,/(z) = czn for some c and n. (Cf. Fundamentals of Diophantine Geometry.) 

43. Let K/k be a Galois extension. We define the Krull topology on the group 
G(K/k) = G by defining a base for open sets to consist of all sets aH where a E G 
and H — G(K/F) for some finite extension F of k contained in K. 

(a) Show that if one takes only those sets aH for which F is finite Galois over 
k then one obtains another base for the same topology. 

(b) The projective limit lim G/H is embedded in the direct product 

lim G/H -* FI G/H. 
H H 

Give the direct product the product topology. By Tychonoff’s theorem in 
elementary point set topology, the direct product is compact because it is a 
direct product of finite groups, which are compact (and of course also discrete). 
Show that the inverse limit lirr^ G/H is closed in the product, and is therefore 
compact. 

(c) Conclude that G(K/k) is compact. 

(d) Show that every closed subgroup of finite index in G{K/k) is open. 
(e) Show that the closed subgroups of G(K/k) are precisely those subgroups 

which are of the form G{K/F) for some extension F of k contained in K. 
(f) Let H be an arbitrary subgroup of G and let F be the fixed field of H. Show 

that G(K/F) is the closure of H in G. 

44. Let k be a field such that every finite extension is cyclic, and having one extension of 

degree n for each integer n. Show that the Galois group G = G(k*/k) is the inverse limit 
lim Z/mZ, as mZ ranges over all ideals of Z, ordered by inclusion. Show that this limit 
is isomorphic to the direct product of the limits 

n lim Z/p"Z = riz. 
p "-00 p 

taken over all prime numbers p, in other words, it is isomorphic to the product of all 
p-adic integers. 

45. Let k be a perfect field and ka its algebraic closure. Let a E G(ka/k) be an element 
of infinite order, and suppose k is the fixed field of a. For each prime p, let Kp be 
the composite of all cyclic extensions of k of degree a power of p. 

(a) Prove that ka is the composite of all extensions Kp. 
(b) Prove that either Kp - k, or Kp is infinite cyclic over k. In other words, Kp 

cannot be finite cyclic over k and =£ k. 
(c) Suppose ka = Kp for some prime p, so ka is an infinite cyclic tower of 

p-extensions. Let u be a p-adic unit, u E Z* such that u does not represent 
a rational number. Define cr“, and prove that cr, au are linearly independent 
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over Z, i.e. the group generated by <r and au is free abelian of rank 2. In 
particular {a} and {cr, cr“} have the same fixed field k. 

Witt vectors 

46. Let xl9 x2, ... be a sequence of algebraically independent elements over the integers 

Z. For each integer n ^ 1 define 

x(n) = X dxnJd. 
d | n 

Show that xn can be expressed in terms of x(d) for d \ n, with rational coefficients. 
Using vector notation, we call (x1} x2,...) the Witt components of the vector x, 

and call (x(1), x(2),...) its ghost components. We call x a Witt vector. 
Define the power series 

m = no -x„n 
nZ 1 

Show that 

-t £ logfx(t)= 
dt „^ i 

d 
[By — log / (r) we mean f'(t)/f(t) iff (t) is a power series, and the derivative f'(t) is taken 

dt 
formally.] 

If x, y are two Witt vectors, define their sum and product componentwise with 
respect to the ghost components, i.e. 

(x 4- y)<"> = x("> + yn). 

What is (x + y)„? Well, show that 

Ut)fy{t) = ri(l + (X + y)nt") =fx+y{t). 

Hence (x + y)n is a polynomial with integer coefficients in x,, yu..., x„, yn. Also show 
that 

4(f) = FI (! - xfdy7lendelm 
d,e^ 1 

where m is the least common multiple of d, e and d, e range over all integers ^ 1. Thus 
(xy)n is also a polynomial in x1# ..., x„, yn with integer coefficients. The above 

arguments are due to Witt (oral communication) and differ from those of his original 
paper. 

If A is a commutative ring, then taking a homomorphic image of the polynomial 
ring over Z into A, we see that we can define addition and multiplication of Witt 
vectors with components in A, and that these Witt vectors form a ring W(A). Show 
that IT is a functor, i.e. that any ring homomorphism (p of A into a commutative ring A 
induces a homomorphism W((p): W(A) -► W{A'). 
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47. Let p be a prime number, and consider the projection of W(A) on vectors whose 
components are indexed by a power of p. Now use the log to the base p to index 
these components, so that we write xn instead of xpn. For instance, x0 now denotes 
what was jc, previously. For a Witt vector x = (jc0, xl9 ... , xn, .. .) define 

Vx = (0, x0, xu ...) and Fx = (x g,x?, ...)• 

Thus V is a shifting operator. We have V o F = F o V. Show that 

(Vx)(n) = px(n~1} and x(n) = (Fx)(n~l) + pnxn. 

Also from the definition, we have 

x(w) = Jtg" + pxpx 1 + • • • + p"xn. 

48. Let k be a field of characteristic p, and consider W(k). Then V is an additive endomorph¬ 

ism oiW(kl and F is a ring homomorphism of W(k) into itself. Furthermore, if x e W(k) 
then 

px — VFx. 

If x, y e W(k), then (K'x)(J"y) = Vi+j(Fpjx • Fpiy). For a e k denote by {a} the Witt 
vector (a, 0, 0,...). Then we can write symbolically 

*= X »"{*«>• 
» = o 

Show that if x e W(k) and x0 ^ 0 then x is a unit in W(k). Hint: One has 

1 -x{xo1} = Vy 

and then 

x{x0-'} I (Vy)' = (1 - Vy) X (Vy)‘ = 1. 
0 0 

49. Let n be an integer ^ 1 and p a prime number again. Let k be a field of characteristic p. 
Let Wn{k) be the ring of truncated Witt vectors (x0,... ,x„_ x) with components in k. 
We view Wn(k) as an additive group. If x g Wn(k), define p(x) = Fx — x. Then p is a 
homomorphism. If AT is a Galois extension of k, and a E G(K/k), and x E Wn(K) we 
can define ox to have component (crx0,..., crx„_ j). Prove the analogue of Hilbert’s 
Theorem 90 for Witt vectors, and prove that the first cohomology group is trivial. (One 
takes a vector whose trace is not 0, and finds a coboundary the same way as in the proof 

of Theorem 10.1). 

50. If x g Wn(k), show that there exists £ e Wn(k) such that p(£) = x. Do this inductively, 
solving first for the first component, and then showing that a vector (0, a,,..., a„_,) is 
in the image of p if and only if (aj,..., a„_ x) is in the image of p. Prove inductively 
that if £, % g Wn(k’) for some extension k' of k and if then £ — £ is a vector 
with components in the prime field. Hence the solutions of pi = x for given x g Wn(k) 
all differ by the vectors with components in the prime field, and there are p" such 

vectors. We define 
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or symbolically, 

k(p-'x). 

Prove that it is a Galois extension of /c, and show that the cyclic extensions of /c, of 
degree p", are precisely those of type k(p~lx) with a vector x such that x0 $ pk. 

51. Develop the Kummer theory for abelian extensions of k of exponent p" by using Wn{k). 
In other words, show that there is a bijection between subgroups B of Wn{k) containing 
pWn{k) and abelian extensions as above, given by 

B^Kb 

where KB = k{p~xB). All of this is due to Witt, cf. the references at the end of §8, 
especially [Wi 37]. The proofs are the same, mutatis mutandis, as those given for 
the Kummer theory in the text. 

Further Progress and directions 

Major progress was made in the 90s concerning some problems mentioned in the 
chapter. Foremost was Wiles’s proof of enough of the Shimura-Taniyama conjecture to 
imply Fermat’s Last Theorem [Wil 95], [TaW 95]. 

[TaW 95] R. Taylor and A. Wiles, Ring-theoretic properties or certain Hecke alge¬ 
bras, Annals of Math. 141 (1995) pp. 553-572 

[Wil 95] A. Wiles, Modular elliptic curves and Fermat’s last theorem, Annals, of 
Math. 141 (1995) pp. 443-551 

Then a proof of the complete Shimura-Taniyama conjecture was given in [BrCDT 01]. 

[BrCDT 01] C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of el¬ 
liptic curves over Q: Wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001) 
pp. 843-839 

In a quite different direction, Neukirch started the characterization of number fields 
by their absolute Galois groups [Ne 68], [Ne 69a], [Ne 69b], and proved it for Galois 
extensions of Q. His results were extended and his subsequent conjectures were proved 
by Ikeda and Uchida [Ik 77], [Uch 77], [Uch 79], [Uch 81]. These results were extended 
to finitely generated extensions of Q (function fields) by Pop [Pop 94], who has a more 
extensive bibliography on these and related questions of algebraic geometry. For these 
references, see the bibliography at the end of the book. 



CHAPTER VII_ 
Extensions of Rings 

It is not always desirable to deal only with field extensions. Sometimes one 
wants to obtain a field extension by reducing a ring extension modulo a prime 
ideal. This procedure occurs in several contexts, and so we are led to give the 
basic theory of Galois automorphisms over rings, looking especially at how the 
Galois automorphisms operate on prime ideals or the residue class fields. The 
two examples given after Theorem 2.9 show the importance of working over 
rings, to get families of extensions in two very different contexts. 

Throughout this chapter, A, B, C will denote commutative rings. 

§1. INTEGRAL RING EXTENSIONS 

In Chapters V and VI we have studied algebraic extensions of fields. For a 
number of reasons, it is desirable to study algebraic extensions of rings. 
For instance, given a polynomial with integer coefficients, say X5 — X — 1, 
one can reduce this polynomial mod p for any prime p, and thus get a poly¬ 
nomial with coefficients in a finite field. As another example, consider the 
polynomial 

Xn + s„_ i Xn 1 + • • • + s0 

where sn s0 are algebraically independent over a field k. This poly¬ 
nomial has coefficients in /c[s0,..., s„_ j] and by substituting elements of k for 
s0,..., s„_ j one obtains a polynomial with coefficients in k. One can then get 

333 
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information about polynomials by taking a homomorphism of the ring in 
which they have their coefficients. This chapter is devoted to a brief description 
of the basic facts concerning polynomials over rings. 

Let M be an A-module. We say that M is faithful if, whenever a e A is such 
that aM = 0, then a = 0. We note that A is a faithful module over itself since 
A contains a unit element. Furthermore, if A =£ 0, then a faithful module over 
A cannot be the 0-module. 

Let A be a subring of B. Let a e B. The following conditions are equivalent: 

INT 1. The element a is a root of a polynomial 

X” + an.{Xn~x + ••• + a0 

with coefficients ax-e A, and degree n ^ 1. (The essential thing here 
is that the leading coefficient is equal to 1.) 

INT 2. The subring A[a\ is a finitely generated /4-module. 

INT 3. There exists a faithful module over A [a] which is a finitely gener¬ 
ated /1-module. 

We prove the equivalence. Assume INT 1. Let g(X) be a polynomial 
in A[X~\ of degree ^ 1 with leading coefficient 1 such that g(a) = 0. If 
f(X)eA[X] then 

f(X) = q(X)g(X) + r(X) 

with q, r e A[X] and deg r < deg g. Hence /(a) = r(a), and we see that if 
deg g = n, then 1, a,..., a”"1 are generators of A [a] as a module over A. 

An equation g(X) = 0 with g as above, such that g(a) = 0 is called an 
integral equation for a over A. 

Assume INT 2. We let the module be /l[a] itself. 
Assume INT 3, and let M be the faithful module over A[ot] which is finitely 

generated over A, say by elements wl9..., vvw. Since ocM c= M there exist ele¬ 
ments atj e A such that 

aw, = a, ,«>! + * •• + alnw„ 

aw„ = aHlWi + • * ■ + annwn. 

Transposing awb ..., aw„ to the right-hand side of these equations, we con¬ 
clude that the determinant 

a - an 

d = 

a - a21 — a, 

— a; 

nn ol - a. 
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is such that dM = 0. (This will be proved in the chapter when we deal with 
determinants.) Since M is faithful, we must have d = 0. Hence a is a root of 
the polynomial 

detCXSU - au\ 

which gives an integral equation for a over A. 
An element a satisfying the three conditions INT 1, 2, 3 is called integral 

over A. 

Proposition 1.1. Let A be an entire ring and K its quotient field. Let a be 

algebraic over K. Then there exists an element c # 0 in A such that ca is 

integral over A. 

Proof. There exists an equation 

an<xn + + • • • + a0 = 0 

with n, e A and an ^ 0. Multiply it by ann~l. Then 

(ana.y + ••• + a0ann~l = 0 

is an integral equation for ana over A. This proves the proposition. 

Let A C B be subrings of a commutative ring C, and let a e C. If a is integral 
over A then a is a fortiori integral over B. Thus integrality is preserved under 
lifting. In particular, a is integral over any ring which is intermediate between 
A and B. 

Let B contain A as a subring. We shall say that B is integral over A if every 
element of B is integral over A. 

Proposition 1.2. IfB is integral over A and finitely generated as an A-algebra, 
then B is finitely generated as an A-module. 

Proof. We may prove this by induction on the number of ring generators, 
and thus we may assume that B = A [a] for some element a integral over A, by 
considering a tower 

A c A[aj] c A[a1? a2] <z • • • c A[a1?..., aj = B. 

But we have already seen that our assertion is true in that case, this being part 
of the definition of integrality. 

Just as we did for extension fields, one may define a class (3 of extension 
rings A cz B to be distinguished if it satisfies the analogous properties, namely: 

(1) Let A c= B a C be a tower of rings. The extension A c= C is in G if 
and only if A c= B is in C and B a C is in G. 

(2) If A c= B is in (3, if C is any extension ring of A, and if £, C are both 
subrings of some ring, then C c= £[C] is in (3. (We note that 
B[C~\ = C[£] is the smallest ring containing both B and C.) 
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As with fields, we find formally as a consequence of (1) and (2) that (3) holds, 
namely: 

(3) If A c= B and A c= C are in C, and B, C are subrings of some ring, 
then A a £[C] is in G. 

Proposition 1.3. Integral ring extensions form a distinguished class. 

Proof. Let A C B C C be a tower of rings. If C is integral over A, then it 
is clear that B is integral over A and C is integral over B. Conversely, assume 
that each step in the tower is integral. Let a e C. Then a satisfies an integral 
equation 

a" + a""1 +■■• + &(, = 0 

with bi e B. Let I?! = A[b0,..., £>„_ Then B{ is a finitely generated A- 
module by Proposition 1.2, and is obviously faithful. Then B^ot] is finite over 
Bj, hence over A, and hence a is integral over A. Hence C is integral over A. 
Finally let B, C be extension rings of A and assume B integral over A. Assume 
that B, C are subrings of some ring. Then C[£] is generated by elements of 
B over C, and each element of B is integral over C. That C[£] is integral over 
C will follow immediately from our next proposition. 

Proposition 1.4. Let A be a subring ofC. Then the elements of C which are 
integral over A form a subring of C. 

Proof. Let a, jS e C be integral over A. Let M = A\_a] and N = A[/?]. 
Then M/V contains 1, and is therefore faithful as an A-module. Furthermore, 
olM a M and fN a N. Hence MN is mapped into itself by multiplication 
with a + f and a/?. Furthermore MN is finitely generated over A (if {wj are 
generators of M and {vj} are generators of N then {w,^} are generators of 
MN). This proves our proposition. 

In Proposition 1.4, the set of elements of C which are integral over A is 
called the integral closure of A in C. 

Example. Consider the integers Z. Let K be a finite extension of Q. We 
call K a number field. The integral closure of Z in K is called the ring of 
algebraic integers of K. This is the most classical example. 

In algebraic geometry, one considers a finitely generated entire ring R over 
Z or over a field k. Let F be the quotient field of R. One then considers the 
integral closure of R in F, which is proved to be finite over R. If A' is a finite 
extension of F, one also considers the integral closure of R in K. 

Proposition 1.5. Let A a B be an extension ring, and let B be integral 
over A. Let a be a homomorphism of B. Then o(B) is integral over o{A). 

Proof. Let a e B, and let 

otn + an -1 <xn 1 + • • • + a0 = 0 
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be an integral equation for a over A. Applying o yields 

a(oc)n + o(an- , V(a)M"1 + • • • + cr(a0) = 0, 

thereby proving our assertion. 

Corollary 1.6. Let A be an entire ring, k its quotient field, and E a finite 

extension of k. Let cue E be integral over A. Then the norm and trace of a 
(from E to k) are integral over A, and so are the coefficients of the irreducible 

polynomial satisfied by a over k. 

Proof. For each embedding cr of £ over k, croc is integral over A. Since the 
norm is the product of ool over all such o (raised to a power of the characteristic), 
it follows that the norm is integral over A. Similarly for the trace, and similarly 
for the coefficients of Irr(a, k, X), which are elementary symmetric functions of 
the roots. 

Let A be an entire ring and k its quotient field. We say that A is integrally 
closed if it is equal to its integral closure in k. 

Proposition 1.7. Let A be entire and factorial Then A is integrally closed. 

Proof. Suppose that there exists a quotient a/b with a, b e A which is 
integral over A, and a prime element p in A which divides b but not a. We have, 
for some integer n ^ 1, and a{ e A, 

(a/b)n + an- i(a/b)n 1 + • • • + a0 = 0 

whence 

an + an_ xban~1 + • • • + a0bn = 0. 

Since p divides b, it must divide an, and hence must divide a, contradiction. 

Let /: A -* B be a ring-homomorphism (A, B being commutative rings). 
We recall that such a homomorphism is also called an ^-algebra. We may 
view B as an ,4-module. We say that B is integral over A (for this ring-homo- 
morphism /) if B is integral over f(A). This extension of our definition of 
integrality is useful because there are applications when certain collapsings take 
place, and we still wish to speak of integrality. Strictly speaking we should 
not say that B is integral over A, but that /is an integral ring-homomorphism, 
or simply that / is integral. We shall use this terminology frequently. 

Some of our preceding propositions have immediate consequences for 
integral ring-homomorphisms; for instance, if f:A-*B and g:B^>C are 
integral, then g © /: A -> C is integral. However, it is not necessarily true that 
if g o f is integral, so is /. 

Let/: A -> B be integral, and let S be a multiplicative subset of A. Then 
we get a homomorphism 

S~lf: S~*A -+ S~lB, 

where strictly speaking, S~XB = (f(S))~ *B, and S~lf is defined by 

(S-1/)(x/5)=/(x)//(s). 
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It is trivially verified that this is a homomorphism, 
diagram 

B->S~lB 

We have a commutative 

/ s-lf 

A-► S~ lA 

the horizontal maps being the canonical ones: x -* x/l. 

Proposition 1.8. Let f.A^B be integral, and let S be a multiplicative 

subset of A. Then S~ lf: S~ lA -> S~ lB is integral. 

Proof. If a e B is integral over f(A\ then writing a/? instead off(a)fi>ior 
a e A and p e B we have 

a" 4- + • • • 4- a0 = 0 

with a{ e A. Taking the canonical image in S~*A and S~lB respectively, we 
see that this relation proves the integrality of a/1 over S~lA, the coefficients 
being now aj\. 

Proposition 1.9. Let A be entire and integrally closed. Let S be a multipli¬ 

cative subset of A,0 $ S. Then S~l A is integrally closed. 

Proof. Let a be an element of the quotient field, integral over S'1 A. We 
have an equation 

a" + a""1 + ••• + — = 0, 
5n-l S0 

a{ e A and e S. Let s be the product s„_ t • • • s0. Then it is clear that sa is 
integral over A, whence in A. Hence a lies in S“M, and is integrally 
closed. 

Let p be a prime ideal of a ring A and let 5 be the complement of p in A. 

We write 5 = A — p. If/: A -> B is an /1-algebra (i.e. a ring-homomorphism), 
we shall write Bv instead of S' lB. We can view Bv as an Ap = S~ ^-module. 

Let A be a subring of B. Let p be a prime ideal of A and let ^ be a prime 
ideal of B. We say that ^ lies above p if ^ n A = p. If that is the case, then 
the injection A B induces an injection of the factor rings 

A/p -> B/% 

and in fact we have a commutative diagram: 

B->BW 

A-> A/p 
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the horizontal arrows being the canonical homomorphisms, and the vertical 
arrows being injections. 

If B is integral over A, then B/ty is integral over A/p by Proposition 1.5. 

Proposition 1.10. Let A be a subring of B, let p be a prime ideal of A, and 

assume B integral over A. Then pB # B and there exists a prime ideal ^ of 

B lying above p. 

Proof. We know that Bp is integral over Ap and that Ap is a local ring 
with maximal ideal mp = 5" *p, where S = A — p. Since we obviously have 

pBp = pApBp = m p£p, 

it will suffice to prove our first assertion when A is a local ring. (Note that the 
existence of a prime ideal p implies that 1 # 0, and pB = B if and only if 1 e pB.) 

In that case, if pB = B, then 1 has an expression as a finite linear combination 
of elements of B with coefficients in p, 

1 = albl + • • • + anbn 

with a{ e p and bt e B. We shall now use notation as if Ap a Bp. We leave it 
to the reader as an exercise to verify that our arguments are valid when we 
deal only with a canonical homomorphism Ap -► Bp. Let B0 = A[bl9..., hj. 
Then pB0 = B0 and B0 is a finite A-module by Proposition 1.2. Hence B0 = 0 
by Nakayama’s lemma, contradiction. (See Lemma 4.1 of Chapter X.) 

To prove our second assertion, note the following commutative diagram: 

B->BP 

A-> Ap 

We have just proved mpJBp # Bp. Hence mp£p is contained in a maximal ideal 
9W of Bp. Taking inverse images, we see that the inverse image of 9Ji in Ap is an 
ideal containing mp (in the case of an inclusion Ap c= Bp the inverse image is 
9Jt n Ap). Since mp is maximal, we have ®lnAp = mp. Let ^ be the inverse 
image of 9W in B (in the case of inclusion, ^3 = 9W n B). Then ^ is a prime 
ideal of B. The inverse image of mp in A is simply p. Taking the inverse image 
of 9W going around both ways in the diagram, we find that 

V n A = p, 

as was to be shown. 

Proposition 1.11. Let A be a subring of B, and assume that B is integral 
over A. Let ^ be a prime ideal of B lying over a prime ideal p of A. Then ^ 
is maximal if and only if p is maximal. 
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Proof. Assume p maximal in A. Then A/p is a field, and B/S$ is an entire 
ring, integral over A/p. If a e B/% then a is algebraic over A/p, and we know 
that A/p[a] is a field. Hence every non-zero element of B/S$ is invertible in 
B/ty, which is therefore a field. Conversely, assume that ^ is maximal in B. 

Then B/S$ is a field, which is integral over the entire ring A/p. If A/p is not a 
field, it has a non-zero maximal ideal m. By Proposition 1.10, there exists a 
prime ideal 9W of B/ty lying above m, 9W # 0, contradiction. 

§2. INTEGRAL GALOIS EXTENSIONS 

We shall now investigate the relationship between the Galois theory of a 
polynomial, and the Galois theory of this same polynomial reduced modulo a 
prime ideal. 

Proposition 2.1. Let A be an entire ring, integrally closed in its quotient 

field K. Let L be a finite Galois extension of K with group G. Let p be a 

maximal ideal of A, and let ^3, G be prime ideals of the integral closure B of 

A in L lying above p. Then there exists a e G such that = Q. 

Proof. Suppose that G # cr^3 for any o e G. Then tG # cr^ for any pair 
of elements <x, t g G. There exists an element xe B such that 

x = 0 (mod cr^P), all a e G 

x = 1 (mod crG), all a e G 

(use the Chinese remainder theorem). The norm 

Nfa) = n °x 
a e G 

lies in B n K = A (because A is integrally closed), and lies in ^ n A = p. 
But x ^ crG for all cr e G, so that ox ^ Q for all o e G. This contradicts the fact 
that the norm of x lies in p = G n A. 

If one localizes, one can eliminate the hypothesis that p is maximal; just 
assume that p is prime. 

Corollary 2.2 Let A be integrally closed in its quotient field K. Let E be a 

finite separable extension of K, and B the integral closure of A in E. Let p be 

a maximal ideal of A. Then there exists only a finite number of prime ideals of 

B lying above p. 

Proof. Let L be the smallest Galois extension of K containing E. If Gj, 
G2 are two distinct prime ideals of B lying above p, and ^1,^2 are two prime 
ideals of the integral closure of A in L lying above Gj and G2 respectively, then 
^1 # ^2* This argument reduces our assertion to the case that E is Galois 
over K, and it then becomes an immediate consequence of the proposition. 
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Let A be integrally closed in its quotient field K, and let B be its integral 
closure in a finite Galois extension L, with group G. Then oB = B for every 
a g G. Let p be a maximal ideal of A, and ^ a maximal ideal of B lying above p. 
We denote by Gy the subgroup of G consisting of those automorphisms such 
that cr^ = Then Gy operates in a natural way on the residue class field 
B/ty, and leaves /1/p fixed. To each a e Gy we can associate an automorphism 
a of B/Sip over /1/p, and the map given by 

G \—+ G 

induces a homomorphism of G<p into the group of automorphisms of B/ty 

over A/p. 

The group Gy will be called the decomposition group of Its fixed field 
will be denoted by Ldec, and will be called the decomposition field of Let 
Bdec be the integral closure of A in Ldec, and Q = ^5n Bdtc. By Proposition 2.1, 
we know that ^ is the only prime of B lying above Q. 

Let G = IJo-jGsp be a coset decomposition of Gy in G. Then the prime 
ideals Gjty are precisely the distinct primes of B lying above p. Indeed, for two 
elements g, t e G we have if and only if t" *0^3 = ^5, i.e. t~1g lies in 
Gy. Thus t, g lie in the same coset mod Gy. 

It is then immediately clear that the decomposition group of a prime cr^ 
is gGvg~1. 

Proposition 2.3. The field Ldec is the smallest subfield E of L containing 

K such that ^ is the only prime of B lying above n E (which is prime in 

B n E). 

Proof. Let E be as above, and let H be the Galois group of L over E. Let 
q = ^ n E. By Proposition 2.1, all primes of B lying above q are conjugate by 
elements of H. Since there is only one prime, namely ^3, it means that H leaves 
^3 invariant. Hence G c= Gy and E => Ldec. We have already observed that 
Ldec has the required property. 

Proposition 2.4. Notation being as above, we have A/p = Bdec/Q (under 

the canonical injection A/p Bdcc/Q). 

Proof. If g is an element of G, not in Gy, then cr^P # ^ and cr-1*P # ty. 

Let 

= G~ly n Bdec. 

Then ^ Q. Let x be an element of Bdec. There exists an element y of Bdec 

such that 

y = x (mod Q) 

y = 1 (mod Qa) 
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for each o in G, but not in Gy. Hence in particular, 

y = x (mod ^3) 

y = 1 (mod o~ 1 ^3) 

for each a not in Gy. This second congruence yields 

ay = 1 (mod ^3) 

for all o $ Gy. The norm of y from Ldec to K is a product of y and other factors 
Gy with g $ Gy. Thus we obtain 

N?c\y) = x (mod ^3). 

But the norm lies in K, and even in A, since it is a product of elements integral 
over A. This last congruence holds mod Q, since both x and the norm lie in 
Bdec. This is precisely the meaning of the assertion in our proposition. 

If x is an element of B, we shall denote by x its image under the homo¬ 
morphism B B/ty. Then 5 is the automorphism of B/S\3 satisfying the relation 

gx = (ax). 

If f(X) is a polynomial with coefficients in £, we denote by /(X) its natural 
image under the above homomorphism. Thus, if 

f(X) = bnXn + -" + b0 

then 

f{X) = BmX' + - + 50. 

Proposition 2.5. Let A be integrally closed in its quotient field K, and let 

B be its integral closure in a finite Galois extension L of K, with group G. 
Let p be a maximal ideal of A, and ^ a maximal ideal of B lying above p. 
Then B/S\3 is a normal extension of A/p, and the map ot—> o induces a homo¬ 

morphism of Gy onto the Galois group of B/ty over A/p. 

Proof. Let B = B/S\3 and A = A/p. Any element of B can be written as 
x for some x e B. Let x generate a separable subextension of B over A, and let 
/ be the irreducible polynomial for x over K. The coefficients of / lie in A 

because x is integral over A, and all the roots of/are integral over A. Thus 

m 

nx) = n (x - xd 
i = 1 
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splits into linear factors in B. Since 

f(X) =i(X- X,) 
1 = 1 

and all the x, lie in 5, it follows that/splits into linear factors in B. We observe 
that /(x) = 0 implies /(x) = 0. Hence B is normal over A, and 

LA(x): A] ^ [X(x): X] ^ [L: X]. 

This implies that the maximal separable subextension of A in B is of finite 
degree over A (using the primitive element theorem of elementary field theory). 
This degree is in fact bounded by [L : X]. 

There remains to prove that the map a m► a gives a surjective homo¬ 
morphism of Gy onto the Galois group of B over A. To do this, we shall give 
an argument which reduces our problem to the case when ^ is the only prime 
ideal of B lying above p. Indeed, by Proposition 2.4, the residue class fields of 
the ground ring and the ring Bdec in the decomposition field are the same. 
This means that to prove our surjectivity, we may take Ldec as ground field. 
This is the desired reduction, and we can assume K = Ldec, G = Gv. 

This being the case, take a generator of the maximal separable subextension 
of B over A, and let it be x, for some element x in B. Let /be the irreducible 
polynomial of x over K. Any automorphism of B is determined by its effect 
on x, and maps x on some root of/. Suppose that x = xP Given any root xf 
of/, there exists an element a of G = Gv such that ax = x,. Hence ax = x,. 
Hence the automorphisms of B over A induced by elements of G operate 
transitively on the roots of /. Hence they give us all automorphisms of the 
residue class field, as was to be shown. 

Corollary 2.6. Let A be integrally closed in its quotient field K. Let L be a 

finite Galois extension of K, and B the integral closure of A in L. Let p be a 

maximal ideal of A. Let <p: A —» A/p be the canonical homomorphism, and let 

be two homomorphisms of B extending <p in a given algebraic closure 

of A/p. Then there exists an automorphism cr of L over K such that 

*Ai = ^2 ° cr. 

Proof. The kernels of i//l, \j/2 are prime ideals of B which are conjugate 
by Proposition 2.1. Hence there exists an element t of the Galois group G 

such that ^i, i//2 ° t have the same kernel. Without loss of generality, we may 
therefore assume that i//l9 ij/2 have the same kernel ^3. Hence there exists an 
automorphism a> of ij/fB) onto such that cu ° ij/l = ^2. There exists an 
element a of Gv such that a> ° \j/l = ij/1 ° a, by the preceding proposition. This 
proves what we wanted. 
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Remark. In all the above propositions, we could assume p prime instead 
of maximal. In that case, one has to localize at p to be able to apply our proofs. 

In the above discussions, the kernel of the map 

Gy —► G^ 

is called the inertia group of ty. It consists of those automorphisms of Gy 
which induce the trivial automorphism on the residue class field. Its fixed field 
is called the inertia field, and is denoted by Lin. 

Corollary 2.7. Let the assumptions be as in Corollary 2.6 and assume that 

^ is the only prime of B lying above p. Let f(X) be a polynomial in A\_X] 

with leading coefficient 1. Assume that f is irreducible in X[A"], and has a 

root a in B. Then the reduced polynomial f is a power of an irreducible poly¬ 

nomial in A\_X~\. 

Proof. By Corollary 2.6, we know that any two roots of/ are conjugate 
under some isomorphism of B over A, and hence that/cannot split into relative 
prime polynomials. Therefore, / is a power of an irreducible polynomial. 

Proposition 2.8. Let A be an entire ring, integrally closed in its quotient 

field K. Let L be a finite Galois extension of K. Let L = K(<x\ where a is 

integral over A, and let 

f(X) = Xn + an-lXn-' +••• + *(, 

be the irreducible polynomial of a over k, with a{ e A. Let p be a maximal 

ideal in A, let ^ be a prime ideal of the integral closure B of A in L,S$ lying 

above p. Let f(X) be the reduced polynomial with coefficients in A/p. Let 

Gy be the decomposition group. If f has no multiple roots, then the map 

o\-+o has trivial kernel, and is an isomorphism of Gy on the Galois group of 

f over A/p. 

Proof. Let 

nx) = n (x - xd 

be the factorization of / in L. We know that all x{eB. If oeGy, then we 
denote by <r the homomorphic image of o in the group Gy, as before. We 
have 

nx)=n (x - x,). 
Suppose that <7x, = x, for all i. Since (<rx{) = dxi9 and since / has no multiple 
roots, it follows that a is also the identity. Hence our map is injective, the in¬ 
ertia group is trivial. The field A\_xu ..., xJ is a subfield of B and any auto- 
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morphism of B over A which restricts to the identity on this subfield must be 
the identity, because the map Gv -> Gv is onto the Galois group of B over A. 

Hence B is purely inseparable over A[xl9...,5cj and therefore Gv is iso¬ 
morphic to the Galois group of / over A. 

Proposition 2.8 is only a special case of the more-general situation when 
the root of a polynomial does not necessarily generate a Galois extension. We 
state a version useful to compute Galois groups. 

Theorem 2.9. Let A be an entire ring, integrally closed in its quotient field 

K. Let f(X)eA[X] have leading coefficient 1 and be irreducible over K 

(or A, it's the same thing). Let p be a maximal ideal of A and let f = / mod p. 
Suppose that f has no multiple roots in an algebraic closure of A/p. Let 

L be a splitting field for f over K, and let B be the integral closure of A in 

L. Let ^ be any prime of B above p and let a bar denote reduction mod p. 
Then the map 

Gy —> Gy 

is an isomorphism of Gy with the Galois group of f over A. 

Proof. Let (<xu ..., an) be the roots of/ in B and let (al5..., a„) be their 
reductions mod Since 

f(X) = n (X - a,.), 
i = 1 

it follows that 

fm = n (x - a,.). 
i= 1 

Any element of G is determined by its effect as a permutation of the roots, and 
for o e Gy, we have 

o = C(Xt. 

Hence if d = id then a = id, so the map Gy -+ Gy is injective. It is surjective 
by Proposition 2.5, so the theorem is proved. 

This theorem justifies the statement used to compute Galois groups in Chapter 
VI, §2. 

Theorem 2.9 gives a very efficient tool for analyzing polynomials over a 
ring. 

Example. Consider the “generic” polynomial 

fw(X) = X" + w„_lXn-1 + ... + w0 
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where w0,. . ., wn-{ are algebraically independent over a field k. We know that 
the Galois group of this polynomial over the field K = k(w0,. . . , w,^) is the 
symmetric group. Let tl9... ,tn be the roots. Let a be a generator of the splitting 
field L; that is, L = K(a). Without loss of generality, we can select a to be 
integral over the ring k[w0,. . ., ,](multiply any given generator by a suitably 
chosen polynomial and use Proposition 1.1). Let gw(X) be the irreducible poly¬ 
nomial of a over k(w0,. . . , w^j). The coefficients of g are polynomials in (w). 
If we can substitute values (a) for (w) with a0,. .. , an_ { e k such that ga remains 
irreducible, then by Proposition 2.8 we conclude at once that the Galois group 
of ga is the symmetric group also. Similarly, if a finite Galois extension of 
k(w0,. . ., wn-{) has Galois group G, then we can do a similar substitution to 
get a Galois extension of k having Galois group G, provided the special polynomial 
ga remains irreducible. 

Example. Let K be a number field; that is, a finite extension of Q. Let o 
be the ring of algebraic integers. Let L be a finite Galois extension of A'and© 
the algebraic integers in L. Let p be a prime of o and ^ a prime of © lying above 
p. Then o/p is a finite field, say with q elements. Then 0/^5 is a finite extension 
of o/p, and by the theory of finite fields, there is a unique element in G<p, called 

the Frobenius element Fr^, such that Fr^(T) = xq for x e ©/*p. The conditions 

of Theorem 2.9 are satisfied for all but a finite number of primes p, and for such 
primes, there is a unique element Fr^ e Gy such that Fr^(jc) = xq mod for all 
x e ©. We call Fr<p the Frobenius element in Gy. Cf. Chapter VI, §15, where 
some of the significance of the Frobenius element is explained. 

§3. EXTENSION OF HOMOMORPHISMS 

When we first discussed the process of localization, we considered very 
briefly the extension of a homomorphism to a local ring. In our discussion of 
field theory, we also described an extension theorem for embeddings of one 
field into another. We shall now treat the extension question in full generality. 

First we recall the case of a local ring. Let A be a commutative ring and p 
a prime ideal. We know that the local ring Ap is the set of all fractions x/y, with 
jc, y e A and y £ p. Its maximal ideal consists of those fractions with x e p. Let 
L be a field and let 9: A —» L be a homomorphism whose kernel is p. Then we 
can extend <p to a homomorphism of Ap into L by letting 

<P(x/y) = <p(x)/<p(y) 

if x/y is an element of Av as above. 
Second, we have integral ring extensions. Let 0 be a local ring with maximal 

ideal m, let B be integral over 0, and let cp: 0 -► L be a homomorphism of 0 
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into an algebraically closed field L. We assume that the kernel of cp is m. By 
Proposition 1.10, we know that there exists a maximal ideal 9W of B lying above 
m, i.e. such that SR n o = m. Then B/9K is a field, which is an algebraic exten¬ 
sion of o/m, and o/m is isomorphic to the subfield cp(o) of L because the kernel 
of cp is m. 

We can find an isomorphism of o/m onto cp(o) such that the composite 
homomorphism 

o -► o/m -> L 

is equal to cp. We now embed B/9JJ into L so as to make the following diagram 
commutative: 

b->B/m 

o-► o/m-► L 

and in this way get a homomorphism of B into L which extends cp. 

Proposition 3.1. Let A be a subring of B and assume that B is integral over 

A. Let cp: A -► L be a homomorphism into a field L which is algebraically 

closed. Then cp has an extension to a homomorphism of B into L. 

Proof. Let p be the kernel of cp and let S be the complement of p in A. 

Then we have a commutative diagram 

B->S~lB 

A-= Ap 

and cp can be factored through the canonical homomorphism of A into S'1 A. 

Furthermore, S~lB is integral over S'1 A. This reduces the question to the 
case when we deal with a local ring, which has just been discussed above. 

Theorem 3.2. Let A be a subring of a field K and let x e K, x # 0. Let 

cp: A -* L be a homomorphism of A into an algebraically closed field L. 

Then cp has an extension to a homomorphism of A[x\ or A[x~*] into L. 

Proof. We may first extend cp to a homomorphism of the local ring Ap, 
where p is the kernel of cp. Thus without loss of generality, we may assume that 
A is a local ring with maximal ideal m. Suppose that 

m/l[x_1] = A [x — 1 ] • 
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Then we can write 

1 = a0 + a{x~l + • • • + anx~n 

with a{ e m. Multiplying by xn we obtain 

(1 - a0)xn + bn_ lxn~1 + • • • + b0 = 0 

with suitable elements bt e A. Since a0 e m, it follows that 1 — a0 $ m and 
hence 1 - a0 is a unit in A because A is assumed to be a local ring. Dividing 
by 1 — a0 we see that x is integral over A, and hence that our homomorphism 
has an extension to A[x] by Proposition 3.1. 

If on the other hand we have 

xx\A[x~*] # A[x~*] 

then m/l[x-1] is contained in some maximal ideal ^ of /l[x_1] and n A 

contains m. Since m is maximal, we must have ^ n A = m. Since <p and the 
canonical map A -► A/m have the same kernel, namely m, we can find an 
embedding ijs of A/m into L such that the composite map 

A -> A/m L 

is equal to cp. We note that A/m is canonically embedded in B/ty where 
B = A[x~l\ and extend \j/ to a homomorphism of B/ty into L, which we can 
do whether the image of x“1 in B/ty is transcendental or algebraic over A/m. 

The composite B B/S$ -► L gives us what we want. 

Corollary 3.3. Let A be a subring of a field K and let L be an algebraically 

closed field. Let cp: A -> L be a homomorphism. Let B be a maximal subring 

of K to which (p has an extension homomorphism into L. Then B is a local 

ring and if x e K, x / 0, then x e B or x"1 e B. 

Proof. Let 5 be the set of pairs (C, \j/) where C is a subring of K and 
ij/: C -> L is a homomorphism extending (p. Then S is not empty (containing 
(A, cp)], and is partially ordered by ascending inclusion and restriction. In 
other words, (C, ij/) ^ (C', \j/f) if C <= C and the restriction of ij/' to C is equal 
to ij/. It is clear that 5 is inductively ordered, and by Zorn’s lemma there exists 
a maximal element, say (£, Then first B is a local ring, otherwise i//0 extends 
to the local ring arising from the kernel, and second, B has the desired property 
according to Theorem 3.2. 

Let B be a subring of a field K having the property that given x e K, x =£ 0, 
then x e B or x_1 e B. Then we call B a valuation ring in K. We shall study 
such rings in greater detail in Chapter XII. However, we shall also give some 
applications in the next chapter, so we make some more comments here. 
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Let F be a field. We let the symbol oo satisfy the usual algebraic rules. If 
aeF, we define 

0+00 = oo, a - oo = oo if a ^ 0, 

oo • oo = oo, - = °o and — = 0. 
0 oo 

The expressions oo + oo, 0 • oo, 0/0, and oo/oo are not defined. 
A place (p of a field X into a field F is a mapping 

<p : X -* {F, oo} 

of X into the set consisting of F and oo satisfying the usual rules for a homo¬ 
morphism, namely 

cp(a + b) = <p(a) + <p(fe), 

<p(ab) = <p(a)<p(b) 

whenever the expressions on the right-hand side of these formulas are defined, 
and such that <p(l) = 1. We shall also say that the place is F-valued. The 
elements of X which are not mapped into oo will be called finite under the place, 
and the others will be called infinite. 

The reader will verify at once that the set o of elements of X which are 
finite under a place is a valuation ring of X. The maximal ideal consists of those 
elements x such that cp(x) = 0. Conversely, if o is a valuation ring of X with 
maximal ideal m, we let (p: o -> o/m be the canonical homomorphism, and 
define (p{x) = oo for x e X, x $ o. Then it is trivially verified that (p is a place. 

If <px:K^{Fl9 oo} and (p2\ X -+ {F2, oo} are places of X, we take their 
restrictions to their images. We may therefore assume that they are surjective. 
We shall say that they are equivalent if there exists an isomorphism A: F{ -► F2 
such that cp2 = cpt °A. (We put A(oo) = oo.) One sees that two places are 
equivalent if and only if they have the same valuation ring. It is clear that there 
is a bijection between equivalence classes of places of X, and valuation rings of 
X. A place is called trivial if it is injective. The valuation ring of the trivial place 
is simply X itself. 

As with homomorphisms, we observe that the composite of two places is also 
a place (trivial verification). 

It is often convenient to deal with places instead of valuation rings, just as it is 
convenient to deal with homomorphisms and not always with canonical homo¬ 
morphisms or a ring modulo an ideal. 

The general theory of valuations and valuation rings is due to Krull, All- 
gemeine Bewertungstheorie, J. reine angew. Math. 167 (1932), pp. 169-196. 
However, the extension theory of homomorphisms as above was realized only 
around 1945 by Che valley and Zariski. 
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We shall now give some examples of places and valuation rings. 

Example 1. Let p be a prime number. Let be the ring of all rational 
numbers whose denominator is not divisible by p. Then Z^ is a valuation ring. 
The maximal ideal consists of those rational numbers whose numerator is divisible 

by p- 

Example 2. Let k be a field and R = k[X] the polynomial ring in one 
variable. Let p = p(X) be an irreducible polynomial. Let o be the ring of rational 
functions whose denominator is not divisible by p. Then o is a valuation ring, 
similar to that of Example 1. 

Example 3. Let R be the ring of power series k[[X]] in one variable. Then 
R is a valuation ring, whose maximal ideal consists of those power series divisible 
by X. The residue class field is k itself. 

Example 4. Let R = k[[Xx,. . . , Xn]\ be the ring of power series in several 
variables. Then R is not a valuation ring, but R is imbedded in the field of repeated 
power series * * * ((X„)) = Kn. By Example 3, there is a place of 
Kn which is rvalued. By induction and composition, we can define a 
^-valued place of Kn. Since the field of rational functions k(Xl9. .. , Xn) is 
contained in Knf the restriction of this place to k(Xlf. . . , Xn) gives a ^-valued 
place of the field of rational functions in n variables. 

Example 5. In Chapter XI we shall consider the notion of ordered field. 
Let k be an ordered subfield of an ordered field K. Let o be the subset of elements 
of K which are not infinitely large with respect to k. Let m be the subset of 
elements of o which are infinitely small with respect to k. Then o is a valuation 
ring in K and m is its maximal ideal. 

The following property of places will be used in connection with projective 
space in the next chapter. 

Proposition 3.4. Let <p: K —> {L, oo} be an L-valued place of K. Given a 

finite number of non-zero elements jclf ..., xn e K there exists an index j such 

that <p is finite on xjxy for i = 1,. . . , n. 

Proof. Let B be the valuation ring of the place. Define xt ^ Xj to mean that 
xjxj e B. Then the relation ^ is transitive, that is if xi ^ xy and xy ^ xr then 

^ xr. Furthermore, by the property of a valuation ring, we always have 
xt ^ Xj or Xj fk for all pairs of indices /, j. Hence we may order our ele¬ 
ments, and we select the index j such that xt ^ xj for all i. This index j 

satisfies the requirement of the proposition. 

We can obtain a characterization of integral elements by means of val¬ 
uation rings. We shall use the following terminology. If o, O are local 
rings with maximal ideals m, 9W respectively, we shall say that O lies above o 
if o c= O and ® n o = m. We then have a canonical injection o/m -> 0/9W. 
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Proposition 3.5. Let o be a local ring contained in a field L. An element x of 

L is integral over o if and only ij x lies in every valuation ring O of L lying 

above o. 

Proof Assume that x is not integral over o. Let m be the maximal ideal of o. 
Then the ideal (m, 1/x) of o[l/x] cannot be the entire ring, otherwise we can 
write 

-1 = an(l/x)n + ■■■ + a, (1/x) + y 

with ye m and a{ e o. From this we get 

(1 + ^x" + • • • + an = 0. 

But 1 + y is not in m, hence is a unit of o. We divide the equation by 1 + y to 
conclude that x is integral over o, contrary to our hypothesis. Thus (m, 1/x) is 
not the entire ring, and is contained in a maximal ideal ^, whose intersection 
with o contains m and hence must be equal to m. Extending the canonical homo¬ 
morphism o[l/x] -► o[l/x]/<P to a homomorphism of a valuation ring O of L, 
we see that the image of 1/x is 0 and hence that x cannot be in this valuation ring. 

Conversely, assume that x is integral over o, and let 

xn + an-x xn~x + • • • + a0 = 0 

be an integral equation forx with coefficients in o. Let D be any valuation ring 
of L lying above o. Suppose x £ O. Let <p be the place given by the canonical 
homomorphism of O modulo its maximal ideal. Then <p(x) = oo so <p( 1/x) = 0.- 
Divide the above equation by xn, and apply <p. Then each term except the first 
maps to 0 under <p9 so we get <p(l) = 0, a contradiction which proves the 
proposition.' 

Proposition 3.6. Let A be a ring contained in a field L. An element x of L 

is integral over A if and only if x lies in every valuation ring O ofL containing 

A. In terms of places, x is integral over A if and only if every place of L finite 

on A is finite on x. 

Proof. Assume that every place finite on A is finite on x. We may assume 
x =£ 0. If 1/x is a unit in A[l/x] then we can write 

X = c0 + Cj(l/x) + • • • + cn-x( 1/x)"-1 

with cl e A and some n. Multiplying by xn~l we conclude thatx is integral over 
A. If 1/x is not a unit in A[l/x], then 1/x generates a proper principal ideal. 
By Zorn’s lemma this ideal is contained in a maximal ideal Tt. The homomorphism 
A[l/x] —> A[\/x]/W can be extended to a place which is a finite on A but maps 
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1/jc on 0, so x on oo, which contradicts the possibility that 1/jc is not a unit in 
A[l/x] and proves that x is integral over A. The converse implication is proved 
just as in the second part of Proposition 3.5. 

Remark. Let AT be a subfield of L and let x e L. Then x is integral over 
K if and only if x is algebraic over K. So if a place <p of L is finite on K, and x 

is algebraic over K, then <p is finite on K(x). Of course this is a trivial case of 
the integrality criterion which can be seen directly. Let 

xn -I- an-xxn~x + • • • + a0 = 0 

be the irreducible equation for x over K. Suppose x ^ 0. Then a0 =/= 0. Hence 
<p(x) =/= 0 immediately from the equation, so (p is an isomorphism of K(x) on its 
image. 

The next result is a generalization whose technique of proof can also be used 
in Exercise 1 of Chapter IX (the Hilbert-Zariski theorem). 

Theorem 3.7. General Integrality Criterion. Let A be an entire ring. 

Let zx.zmbe elements of some extension field of its quotient field K. Assume 

that each zs (s = 1,.. . , m) satisfies a polynomial relation 

4s + 9s(z 1.zm) = 0 

where gs(Zx,..., Zm) e A[ZX,..., Zm] is a polynomial of total degree < ds, 

and that any pure power of Zs occuring with non-zero coefficient in gs occurs 

with a power strictly less than ds. Then zlf..., zm are integral over A. 

Proof. We apply Proposition 3.6. Suppose some zs is not integral over A. 

There exists a place <p of K, finite on A, such that <p(zs) = o° for some 5. By 
Proposition 3.4 we can pick an index 5 such that <p(zj/zs) ^ o° for all j. We 
divide the polynomial relation of the hypothesis in the lemma by zfs and apply 
the place. By the hypothesis on gs, it follows that <p(gs(z)/zfs) = 0, whence we 
get 1 = 0, a contradiction which proves the theorem. 

EXERCISES 

1. Let K be a Galois extension of the rationals Q, with group G. Let B be the integral 
closure of Z in K, and let a e B be such that K = Q(a). Let f(X) = Irr(a, Q, X). Let 
p be a prime number, and assume that / remains irreducible mod p over Z/pZ. What 
can you say about the Galois group G? (Artm asked this question to Tate on his qualify¬ 
ing exam.) 

2. Let A be an entire ring and K its quotient field. Let t be transcendental over K. If A 
is integrally closed, show that 4[f] is integrally closed. 
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For the following exercises, you can use §1 of Chapter X. 

3. Let A be an entire ring, integrally closed in its quotient field K. Let L be a finite separable 
extension of K, and let B be the integral closure of A in L. If A is Noetherian, show that 
B is a finite /1-module. [Hint: Let {co,,..., a>n} be a basis of L over K. Multiplying 
all elements of this basis by a suitable element of A, we may assume without loss of 
generality that all co, are integral over A. Let {a/,,..., ci)'n} be the dual basis relative to 
the trace, so that Tr(a>fa>') = di}. Write an element a of L integral over A in the form 

a = hxoj\ + • • • + hna)'n 

with bj E K. Taking the trace TrCaco,), for / = 1,. .., conclude that B is contained 
in the finite module Aco\ + • • • + Ao)'n.] Hence B is Noetherian. 

4. The preceding exercise applies to the case when A = Z and k = Q. Let L be a finite 
extension of Q and let oL be the ring of algebraic integers in L. Let al9. . . , an be 
the distinct embeddings of L into the complex numbers. Embedded oL into a Euclidean 
space by the map 

a (axa,. .. , crna). 

Show that in any bounded region of space, there is only a finite number of elements 

of oL. [Hint: The coefficients in an integral equation for a are elementary symmetric 
functions of the conjugates of a and thus are bounded integers.] Use Exercise 5 of 
Chapter III to conclude that oL is a free Z-module of dimension ^ n. In fact, show 

that the dimension is /i, a basis of oL over Z also being a basis of L over Q. 

5. Let £ be a finite extension of Q, and let o£ be the ring of algebraic integers of E. Let 
U be the group of units of o£. Let cru ... , an be the distinct embeddings of E into 
C. Map U into a Euclidean space, by the map 

/:ai—>(logical,..., logical). 

Show that l(U) is a free abelian group, finitely generated, by showing that in any finite 
region of space, there is only a finite number of elements of l(U). Show that the kernel 
of / is a finite group, and is therefore the group of roots of unity in E. Thus U itself is a 
finitely generated abelian group. 

6. Generalize the results of §2 to infinite Galois extensions, especially Propositions 2.1 
and 2.5, using Zorn’s lemma. 

7. Dedekind rings. Let o be an entire ring which is Noetherian, integrally closed, and 
, such that every non-zero prime ideal is maximal. Define a fractional ideal a to be an 

o -submodule ¥= 0 of the quotient field K such that there exists c E o, c =£ 0 for which 
coCo. Prove that the fractional ideals form a group under multiplication. Hint 
following van der Waerden: Prove the following statements in order: 

(a) Given an ideal a ¥= 0 in o, there exists a product of prime ideals 
Pi • • *p r C a . 

(b) Every maximal ideal p is invertible, i.e. if we let p-1 be the set of elements 
x E K such that x p C o , then p "1 p = o. 

(c) Every non-zero ideal is invertible, by a fractional ideal. (Use the Noetherian 
property that if this is not true, there exists a maximal non-invertible ideal 
a, and get a contradiction.) 
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8. Using prime ideals instead of prime numbers for a Dedekind ring A, define the notion 
of content as in the Gauss lemma, and prove that if/(X), g(X) E A[X] are polynomials 

of degree ^ 0 with coefficients in A, then cont(fg) = cont(/)cont(p). Also if K is 
the quotient field of A, prove the same statement for/, g E K[X]. 

9. Let A be an entire ring, integrally closed. Let B be entire, integral over A. Let Qx, 
Q2 be prime ideals of B with Qx D Q2 but Qx =£ Q2. Let P, = Q, fl A. Show that 

Pi * P2. 

10. Let n be a positive integer and let f, (' be primitive n-th roots of unity. 

(a) Show that (1 - £)/(l - (') is an algebraic integer. 

(b) If n ^ 6 is divisible by at least two primes, show that 1 — (is a unit in the 

nngZ[fl. 

11. Let p be a prime and ( a primitive p-th root of unity. Show that there is a principal 
ideal J in Z[£| such that Jp~l = (p) (the principal ideal generated by p). 

Symmetric Polynomials 

12. Let F be a field of characteristic 0. Let t\,..., tn be algebraically independent over F. 
Let s\,..., sn be the elementary symmetric functions. Then R = F[t\ is an 
integral extension of S = F[s\,... ,5„], and actually is its integral closure in the 
rational field F(t\,... ,tn). Let W be the group of permutation of the variables 

t\ ? • • • ? tn> 

(a) Show that S = R w is the fixed subring of R under W. 
(b) Show that the elements /[' • • • trnn with 0 i form a basis of R over 

5, so in particular, R is free over S. 

I am told that the above basis is due to Kronecker. There is a much more interesting 

basis, which can be defined as follows. 
Let dj,..., dn be the partial derivatives with respect to so d, = d/dtj. Let 

P e F[t] = F[t\ Substituting dt for t{ {i— 1,..., n) gives a partial differential 
operator P(d) = P(d\,..., d„) on R. An element of S can also be viewed as an element of 
R. Let Q e R. We say that Q is fL-harmonic if P{d)Q = 0 for all symmetric polynomials 
P e S with 0 constant term. It can be shown that the ^-harmonic polynomials form a 
finite dimensional space. Furthermore, if {H\,..., HN} is a basis for this space over P, 
then it is also a basis for R over S. This is a special case of a general theorem of Che- 
valley. See [La 99b], where the special case is worked out in detail. 



CHAPTER VIII 
Transcendental Extensions 

Both for their own sake and for applications to the case of finite exten¬ 
sions of the rational numbers, one is led to deal with ground fields which are 
function fields, i.e. finitely generated over some field k, possibly by elements 
which are not algebraic. This chapter gives some basic properties of such 
fields. 

§1. TRANSCENDENCE BASES 

Let K be an extension field of a field k. Let S be a subset of K. We 
recall that S (or the elements of S) is said to be algebraically independent 
over fc, if whenever we have a relation 

o = z a(v)M(v)(S) = Z «,v) n *v(x) 
xeS 

with coefficients a(v) e fc, almost all a(v) = 0, then we must necessarily have all 

*(v) 

We can introduce an ordering among algebraically independent subsets of 
X, by ascending inclusion. These subsets are obviously inductively ordered, 
and thus there exist maximal elements. If S is a subset of X which is 
algebraically independent over k, and if the cardinality of S is greatest among 
all such subsets, then we call this cardinality the transcendence degree or 
dimension of X over k. Actually, we shall need to distinguish only between 
finite transcendence degree or infinite transcendence degree. We observe that 

355 
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the notion of transcendence degree bears to the notion of algebraic indepen¬ 
dence the same relation as the notion of dimension bears to the notion of 
linear independence. 

We frequently deal with families of elements of K, say a family {xf}ie/, 
and say that such a family is algebraically independent over k if its elements 
are distinct (in other words, xt # Xj if i # j) and if the set consisting of the 
elements in this family is algebraically independent over k. 

A subset 5 of K which is algebraically independent over k and is maximal 
with respect to the inclusion ordering will be called a transcendence base of 
K over k. From the maximality, it is clear that if S is a transcendence base 
of K over k9 then K is algebraic over k(S). 

Theorem 1.1. Let K be an extension of a field k. Any two transcendence 

bases of K over k have the same cardinality. If T is a subset of K such that 

K is algebraic over k(F), and S is a subset of T which is algebraically indepen¬ 

dent over k, then there exists a transcendence base of K over k such that 

S c(Bcr. 

Proof We shall prove that if there exists one finite transcendence base, say 
{jcj, . . . , jtw}, m ^ 1, m minimal, then any other transcendence base must also 
have m elements. For this it will suffice to prove: If wl9 . . . , wn are elements 
of K which are algebraically independent over k then n m (for we can then 
use symmetry). By assumption, there exists a non-zero irreducible polynomial 
fx in m + 1 variables with coefficients in k such that 

Mwi, xj = 0. 

After renumbering xl9 ... , xm we may write fx = 2 gj(wX9 jc2, . .. , xm) x\ with 
some gN =/= 0 with some N ^ 1. No irreducible factor of gN vanishes on 
(wj, x2,. .. , xn)9 otherwise wx would be a root of two distinct irreducible polyno¬ 
mials over k(xx, ... , xm). Hence xx is algebraic over k(wX9 x2, ... , xm) and 
Wj, jc2, ... , xm are algebraically independent over k9 otherwise the minimal¬ 
ity of m would be contradicted. Suppose inductively that after a suitable re¬ 
numbering of x2, ... , xm we have found Wj, ... , wr (r < n) such that K is 
algebraic over k(wl9 ... , wr, xr+l9 ... , xm). Then there exists a non-zero 
polynomial fin m + 1 variables with coefficients in k such that 

/(wr+1, wl9 . .. , wr, xr+l9 ... , xm) = 0. 

Since the w’s are algebraically independent over k9 it follows by the same argument 
as in the first step that some xj9 say xr+1, is algebraic over k(wl9 . . . , wr+1, 
xr+2, . . . , xm). Since a tower of algebraic extensions is algebraic, it follows 
that K is algebraic over k(wl9 . . . , wr+1, xr+2, •.. , xm). We can repeat the 
procedure, and if n ^ m we can replace all the x’s by w’s, to see that K is 
algebraic over k(wx, . . . , wm). This shows that n^m implies n = m, as desired. 
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We have now proved: Either the transcendence degree is finite, and is 
equal to the cardinality of any transcendence base, or it is infinite, and every 
transcendence base is infinite. The cardinality statement in the infinite case 
will be left as an exercise. We shall also leave as an exercise the statement 
that a set of algebraically independent elements can be completed to a 
transcendence base, selected from a given set l such that K is algebraic over 
k(T). (The reader will note the complete analogy of our statements with those 
concerning linear bases.) 

Note. The preceding section is the only one used in the next chapter. The 

remaining sections are more technical, especially §3 and §4 which will not be 

used in the rest of the book. Even §2 and §5 will only be mentioned a 

couple of times, and so the reader may omit them until they are referred to 

again. 

§2. NOETHER NORMALIZATION THEOREM 

Theorem 2.1. Let k[xl9..., x„] = /c[x] be a finitely generated entire ring 

over a field k, and assume that k(x) has transcendence degree r. Then there 

exist elements yi9 ..., yr in k{_x] such that k[x] is integral over 

£[)>] = k\_yl9...9yr~\. 

Proof. If (x1,...,xn) are already algebraically independent over fc, we 
are done. If not, there is a non-trivial relation 

Z^xi1 **• x'" = 0 

with each coefficient aU) e k and aU) # 0. The sum is taken over a finite 
number of distinct n-tuples of integers (jl9 jv ^ 0. Let m2, be 
positive integers, and put 

y2 = *2 - •••> yn = xn- xin. 

Substitute xt = yt + x5"‘ (i = 2, ...,n) in the above equation. Using vector 
notation, we put (m) = (1, m2,mn) and use the dot product (j)'(m) to 
denote j\ + m2j2 + *’* + mnjn- If we expand the relation after making the 
above substitution, we get 

£ Cu>x?-™ + f(xu y2, ■ • •, yB) = o 
where / is a polynomial in which no pure power of Xj appears. We now 
select d to be a large integer [say greater than any component of a vector (j) 

such that cU) # 0] and take 

0= "). 
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Then all (j)-(m) are distinct for those (j) such that cU) # 0. In this way we 
obtain an integral equation for x{ over k\_yl9.yn\ Since each xf (i > 1) 
is integral over k[xl9 yl9..., y„], it follows that /c[x] is integral over 
k[y29 •••» yw]* We can now proceed inductively, using the transitivity of 
integral extensions to shrink the number of /s until we reach an alge¬ 
braically independent set of y9s. 

The advantage of the proof of Theorem 2.1 is that it is applicable when k 

is a finite field. The disadvantage is that it is not linear in xi9 ..., x„. We 
now deal with another technique which leads into certain aspects of algebraic 
geometry on which we shall comment after the next theorem. 

We start again with k[xl9..., x„] finitely generated over k and entire. 
Let (Uij) (i, j = 1,ri) be algebraically independent elements over fc(x), and 
let ku = k(u) = k(ui}\Lttlj. Put 

n 

yt = Z Uuxi- 
j= 1 

This amounts to a generic linear change of coordinates in n-space, to use 
geometric terminology. Again we let r be the transcendence degree of k(x) 

over k. 

Theorem 2.2. With the above notation, kM[x] is integral over 

Proof. Suppose some xf is not integral over ku[yl9yr]. Then there 
exists a place <p of ku(y) finite on ku\_yl9yr] but taking the value oo on 
some x,. Using Proposition 3.4 of Chapter VII, and renumbering the indices 
if necessary, say (p(xj/xn) is finite for all i. Let zj = cp(xj/xn) for j = 1,..., n. 

Then dividing the equations yt = Ysuijxj by xn (for * = 1,r) and applying 
the place, we get 

0 = unz[ +Wi2^ + --- + uln, 

0 — url l\ + Ur2Z2 4- • • • + urn. 

The transcendence degree of k(z') over k cannot be r, for otherwise, the place 
(p would be an isomorphism of k(x) on its image. [Indeed, if, say, z'l9..., z' 

are algebraically independent and zi = xi/xn9 then zl9 ..., zr are also alge¬ 
braically independent, and so form a transcendence base for k(x) over k. 

Then the place is an isomorphism from k(zl9...9zr) to k(zi,...,z'r)9 and 
hence is an isomorphism from k(x) to its image.] We then conclude that 

uln9 ...9urnek(uij9z') with i = 1, ...,r; ; = 1, ...,n-l. 

Hence the transcendence degree of k(u) over k would be ^ rn — 1, which is a 
contradiction, proving the theorem. 
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Corollary 2.3. Let k be a field, and let k(x) be a finitely generated 

extension of transcendence degree r. There exists a polynomial P(u) = 
P(Uij) e fc[w] such that if (c) = (c0) is a family of elements ctj e k satisfying 

P(c) # 0, and we let y[ = £c0Xy, l^en is Integral over k[y[9..., y'j. 

Proof By Theorem 2.2, each xf is integral over yr]. The 
coefficients of an integral equation are rational functions in ku. We let P(u) 

be a common denominator for these rational functions. If P(c) # 0, then 
there is a homomorphism 

(p:k{x)[u, P(w)-1] ->k(x) 

such that cp(u) = (c), and such that (p is the identity on k(x). We can apply (p 

to an integral equation for xt- over /cu[y] to get an integral equation for xf 
over &[/], thus concluding the proof. 

Remark. After Corollary 2.3, there remains the problem of finding ex¬ 
plicitly integral equations for xl9...,xn (or yr+l9..., yn) over ku[yl9yj. 
This is an elimination problem, and I have decided to refrain from further 
involvement in algebraic geometry at this point. But it may be useful to 
describe the geometric language used to interpret Theorem 2.2 and further 
results in that line. After the generic change of coordinates, the map 

is the generic projection of the variety whose coordinate ring is k[x] on 
affine r-space. This projection is finite, and in particular, the inverse image of 
a point on affine r-space is finite. Furthermore, if k(x) is separable over k (a 
notion which will be defined in §4), then the extension ku(y) is finite separable 
over ku(yl9yr) (in the sense of Chapter V). To determine the degree of 
this finite extension is essentially Bezout’s theorem. Cf. [La 58], Chapter 
VIII, §6. 

The above techniques were created by van der Waerden and Zariski, cf., 
for instance, also Exercises 5 and 6. These techniques have unfortunately not 
been completely absorbed in some more recent expositions of algebraic 
geometry. To give a concrete example: When Hartshorne considers the 
intersection of a variety and a sufficiently general hyperplane, he does not 
discuss the “generic” hyperplane (that is, with algebraically independent 
coefficients over a given ground field), and he assumes that the variety is 
non-singular from the start (see his Theorem 8.18 of Chapter 8, [Ha 77]). 
But the description of the intersection can be done without simplicity as¬ 
sumptions, as in Theorem 7 of [La 58], Chapter VII, §6, and the corre¬ 
sponding lemma. Something was lost in discarding the technique of the 
algebraically independent (w0). 

After two decades when the methods illustrated in Chapter X have been 
prevalent, there is a return to the more explicit methods of generic construc¬ 
tions using the algebraically independent (wi7) and similar ones for some 
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applications because part of algebraic geometry and number theory are 
returning to some problems asking for explicit or effective constructions, with 
bounds on the degrees of solutions of algebraic equations. See, for instance, 
[Ph 91-95], [So 90], and the bibliography at the end of Chapter X, §6. Return¬ 
ing to some techniques, however, does not mean abandoning others; it 
means only expanding available tools. 
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§3. LINEARLY DISJOINT EXTENSIONS 

In this section we discuss the way in which two extensions K and L of a 
field k behave with respect to each other. We assume that all the fields 
involved are contained in one field ft, assumed algebraically closed. 

K is said to be linearly disjoint from L over k if every finite set of 
elements of K that is linearly independent over k is still such over L. 

The definition is unsymmetric, but we prove right away that the property 
of being linearly disjoint is actually symmetric for K and L. Assume K 

linearly disjoint from L over k. Let yi,...9yn be elements of L linearly 
independent over k. Suppose there is a non-trivial relation of linear depen¬ 
dence over X, 

(1) *1 yi + x2y2 + • • • + X„y„ = 0. 

Say xxr are linearly independent over k, and xr+1, x„ are linear 
r 

combinations i = r 4- 1, ..., n. We can write the relation (1) as 
M = 1 

follows: 

M=1 i=r+l 

and collecting terms, after inverting the second sum, we get 

Z (>V+ Z («.„)'.•)) = 0. 
M = 1 \ i=r+1 / 

Z + z 
1=1 

yt = o 
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The ys are linearly independent over /c, so the coefficients of xM are # 0. 
This contradicts the linear disjointness of K and L over k. 

We now give two criteria for linear disjointness. 

Criterion 1. Suppose that K is the quotient field of a ring R and L the 
quotient field of a ring S. To test whether L and K are linearly disjoint, it 
suffices to show that if elements yl9 ..., y„ of S are linearly independent over 
fc, then there is no linear relation among the y9s with coefficients in R. 
Indeed, if elements yi9...9yn of L are linearly independent over fc, and if 
there is a relation xxyx + • • • + xnyn = 0 with x£ e X, then we can select y in 
S and x in R such that xy # 0, yyt e S for all i, and xxf e K for all i. 
Multiplying the relation by xy gives a linear dependence between elements of 
R and S. However, the yyt are obviously linearly independent over fc, and 
this proves our criterion. 

Criterion 2. Again let R be a subring of K such that K is its quotient 
field and R is a vector space over k. Let {ua} be a basis of R considered as a 
vector space over k. To prove K and L linearly disjoint over k, it suffices to 
show that the elements {ua} of this basis remain linearly independent over L. 
Indeed, suppose this is the case. Let xl9...9xm be elements of R linearly 
independent over 7c. They lie in a finite dimension vector space generated by 
some of the ua, say ul9...9un. They can be completed to a basis for this 
space over k. Lifting this vector space of dimension n over L, it must 
conserve its dimension because the u’s remain linearly independent by hy¬ 
pothesis, and hence the x’s must also remain linearly independent. 

Proposition 3.1. Let K be a field containing another field fc, and let 
L E be two other extensions of k. Then K and L are linearly disjoint 
over k if and only if K and E are linearly disjoint over k and KE, L are 
linearly disjoint over E. 

KL 

KE 

K E 
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Proof. Assume first that K, E are linearly disjoint over fc, and KE, L are 
linearly disjoint over E. Let {/c} be a basis of K as vector space over k (we 
use the elements of this basis as their own indexing set), and let {a} be a 
basis of E over k. Let {X} be a basis of L over E. Then {ocX} is a basis of L 
over k. If K and L are not linearly disjoint over k, then there exists a 
relation 

Z (Z ck>U(k) Aa = 0 with some ckAo[ # 0, cK>lai e k. 

Changing the order of summation gives 

z(z = 0 
A \ic, A / 

contradicting the linear disjointness of L and KE over E. 
Conversely, assume that K and L are linearly disjoint over k. Then a 

fortiori, K and E are also linearly disjoint over k, and the field KE is the 
quotient field of the ring £[K] generated over E by all elements of This 
ring is a vector space over £, and a basis for K over k is also a basis for this 
ring £[/C] over £. With this remark, and the criteria for linear disjointness, 
we see that it suffices to prove that the elements of such a basis remain 
linearly independent over L. At this point we see that the arguments given 
in the first part of the proof are reversible. We leave the formalism to the 
reader. 

We introduce another notion concerning two extensions K and L of a 
field k. We shall say that K is free from L over k if every finite set of 
elements of K algebraically independent over k remains such over L. If (x) 
and (y) are two sets of elements in ft, we say that they are free over k (or 
independent over k) if k(x) and k(y) are free over k. 

Just as with linear disjointness, our definition is unsymmetric, and we 
prove that the relationship expressed therein is actually symmetric. Assume 
therefore that K is free from L over k. Let y\9-..9ytt be elements of L, 
algebraically independent over k. Suppose they become dependent over K. 
They become so in a subfield F of K finitely generated over fc, say of 
transcendence degree r over k. Computing the transcendence degree of F(y) 

over k in two ways gives a contradiction (cf. Exercise 5). 

F(y) 
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Proposition 3.2. If K and L are linearly disjoint over fc, then they are free 
over k. 

Proof Let xi9 ..., xn be elements of K algebraically independent over k. 
Suppose they become algebraically dependent over L. We get a relation 

Z )'aMx(x) = 0 

between monomials Ma(x) with coefficients ya in L. This gives a linear 
relation among the Ma(x). But these are linearly independent over k because 
the x’s are assumed algebraically independent over k. This is a contradiction. 

Proposition 3.3. Let L be an extension of k, and let (u) = (uu ..., ur) be a 
set of quantities algebraically independent over L. Then the field k(u) is 
linearly disjoint from L over k. 

Proof According to the criteria for linear disjointness, it suffices to 
prove that the elements of a basis for the ring /c[u] that are linearly indepen¬ 
dent over k remain so over L. In fact the monomials M(u) give a basis of 
k[u] over k. They must remain linearly independent over L, because as 
we have seen, a linear relation gives an algebraic relation. This proves our 
proposition. 

Note finally that the property that two extensions K and L of a field k 
are linearly disjoint or free is of finite type. To prove that they have either 
property, it suffices to do it for all subfields K0 and L0 of K and L 
respectively which are finitely generated over k. This comes from the fact 
that the definitions involve only a finite number of quantities at a time. 

§4. SEPARABLE AND REGULAR EXTENSIONS 

Let K be a finitely generated extension of /c, K = k(x). We shall say that 
it is separably generated if we can find a transcendence basis of 
K/k such that K is separably algebraic over k(t). Such a transcendence base 
is said to be a separating transcendence base for K over k. 

We always denote by p the characteristic if it is not 0. The field obtained 
from k by adjoining all pm-th roots of all elements of k will be denoted by 
fc1/pm. The compositum of all such fields for m = 1, 2,..., is denoted by fc1/p°°. 

Proposition 4.1. The following conditions concerning an extension field K 
of k are equivalent: 

(i) K is linearly disjoint from /c1/p°°. 

(ii) K is linearly disjoint from k1,prn for some m. 
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(iii) Every subfield of K containing k and finitely generated over k is 
separably generated. 

Proof It is obvious that (i) implies (ii). In order to prove that (ii) 
implies (iii), we may clearly assume that K is finitely generated over fc, say 

K = k(x) = /c(x1,...,xw). 

Let the transcendence degree of this extension be r. If r = n, the proof is 
complete. Otherwise, say xl5...,xr is a transcendence base. Then xr+1 is 
algebraic over k(xl9..., xr). Let /(A^,..., *r+l) be a polynomial of lowest 
degree such that 

f(x i,..., xr+1) 0. 

Then / is irreducible. We contend that not all xf (i = 1,..., r + 1) appear to 
the p-th power throughout. If they did, we could write f(X) = £caMa(Ay 
where Ma(X) are monomials in Xi9 ..., Xr+Y and caek. This would imply 
that the Ma(x) are linearly dependent over kl/p (taking the p-th root of the 
equation £caA/a(x)p = 0). However, the Ma(x) are linearly independent over 
k (otherwise we would get an equation for xl5 ..., xr+1 of lower degree) and 
we thus get a contradiction to the linear disjointness of k(x) and k1/p. Say 
X1 does not appear to the p-th power throughout, but actually appears in 
/(X). We know that f(X) is irreducible in k[Xl9 ...,Arr+1] and hence /(x) = 0 
is an irreducible equation for xx over k(x2,..., xr+1). Since Xl does not 
appear to the p-th power throughout, this equation is a separable equation 
for xx over k(x2,...., xr+1), in other words, xx is separable algebraic over 
k(x2,..., xrH). From this it follows that it is separable algebraic over 
k(x2,..., x„). If (x2,..., x„) is a transcendence base, the proof is complete. If 
not, say that x2 is separable over k(x3,..., x„). Then k(x) is separable over 
/c(x3,..., x„). Proceeding inductively, we see that the procedure can be 
continued until we get down to a transcendence base. This proves that (ii) 
implies (iii). It also proves that a separating transcendence base for k(x) over 
k can be selected from the given set of generators (x). 

To prove that (iii) implies (i) we may assume that K is finitely generated 
over k. Let (u) be a transcendence base for K over k. Then K is separably 

algebraic over k{u). By Proposition 3.3, k(u) and kl/pao are linearly disjoint. 
Let L = k1/p°°. Then k(u)L is purely inseparable over fc(u), and hence is 
linearly disjoint from K over k(u) by the elementary theory of finite algebraic 
extensions. Using Proposition 3.1, we conclude that K is linearly disjoint 
from L over k, thereby proving our theorem. 

An extension K of k satisfying the conditions of Proposition 4.1 is called 
separable. This definition is compatible with the use of the word for alge¬ 
braic extensions. 

The first condition of our theorem is known as MacLane’s criterion. It 
has the following immediate corollaries. 
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Corollary 4.2. If K is separable over k, and E is a subfield of K contain¬ 
ing /c, then E is separable over k. 

Corollary 4.3. Let E be a separable extension of /c, and K a separable 
extension of E. Then K is a separable extension of k. 

Proof. Apply Proposition 3.1 and the definition of separability. 

Corollary 4.4. If k is perfect, every extension of k is separable. 

Corollary 4.5. Let K be a separable extension of k, and free from an 
extension L of k. Then KL is a separable extension of L. 

Proof An element of KL has an expression in terms of a finite number 
of elements of K and L. Hence any finitely generated subfield of KL 
containing L is contained in a composite field FL, where F is a subfield of K 
finitely generated over k. By Corollary 4.2, we may assume that K is finitely 
generated over k. Let (t) be a transcendence base of K over /c, so K is 
separable algebraic over k(t). By hypothesis, (t) is a transcendence base of 
KL over L, and since every element of K is separable algebraic over k(t\ it 
is also separable over L(t). Hence KL is separably generated over L. This 
proves the corollary. 

Corollary 4.6. Let K and L be two separable extensions of k, free from 
each other over k. Then KL is separable over k. 

Proof Use Corollaries 4.5 and 4.3. 

Corollary 4.7. Let K, L be two extensions of /c, linearly disjoint over k. 
Then K is separable over k if and only if KL is separable over L. 

Proof If K is not separable over /c, it is not linearly disjoint from ki/p 
over fc, and hence a fortiori it is not linearly disjoint from Lkllp over k. By 
Proposition 4.1, this implies that KL is not linearly disjoint from Lki/P over 
L, and hence that KL is not separable over L. The converse is a special case 
of Corollary 4.5, taking into account that linearly disjoint fields are free. 

We conclude our discussion of separability with two results. The first one 
has already been proved in the first part of Proposition 4.1, but we state it 
here explicitly. 

Proposition 4.8. If K is a separable extension of k, and is finitely gener¬ 
ated, then a separating transcendence base can be selected from a given set 
of generators. 

To state the second result we denote by Kpm the field obtained from K 
by raising all elements of K to the pm-th power. 
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Proposition 4.9. Let K be a finitely generated extension of a field fc. If 
Kpmk = K for some m, then K is separably algebraic over k. Conversely, if 
K is separably algebraic over k, then Kpmk = K for all m. 

Proof If K/k is separably algebraic, then the conclusion follows from 
the elementary theory of finite algebraic extensions. Conversely, if K/k is 
finite algebraic but not separable, then the maximal separable extension of k 
in K cannot be all of K, and hence Kpk cannot be equal to K. Finally, if 
there exists an element t of K transcendental over k, then k(t1/pm) has degree 
pm over fc(f), and hence there exists a t such that t1/pm does not lie in K. This 
proves our proposition. 

There is a class of extensions which behave particularly well from the 
point of view of changing the ground field, and are especially useful in 
algebraic geometry. We put some results together to deal with such exten¬ 
sions. Let K be an extension of a field k, with algebraic closure Ka. We 
claim that the following two conditions are equivalent: 

REG 1. k is algebraically closed in K (i.e. every element of K algebraic 
over k lies in k), and K is separable over k. 

REG 2. K is linearly disjoint from ka over k. 

We show the equivalence. Assume REG 2. By Proposition 4.1, we know that 
K is separably generated over k. It is obvious that k must be algebraically 
closed in K. Hence REG 2 implies REG 1. To prove the converse we need 
a lemma. 

Lemma 4.10. Let k be algebraically closed in extension K. Let x be 
some element of an extension of K, but algebraic over k. Then k(x) and K 
are linearly disjoint over k, and [fc(x): k] = [K(x): K~\. 

Proof Let f(X) be the irreducible polynomial for x over k. Then / 
remains irreducible over K\ otherwise, its factors would have coefficients 
algebraic over fc, hence in fc. Powers of x form a basis of fc(x) over fc, hence 
the same powers form a basis of K(x) over K. This proves the lemma. 

To prove REG 2 from REG 1, we may assume without loss of generality 
that K is finitely generated over k, and it suffices to prove that K is linearly 
disjoint from an arbitrary finite algebraic extension L of k. If L is separable 
algebraic over k, then it can be generated by one primitive element, and we 
can apply Lemma 4.10. 

More generally, let E be the maximal separable subfield of L containing 
k. By Proposition 3.1, we see that it suffices to prove that KE and L are 
linearly disjoint over E. Let (t) be a separating transcendence base for K 
over k. Then K is separably algebraic over k(t). Furthermore, (t) is also a 
separating transcendence base for KE over E, and KE is separable algebraic 
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over E(t). Thus KE is separable over E, and by definition KE is linearly 
disjoint from L over K because L is purely inseparable over E. This proves 
that REG 1 implies REG 2. 

Thus we can define an extension K of k to be regular if it satisfies either 
one of the equivalent conditions REG 1 or REG 2. 

Proposition 4.11. 

(a) Let K be a regular extension of k, and let E be a subfield of K containing 
k. Then E is regular over k. 

(b) Let E be a regular extension of k, and K a regular extension of E. 
Then K is a regular extension of k. 

(c) If k is algebraically closed, then every extension of k is regular. 

Proof. Each assertion is immediate from the definition conditions REG 
1 and REG 2. 

Theorem 4.12. Let K be a regular extension of k, let L be an arbitrary 
extension of k, both contained in some larger field, and assume that K, L 
are free over k. Then K, L are linearly disjoint over k. 

Proof (Artin). Without loss of generality, we may assume that K is 
finitely generated over k. Let xi9...9xn be elements of K linearly indepen¬ 
dent over k. Suppose we have a relation of linear dependence 

Xiyj + • • • + xny„ = 0 

with yt € L. Let cp be a /ca-valued place of L over k. Let (t) be a transcen¬ 
dence base of K over k. By hypothesis, the elements of (t) remain alge¬ 
braically independent over L, and hence (p can be extended to a place of KL 
which is identity on k(t). This place must then be an isomorphism of K on 
its image, because K is a finite algebraic extension of k(t) (remark at the 
end of Chapter VII, §3). After a suitable isomorphism, we may take a place 
equivalent to (p which is the identity on K. Say (p(yi/yn) is finite for all i (use 
Proposition 3.4 of Chapter VII). We divide the relation of linear dependence 
by yn and apply (p to get £xi<p(yi/yw) = 0, which gives a linear relation 
among the with coefficients in /ca, contradicting the linear disjointness. 
This proves the theorem. 

Theorem 4.13. Let K be a regular extension of k, free from an extension 
L of k over k. Then KL is a regular extension of L. 

Proof. From the hypothesis, we deduce that K is free from the algebraic 
closure La of L over k. By Theorem 4.12, K is linearly disjoint from La over 
k. By Proposition 3.1, KL is linearly disjoint from La over L, and hence KL 
is regular over L. 
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Corollary 4.14. Let K, L be regular extensions of fc, free from each other 
over k. Then KL is a regular extension of k. 

Proof. Use Corollary 4.13 and Proposition 4.11(b). 

Theorem 4.13 is one of the main reasons for emphasizing the class of 
regular extensions: they remain regular under arbitrary base change of the 
ground field k. Furthermore, Theorem 4.12 in the background is important 
in the study of polynomial ideals as in the next section, and we add 
some remarks here on its implications. We now assume that the reader is 
acquainted with the most basic properties of the tensor product (Chapter 
XVI, §1 and §2). 

Corollary 4.15. Let K = k(x) be a finitely generated regular extension, 
free from an extension L of k, and both contained in some larger field. 
Then the natural k-algebra homomorphism 

L ®k fc[x] -> L[x] 

is an isomorphism. 

Proof By Theorem 4.12 the homomorphism is injective, and it is obvi¬ 
ously surjective, whence the corollary follows. 

Corollary 4.16. Let k(x) be a finitely generated regular extension, and let 
p be the prime ideal in k[X] vanishing on (x), that is, consisting of all 
polynomials f(X)ek[X] such that f(x) = 0. Let L be an extension of fc, 
free from fc(x) over k. Let pL be the prime ideal in L[X] vanishing on (x). 
Then pL = pL[X], that is pL is the ideal generated by p in L[X], and in 
particular, this ideal is prime. 

Proof. Consider the exact sequence 

0->p->fc[AT]-->fc[x]-*0. 

Since we are dealing with vector spaces over a field, the sequence remains 
exact when tensored with any k-space, so we get an exact sequence 

0 —► L ®)k p —► L[X~\ -► L ®k k[x] -► 0. 

By Corollary 4.15, we know that L ®k k[x] ~ L[x], and the image of L ®k p 
in L[X~\ is pL[X], so the lemma is proved. 

Corollary 4.16 shows another aspect whereby regular extensions behave 
well under extension of the base field, namely the way the prime ideal p 
remains prime under such extensions. 
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§5. DERIVATIONS 

A derivation D of a ring R is a mapping D: R -» R of R into itself which is 
linear and satisfies the ordinary rule for derivatives, i.e., 

D(x + y) = Dx + Dy and D(xy) = xDy + yDx. 

As an example of derivations, consider the polynomial ring k\_X~\ over a field 
fc. For each variable Xh the partial derivative d/dXt taken in the usual 
manner is a derivation of fc[A"]. 

Let R be an entire ring and let K be its quotient field. Let D: R -* R be a 
derivation. Then D extends uniquely to a derivation of K, by defining 

D(u/v) = 
vDu — uDv 

It is immediately verified that the expression on the right-hand side is 
independent of the way we represent an element of K as u/v (w, v e R), and 
satisfies the conditions defining a derivation. 

Note. In this section, we shall discuss derivations of fields. For deriva¬ 
tions in the context of rings and modules, see Chapter XIX, §3. 

A derivation of a field K is trivial if Dx = 0 for all x e X. It is trivial over 
a subfield k of K if Dx = 0 for all x e k. A derivation is always trivial over 
the prime field: One sees that 

D(l) = D(\ • 1) = 2D(1), 

whence D(l) = 0. 
We now consider the problem of extending derivations. Let 

L = K(x) = K(xi9...9Xm) 

be a finitely generated extension. If /eK[I], we denote by df/dxt the 
polynomials df/dXt evaluated at (x). Given a derivation D on X, does there 
exist a derivation D* on L coinciding with D on X? If /(I)eX[I] is a 
polynomial vanishing on (x), then any such D* must satisfy 

(1) 0 = D*f(x) = fD(x) + X (df/dXi)D*xi9 

where fD denotes the polynomial obtained by applying D to all coefficients 
of /. Note that if relation (1) is satisfied for every element in a finite set of 
generators of the ideal in X[X] vanishing on (x), then (1) is satisfied by every 
polynomial of this ideal. This is an immediate consequence of the rules for 
derivations. The preceding ideal will also be called the ideal determined by 
(x) in X[X]. 
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The above necessary condition for the existence of a D* turns out to be 
sufficient. 

Theorem 5.1. Let D be a derivation of a field K. Let 

be a finite family of elements in an extension of K. Let {fa(X)} be a set of 
generators for the ideal determined by (x) in K[X~\. Then, if (u) is any set 
of elements of K(x) satisfying the equations 

0=f°(x) + Yt(dfJdxt)ui9 

there is one and only one derivation D* of K(x) coinciding with D on K, 
and such that D*xt = ut for every i. 

Proof The necessity has been shown above. Conversely, if g(x\ h(x) are 
in K[x], and h(x) # 0, one verifies immediately that the mapping D* defined 
by the formulas 

D*g(x) = gD(x) + Y,~ui, 

D*(g/h) = 
hD*g — gD*h 

h2 ’ 

is well defined and is a derivation of K(x). 

Consider the special case where (x) consists of one element x. Let D be a 
given derivation on K. 

Case 1. x is separable algebraic over K. Let f(X) be the irreducible 
polynomial satisfied by x over K. Then /'(x) # 0. We have 

0 = /D(x)+/'(x)u, 

whence u = —fD(x)/f'(x). Hence D extends to K(x) uniquely. If D is trivial 
on K, then D is trivial on K(x). 

Case 2. x is transcendental over K. Then D extends, and u can be 
selected arbitrarily in K(x). 

Case 3. x is purely inseparable over K, so xp — a = 0, with ae K. Then 
D extends to K(x) if and only if Da = 0. In particular if D is trivial on K, 
then u can be selected arbitrarily. 

Proposition 5.2. A finitely generated extension K(x) over K is separable 
algebraic if and only if every derivation D of K(x) which is trivial on K is 
trivial on K(x). 

Proof If K(x) is separable algebraic over K, this is Case 1. Conversely, 
if it is not, we can make a tower of extensions between K and K(x), such 
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that each step is covered by one of the three above cases. At least one step 
will be covered by Case 2 or 3. Taking the uppermost step of this latter 
type, one sees immediately how to construct a derivation trivial on the 
bottom and nontrivial on top of the tower. 

Proposition 5.3. Given X and elements (x) = (xj,..., xn) in some extension 

field, assume that there exist n polynomials fi e X[X] such that: 

(i) fi(x) = 0, and 
(ii) det(dfi/dXj) # 0. 

Then (x) is separably algebraic over K. 

Proof. Let D be a derivation on X(x), trivial on X. Having f((x) = 0 we 
must have Dfi(x) = 0, whence the Dxt satisfy n linear equations such that the 
coefficient matrix has non-zero determinant. Hence Dxt = 0, so D is trivial 
on X(x). Hence X(x) is separable algebraic over X by Proposition 5.2. 

The following proposition will follow directly from Cases 1 and 2. 

Proposition 5.4. Let X = k(x) be a finitely generated extension of k. An 

element z of X is in Kpk if and only if every derivation D of K over k is 

such that Dz = 0. 

Proof If z is in Kpk, then it is obvious that every derivation D of X 
over k vanishes on z. Conversely, if z £ Kpk, then z is purely inseparable 
over Kpk, and by Case 3 of the extension theorem, we can find a derivation 
D trivial on Kpk such that Dz = 1. This derivation is at first defined on the 
field Kpk(z). One can extend it to X as follows. Suppose there is an element 
w e X such that w £ Kpk(z). Then wp e Kpk, and D vanishes on wp. We can 
then again apply Case 3 to extend D from Kpk(z) to Kpk(z, w). Proceeding 
stepwise, we finally reach X, thus proving our proposition. 

The derivations D of a field K form a vector space over K if we define zD 

for z e K by (zD)(x) = zDx. 

Let K be a finitely generated extension of /c, of dimension r over k. We 
denote by D the X-vector space of derivations D of X over k (derivations of 
X which are trivial on k). For each z e X, we have a pairing 

(D, z) h-» Dz 

of (£>, X) into X. Each element z of X gives therefore a X-linear functional 
of D. This functional is denoted by dz. We have 

d(yz) = y dz + z dy, 

d(y + z) = dy + dz. 

These linear functionals form a subspace $ of the dual space of 3), if we 
define y dz by (Z>, y dz) i—► yDz. 
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Proposition 5.5. Assume that K is a separably generated and finitely 
generated extension of k of transcendence degree r. Then the vector space 
X) (over K) of derivations of K over k has dimension r. Elements tl9..., tr 
of K from a separating transcendence base of K over k if and only if 
dtu ..., dtr form a basis of the dual space of X) over K. 

Proof. If ttr is a separating transcendence base for K over fc, then 
we can find derivations Dl9 ..., Dr of K over k such that Dttj = Sij9 by Cases 
1 and 2 of the extension theorem. Given D gX), let w, = Dt{. Then clearly 
D = Yj Dh and so the Z>, form a basis for X) over K, and the dt{ form the 
dual basis. Conversely, if dtl9 ..., dtr is a basis for 2F over K, and if K is not 
separably generated over k(t), then by Cases 2 and 3 we can find a derivation 
D which is trivial on k(t) but nontrivial on K. If Dx, ..., Dr is the dual basis 
of dti9 ..., dtr (so Ditj = Sy) then D, Dl9 ..., Dr would be linearly independent 
over K, contradicting the first part of the theorem. 

Corollary 5.6. Let K be a finitely generated and separably generated 
extension of k. Let z be an element of K transcendental over k. Then K is 
separable over k(z) if and only if there exists a derivation D of K over k 
such that Dz # 0. 

Proof If K is separable over k(z), then z can be completed to a separat¬ 
ing base of K over k and we can apply the proposition. If Dz ^ 0, then 
dz # 0, and we can complete dz to a basis of over K. Again from the 
proposition, it follows that K will be separable over k(z). 

Note. Here we have discussed derivations of fields. For derivations in 
the context of rings and modules, see Chapter XVI. 

As an application, we prove: 

Theorem 5.7. (Zariski-Matsusaka). Let K be a finitely generated sepa¬ 
rable extension of a field k. Let y, z e K and z Kpk if the characteristic 
is p > 0. Let u be transcendental over K, and put ku = k(u\ Ku = K(u). 

(a) For all except possibly one value of c e k, K is a separable extension of 
k(y + cz). Furthermore, Ku is separable over ku(y -f uz). 

(b) Assume that K is regular over k, and that its transcendence degree is at 
least 2. Then for all but a finite number of elements c e k, K is 
a regular extension of k(y + cz). Furthermore, Ku is regular over 
ku(y + uz). 

Proof. We shall use throughout the fact that a subfield of a finitely 
generated extension is also finitely generated (see Exercise 4). 

If w is an element of X, and if there exists a derivation D of K over 
k such that Dw # 0, then K is separable over k(w), by Corollary 5.6. Also 
by Corollary 5.6, there exists D such that Dz # 0. Then for all elements 
c e k, except possibly one, we have D(y -f cz) = Dy + cDz # 0. Also we 
may extend D to Ku over ku by putting Du = 0, and then one sees that 
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D(y + uz)= Dy + uDz # 0, so X is separable over k(y + cz) except possibly 
for one value of c, and Ku is separable over ku(y + uz\ In what follows, 
we assume that the constants cl9 c2, ... are different from the exceptional 
constant, and hence that X is separable over k(y + ctz) for i = 1, 2. 

Assume next that X is regular over k and that the transcendence degree 
is at least 2. Let £f = k(y + cfz) (i = 1, 2) and let E[ be the algebraic closure 
of Et in X. We must show that E[ = £, for all but a finite number of 
constants. Note that k(y9 z) = ElE2 is the compositum of E{ and El9 and 
that fc(y, z) has transcendence degree 2 over k. Hence and E'2 are free 
over k. Being subfields of a regular extension of k9 they are regular over fc, 
and are therefore linearly disjoint by Theorem 4.12. 

X 

By construction, E[ and E2 are finite separable algebraic extensions of Ex 
and E2 respectively. Let L be the separable algebraic closure of k(y, z) in X. 
There is only a finite number of intermediate fields between k(y9 z) and L. 
Furthermore, by Proposition 3.1 the fields E[(y,z) and E2(y,z) are linearly 
disjoint over k(y9 z). Let c{ range over the finite number of constants which 
will exhaust the intermediate extensions between L and fc(y, z) obtainable by 
lifting over k(y9 z) a field of type E\. If c2 is now chosen different from any 
one of these constants cl9 then the only way in which the condition of linear 
disjointness mentioned above can be compatible with our choice of c2 is that 
E2(y9 z) = k(y9 z), i.e. that E2 = k(y + c2z). This means that k(y + c2z) is 
algebraically closed in X, and hence that K is regular over k(y + c2z). 

As for KU9 let ui9 u2,... be infinitely many elements algebraically indepen¬ 
dent over K. Let k! = k{ul9 u2,...) and K' = K(ul9 u2,...) be the fields 
obtained by adjoining these elements to k and X respectively. By what has 
already been proved, we know that X' is regular over k'(u 4- ufz) for all 
but a finite number of integers i9 say for i = 1. Our assertion (a) is then 
a consequence of Corollary 4.14. This concludes the proof of Theorem 5.7. 
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Theorem 5.8. Let K = fc(x1?...,xn) = k(x) be a finitely generated regular 
extension of a field k. Let ul9...9un be algebraically independent over 
k(x). Let 

1 = “iXi + *•* + unx„ 

and let ku = k(ul9..., un, un+1). Then ku(x) is separable over ku9 and if the 
transcendence degree of k(x) over k is ^ 2, then ku(x) is regular over ku. 

Proof By the separability of k(x) over /c, some xf does not lie in Kpk, 
say xn $ Kpk. Then we take 

y = uixl + ••• + uw_1xn_1 and z = x„, 

so that un+1 = y + unz, and we apply Theorem 5.7 to conclude the proof. 

Remark. In the geometric language of the next chapter, Theorem 5.8 
asserts that the intersection of a /c-variety with a generic hyperplane 

Ui Xt H-+ unXn — un+1 = 0 

is a ku-variety, if the dimension of the /c-variety is ^2. In any case, the 
extension ku(x) is separable over ku. 

EXERCISES 

1. Prove that the complex numbers have infinitely many automorphisms. [Hint: 
Use transcendence bases.] Describe all automorphisms and their cardinality. 

2. A subfield k of a field K is said to be algebraically closed in K if every element of 
K which is algebraic over k is contained in k. Prove: If k is algebraically closed 
in K, and K, L are free over k, and L is separable over k or K is separable over 
/c, then L is algebraically closed in KL. 

3. Let k cz E c K be extension fields. Show that 

tr. deg. (K/k) = tr. deg. (K/E) + tr. deg. (E/k). 

If {xj is a transcendence base of E/k, and {yy} is a transcendence base of K/E, 
then {xf, yf is a transcendence base of K//t. 

4. Let /C//c be a finitely generated extension, and let K => E => k be a subextension. 
Show that £//c is finitely generated. 

5. Let k be a field and k(xl9..., x„) = k(x) a finite separable extension. Let 
be algebraically independent over k. Let 

w = ulxl + •• • -I- unxn. 

Let ku = k(ul9..., u„). Show that ku(w) = ku(x). 
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6. Let k(x) = k{xx„) be a separable extension of transcendence degree r ^ 1. 
Let u0;{i = 1,..., r; j = 1,..., n) be algebraically independent over k{x). Let 

n 

y- = X uaxi- 
i-1 

Let ku = k(uu)MtJ. 
(a) Show that fctt(x) is separable algebraic over k(yl9..., yr). 

(b) Show that there exists a polynomial P(u)e/c[u] having the following prop¬ 
erty. Let (c) = (c^ be elements of k such that P(c) # 0. Let 

n 

y'i = X caxi- 
7=1 

Then k(x) i^s separable algebraic over k(y'). 

7. Let He a field and k[xlfx„] = Ha finitely generated entire ring over k with 
quotient field /c(x). Let L be a finite extension of k(x). Let / be the integral 
closure of R in L. Show that I is a finite P-module. [Use Noether normalization, 
and deal with the inseparability problem and the separable case in two steps.] 

8. Let D be a derivation of a field K. Then Dn: K -+ K is a linear map. Let 
Pn = Ker D", so Pn is an additive subgroup of K. An element xe K is called a 
logarithmic derivative (in K) if there exists y e K such that x = Dy/y. Prove: 

(a) An element xe K is the logarithmic derivative of an element y e Pn but 
y $ (n > 0) if and only if 

(D + x)"(l) = 0 and (D + x)"-1(l) ^ 0. 

(b) Assume that K = (J Pn, i.e. given xe K then x e Pn for some n > 0. Let F be 

a subfield of K such that DF a F. Prove that x is a logarithmic derivative in 
F if and only if x is a logarithmic derivative in K. [Hint: If x = Dy/y then 
(D ■f x) = y~lD o y and conversely.] 

9. Let He a field of characteristic 0, and let zlf ..., zr be algebraically independent 
over k. Let (e^), i = 1, ..., m and j = 1, ..., r be a matrix of integers with r ^ m, 
and assume that this matrix has rank m. Let 

vvf = z\il • • • zerir for i = 1,..., m. 

Show that Wj, ..., wm are algebraically independent over k. [Hint: Consider the 
X-homomorphism mapping the K-space of derivations of K/k into K{r) given by 

D\-*(Dzl/zl,..., Dzr/zr\ 

and derive a linear condition for those D vanishing on k(wl9..., wm).] 

10. Let k, (z) be as in Exercise 9. Show that if P is a rational function then 

d(P(z)) = grad P(z)-dz, 

using vector notation, i.e. dz = (dzl9..., dzr) and grad P = {DlP9..., DrP). Define 
d log P and express it in terms of coordinates. If P, Q are rational functions in 
k(z) show that 

d log(PQ) = d log P + d log Q. 





CHAPTER IX_ 
Algebraic Spaces 

This chapter gives the basic results concerning solutions of polynomial equa¬ 
tions in several variables over a field k. First it will be proved that if such 
equations have a common zero in some field, then they have a common zero in 
the algebraic closure of k, and such a zero can be obtained by the process known 
as specialization. However, it is useful to deal with transcendental extensions 
of k as well. Indeed, if p is a prime ideal in k[X] = k[X,,. . . , Xn], then 
k[X]/p is a finitely generated ring over k, and the images x( of Xt in this ring 
may be transcendental over k, so we are led to consider such rings. 

Even if we want to deal only with polynomial equations over a field, we are 
led in a natural way to deal with equations over the integers Z. Indeed, if the 
equations are homogeneous in the variables, then we shall prove in §3 and §4 
that there are universal polynomials in their coefficients which determine whether 
these equations have a common zero or not. “Universal” means that the coef¬ 
ficients are integers, and any given special case comes from specializing these 
universal polynomials to the special case. 

Being led to consider polynomial equations over Z, we then consider ideals 
a in Z[X]. The zeros of such an ideal form what is called an algebraic space. If 
p is a prime ideal, the zeros of p form what is called an arithmetic variety. We 
shall meet the first example in the discussion of elimination theory, for which 
I follow van der Waerden’s treatment in the first two editions of his Moderne 
Algebra, Chapter XI. 

However, when taking the polynomial ring Z[X]/a for some ideal a, it usually 
happens that such a factor ring has divisors of zero, or even nilpotent elements. 
Thus it is also natural to consider arbitrary commutative rings, and to lay the 
foundations of algebraic geometry over arbitrary commutative rings as did Groth- 
endieck. We give some basic definitions for this purpose in §5. Whereas the 
present chapter gives the flavor of algebraic geometry dealing with specific 
polynomial ideals, the next chapter gives the flavor of geometry developing from 
commutative algebra, and its systematic application to the more general cases 
just mentioned. 

377 
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The present chapter and the next will also serve the purpose of giving the 
reader an introduction to books on algebraic geometry, notably Hartshorne’s 
systematic basic account. For instance, I have included those results which are 
needed for Hartshorne’s Chapter I and II. 

§1. HILBERT'S NULLSTELLENSATZ 

The Nullstellensatz has to do with a special case of the extension theorem 
for homomorphisms, applied to finitely generated rings over fields. 

Theorem 1.1. Let k be a field, and let k[x] = k\_xu ..., x J be a finitely 
generated ring over k. Let <p: k -* L be an embedding of k into an alge¬ 
braically closed field L. Then there exists an extension of (p to a homo¬ 
morphism of k[x] into L. 

Proof. Let 5R be a maximal ideal of /c[x]. Let o be the canonical homo¬ 
morphism o: /c[x] -► /c[x]/9W. Then ak[ox1,..., axj is a field, and is in fact 
an extension field of ok. If we can prove our theorem when the finitely generated 
ring is in fact a field, then we apply (p © o~1 on ok and extend this to a homo¬ 
morphism of ok[oxi9 ..., ox J into L to get what we want. 

Without loss of generality, we therefore assume that /c[x] is a field. If it is 
algebraic over /c, we are done (by the known result for algebraic extensions). 
Otherwise, let tl9...9tr be a transcendence basis, r ^ 1. Without loss of 
generality, we may assume that (p is the identity on k. Each element xl9..., xn 
is algebraic over k(tl9..., tr). If we multiply the irreducible polynomial 
Irr(x,, k(t), X) by a suitable non-zero element of k[r], then we get a polynomial 
all of whose coefficients lie in k[t]. Let aft\ ..., an(t) be the set of the leading 
coefficients of these polynomials, and let a(t) be their product, 

a(t) = at(t) ■ ■ ■ a„(t). 

Since a(t) ± 0, there exist elements t[,... , t'r e ka such that a(t') =£ 0, and 
hence aft1) =£ 0 for any i. Each xt is integral over the ring 

Consider the homomorphism 

(p:kltu...9tr] -► ka 

such that (p is the identity on k, and (p(tj) = t). Let p be its kernel. Then a(t) $ p. 



IX, §1 HILBERT’S NULLSTELLENSATZ 379 

Our homomorphism cp extends uniquely to the local ring k\t\ and by the 
preceding remarks, it extends to a homomorphism of 

k[_t"\p[_x x, • • • > 

into ka, using Proposition 3.1 of Chapter VII. This proves what we wanted. 

Corollary 1.2. Let k be a field and k[_xl9..., x„] a finitely generated ex¬ 
tension ring of k. If /c[x] is a field, then /c[x] is algebraic over k. 

Proof. All homomorphisms of a field are isomorphisms (onto the image), 
and there exists a homomorphism of /c[x] over k into the algebraic closure of k. 

Corollary 1.3. Let k\_xl9..., xj be a finitely generated entire ring over a 
field k, and let yl9..., ym be non-zero elements of this ring. Then there exists 
a homomorphism 

i/j : /c[x] /ca 

over k such that ^(yfi ^ 0 for all j = 1, ..., m. 

Proof. Consider the ring fc[xls..., x„, yfl,..., y~*] and apply the 
theorem to this ring. 

Let S be a set of polynomials in the polynomial ring /c[X l9 ..., Xf\ in n 
variables. Let L be an extension field of k. By a zero of S in L one means an 
n-tuple of elements (cl9..., cn) in L such that 

f (c!,..., cn) = 0 

for all feS. If S consists of one polynomial/, then we also say that (c) is a zero 
of/. The set of all zeros of S is called an algebraic set in L (or more accurately 
in L(n)). Let a be the ideal generated by all elements of S. Since S c= a it is clear 
that every zero of a is also a zero of S. However, the converse obviously holds, 
namely every zero of S is also a zero of a because every element of a is of type 

gi(X)UX) + • • • + gm(X)fm(X) 

with f e S and g( e /c[A"]. Thus when considering zeros of a set S, we may 
just consider zeros of an ideal. We note parenthetically that every ideal is 
finitely generated, and so every algebraic set is the set of zeros of a finite number 
of polynomials. As another corollary of Theorem 1.1, we get: 

Theorem 1.4. Let a be an ideal in /c[A"] = k[Xl9...,XJ. Then either 

a = /cE*] or a has a zero in /ca. 
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Proof. Suppose a # k[X]. Then a is contained in some maximal ideal 
m, and /c[A"]/m is a field, which is a finitely generated extension of /c, because 
it is generated by the images of Xl9...9 mod m. By Corollary 2.2, this 
field is algebraic over /c, and can therefore be embedded in the algebraic closure 
/ca. The homomorphism on k\_X~\ obtained by the composition of the canonical 
map mod m, followed by this embedded gives the desired zero of a, and con¬ 
cludes the proof of the theorem. 

In §3 we shall consider conditions on a family of polynomials to have a 
common zero. Theorem 1.4 implies that if they have a common zero in some 
field, then they have a common zero in the algebraic closure of the field generated 
by their coefficients over the prime field. 

Theorem 1.5. (Hilbert’s Nullstellensatz). Let a be an ideal in k\X]. Let 

fbe a polynomial in k[X~\ such that f{c) = 0 for every zero (c) = (cl9..., cn) 

of a in ka. Then there exists an integer m > 0 such that fm e a. 

Proof. We may assume that / ^ 0. We use the Rabinowitsch trick of 
introducing a new variable Y, and of considering the ideal a' generated by 
a and 1 — Yf in k[X, Y]. By Theorem 1.4, and the current assumption, the 
ideal a' must be the whole polynomial ring k[X, Y], so there exist polynomials 
gi e k[X, Y] and h( e a such that 

1 - 0oO — Yf) + 01^1 + * • • + QrK- 

We substitute / -1 for Y and multiply by an appropriate power fm of / to 
clear denominators on the right-hand side. This concludes the proof. 

For questions involving how effective the Nullstellensatz can be made, see 
the following references also related to the discussion of elimination theory 
discussed later in this chapter. 
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§2. ALGEBRAIC SETS, SPACES AND VARIETIES 

We shall make some very elementary remarks on algebraic sets. Let k be a 
field, and let A be an algebraic set of zeros in some fixed algebraically closed 
extension field of k. The set of all polynomials / e k[Xl9..., Xf\ such that 
/(x) = 0 for all (x) e A is obviously an ideal a in /c[Z], and is determined by 
A. We shall call it the ideal belonging to /l, or say that it is associated with A. 

If A is the set of zeros of a set S of polynomials, then Sea, but a may be bigger 
than S. On the other hand, we observe that A is also the set of zeros of a. 

Let A, B be algebraic sets, and a, b their associated ideals. Then it is clear 
that A cz B if and only if a => b. Hence A = B if and only if a = b. This has an 
important consequence. Since the polynomial ring /c[A"] is Noetherian, it 
follows that algebraic sets satisfy the dual property, namely every descending 
sequence of algebraic sets 

Ax A2 => • • • 

must be such that Am = Am+l = • • • for some integer m, i.e. all Av are equal for 
v ^ m. Furthermore, dually to another property characterizing the Noetherian 
condition, we conclude that every non-empty set of algebraic sets contains a 
minimal element. 

Theorem 2.1. The finite union and the finite intersection of algebraic sets 

are algebraic sets. If A, B are the algebraic sets of zeros of ideals a, b, respec¬ 

tively, then A u B is the set of zeros of a nb and A n B is the set of zeros of 

(a, b). 

Proof. We first consider A u B. Let {x) e A kj B. Then (x) is a zero 
of a n b. Conversely, let (x) be a zero of a n b, and suppose (x) £ A. There 
exists a polynomial / e a such that /(x) / 0. But ab c= a n b and hence 
(fg)(x) = 0 for all g eb9 whence g(x) = 0 for all g eb. Hence (x) lies in £, and 
A u B is an algebraic set of zeros of a n b. 

To prove that A n B is an algebraic set, let (x) e A n B. Then (x) is a zero 
of (a, b). Conversely, let (x) be a zero of (a, b). Then obviously (x) e A n £, as 
desired. This proves our theorem. 

An algebraic set V is called A>irreducible if it cannot be expressed as a union 
V = A u B of algebraic sets A, B with A, B distinct from V. We also say ir¬ 
reducible instead of A>irreducible. 

Theorem 2.2. Let A be an algebraic set. 

(i) Then A can be expressed as a finite union of irreducible algebraic sets 

A = V\U ... UVr. 

(ii) If there is no inclusion relation among the Vit i.e. ifVi^t Vj for i =£ j, then 

the representation is unique. 
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(iii) Let W, Vlf..., Vr be irreducible algebraic sets such that 

W C Vi U . . . U Vr. 

Then W C V- for some i. 

Proof. We first show existence. Suppose the set of algebraic sets which 
cannot be represented as a finite union of irreducible ones is not empty. Let 
V be a minimal element in its. Then V cannot be irreducible, and we can write 
V — Akj B where A, B are algebraic sets, but A # V and B # V. Since each 
one of A, B is strictly smaller than V, we can express A, B as finite unions of 
irreducible algebraic sets, and thus get an expression for V, contradiction. 

The uniqueness will follow from (iii), which we prove next. Let W be con¬ 
tained in the union Vj U ... U Vr. Then 

w = (w n vi) u ... u (w n vr). 
Since each W D Vt is an algebraic set, by the irreducibility of W we must have 
W = W fl Vt for some i. Hence W C Vt for some i, thus proving (iii). 

Now to prove (ii), apply (iii) to each Wj. Then for each j there is some i such 
that Wj C Vt. Similarly for each i there exists v such that V- C Wv. Since there 
is no inclusion relation among the Wf s, we must have Wj = V- = Wv. This proves 
that each Wj appears among the VJ’s and each VJ appears among the Wj's, and 
proves the uniqueness of the representation. It also concludes the proof of Theo¬ 
rem 2.2. 

Theorem 2.3 An algebraic set is irreducible if and only if its associated ideal 

is prime. 

Proof. Let V be irreducible and let p be its associated ideal. If p is not 
prime, we can find two polynomials /, g e k[X] such that/^p , g £ p, but 
fg e p. Let a = (p,/) and b = (p, g). Let A be the algebraic set of zeros of a, 
and B the algebraic set of zeros of b. Then A C V, A =£ V and B C V, B =£ V. 

Furthermore A U B = V. Indeed, A U B C V trivially. Conversely, let (jc) e V. 

Then (fg)(x) = 0 implies f(x) or c?(jc) = 0. Hence (x) e A or (x) e B, proving 
V = A U B9 and V is not irreducible. Conversely, let V be the algebraic set 
of zeros of a prime ideal p. Suppose V = A U B with A =£ V and B =£ V. 

Let a, b be the ideals associated with A and B respectively. There exist poly¬ 
nomials /6Q,/^p and g e b, g £ p. But fg vanishes on A U B and hence lies 
in p, contradiction which proves the theorem. 

Warning. Given a field k and a prime ideal p in k[X\, it may be that the 
ideal generated by p in k*[X] is not prime, and the algebraic set defined over ka 
by pk*[X] has more than one component, and so is not irreducible. Hence the 
prefix referring to k is really necessary. 

It is also useful to extend the terminology of algebraic sets as follows. Given 
an ideal a C k[X], to each field K containing k we can associate to a the set 
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3la(K) consisting of the zeros of a in K. Thus 3£Q is an association 

%a : K <%a(K) C l6n\ 

We shall speak of 3£Q itself as an algebraic space, so that 3tQ is not a set, but 
to each field K associates the set 3la{K). Thus 3tQ is a functor from extensions 
K of k to sets (functorial with respect to field isomorphisms). By a k-variety we 
mean the algebraic space associated with a prime ideal p. 

The notion of associated ideal applies also to such 3ta, and the associated 
ideal of 3iQ is also rad(a). We shall omit the subscript a and write simply 3£ for 
this generalized notion of algebraic space. Of course we have 

Of —Of 
^ rad(a)* 

We say that 3£Q(AT) is the set of points of 3£a in K. By the Hilbert Nullstellensatz, 
Theorem 1.1, it follows that if K C K' are two algebraically closed fields 
containing k, then the ideals associated with 3£a(/0 and 3£Q(K') are equal to each 
other, and also equal to rad(a). Thus the smallest algebraically closed field ka 
containing k already determines these ideals. However, it is also useful to consider 
larger fields which contain transcendental elements, as we shall see. 

As another example, consider the polynomial ring k[Xl9. . . , Xn] = k[X]. 

Let \n denote the algebraic space associated with the zero ideal. Then An 

is called affine n-space. Let ^ be a field containing k. For each n-tuple 
(Cj,. . . , cn) E K(n) we get a homomorphism 

<sp: k[Xl9...9Xn]-*K 

such that <p(Xi) = c{ for all /. Thus points in An(K) correspond bijectively to 
homomorphisms of k(X) into K. 

More generally, let V be a k-variety with associated prime ideal p. Then 
k[X]/p is entire. Denote by £ the image ofX, under the canonical homomorphism 
k[X] —» k[X]/p. We call (0 the generic point of V over k. On the other hand, 
let (jc) be a point of V in some field K. Then p vanishes on (at), so the homomor¬ 
phism <p : k[X] —» k[x] sending X{ i-> xt factors through k[X]/p = k[g], whence 
we obtain a natural homomorphism k[Q —» k[x]. If this homomorphism is an 
isomorphism, then we call (.x) a generic point of V in K. 

Given two points (x) e A"^) and (x') e An(K'), we say that (jc') is a 
specialization of (jc) (over k) if the map xt i-> x\ is induced by a homomorphism 
k[x] k[x']. From the definition of a generic point of a variety, it is then 
immediate that: 

A variety V is the set of specializations of its generic point, or of a generic 

point. 

In other words, V(K) is the set of specializations of (£) in K for every field K 

containing k. 

Let us look at the converse construction of algebraic sets. Let (x) = 
(jcj, . . . , xn) be an n-tuple with coordinates jc, e K for some extension field 
K of k. Let p be the ideal in k[X] consisting of all polynomials f(X) such that 
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f(x) = 0. We call p the ideal vanishing on (jc). Then pis prime, because if 
fg e p so f(x)g(x) = 0, then fep or g ep since K has no divisors of 0. Hence 
3£p is a ^-variety V, and (jt) is a generic point of V over k because k[X]/p~ k[x]. 

For future use, we state the next result for the polynomial ring over a factorial 
ring rather than over a field. 

Theorem 2.4. LetR be a factorial ring, and letWl,...,Wmbem independent 

variables over its quotient field k. Let k(wlf ..., wm) be an extension of tran¬ 

scendence degree m — 1. Then the ideal in R[W] vanishing on (w) is principal. 

Proof. By hypothesis there is some polynomial P(W) e /?[W] of degree 
^ 1 vanishing on (w), and after taking an irreducible factor we may assume 
that this polynomial is irreducible, and so is a prime element in the factorial ring 
R[W]. Let G(W) e R[W] vanish on (w). To prove that P divides G, after selecting 
some irreducible factor of G vanishing on (w) if necessary, we may assume 
without loss of generality that G is a prime element in R[W]. One of the variables 
Wt occurs in P(W), say Wm, so that wm is algebraic over k(wu . . . , wm_,). Then 
(w1?. . ., wm_!) are algebraically independent, and hence Wm also occurs in 
G. Furthermore, P(wx,..., vvw_j, Wm) is irreducible as a polynomial in 
fc(wj,..., )[Wm] by the Gauss lemma as in Chapter IV, Theorem 2.3. 
Hence there exists a polynomial H(Wm) e k(wl9. . . , wm_j)[Wm] such that 

G(W) = H(WJP(W). 

Let R' = ^[wj,..., wm_,]. Then P, G have content 1 as polynomials in 
R'[Wm]. By Chapter IV Corollary 2.2 we conclude that H e R'[Wm] /?[W], 
which proves Theorem 2.4. 

Next we consider homogeneous ideals and projective space. A polynomial 
f(X) e k[X] can be written as a linear combination 

f(X) = 2 c{v)Mw(X) 

with monomials M(l/)(X) = X\{ • • • Xfnn and c(v) e k. We denote the degree of 
M{v) by 

| v\ = deg M(v) = 2 v,-. 

If in this expression for / the degrees of the monomials XSv) are all the same 
(whenever the coefficient c{v) is =£ 0), then we say that/is a form, or also that 
/is a homogeneous (of that degree). An arbitrary polynomial f(X) in K[X] can 
also be written 

f(X) = 2fw(X), 

where each f(d) is a form of degree d (which may be 0). We call f{d) the 
homogeneous part of /of degree d. 

An ideal a of k[X] is called homogeneous if whenever / e a then each 
homogeneous part/^ also lies in a. 
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Proposition 2.5. An ideal a is homogeneous if and only if a has a set of 

generators over k[X] consisting of forms. 

Proof. Suppose a is homogeneous and that /r are generators. By 
hypothesis, for each integer d ^ 0 the homogeneous components fW also lie in 
a, and the set of such fW (for all i, d) form a set of homogeneous generators. 
Conversely, let/be a homogeneous element in a and let g e K[X] be arbitrary. 
For each d, g(d)f lies in a, and g(d)f is homogeneous, so all the homogeneous 
components of gf also lie in a. Applying this remark to the case when / ranges 
over a set of homogeneous generators for a shows that a is homogeneous, and 
concludes the proof of the proposition. 

An algebraic space is called homogeneous if for every point (jc) e 3£ and 
t transcencental over k(x), the point (tx) also lies in 3£. If t, u are transcendental 
over A(jc), then there is an isomorphism 

k[x, t] ■—> k[x, u] 

which sends t on u and restricts to the identity on k[x]9 so to verify the above 
condition, it suffices to verify it for some transcendental t over k(x). 

Proposition 2.6. An algebraic space 3£ is homogeneous if and only if its 

associated ideal a is homogeneous. 

Proof. Suppose 3£ is homogeneous. Let f(X) e k[X] vanish on 3£. For each 
(x) e 31 and t transcendental over k(x) we have 

0 = f{x) =f(tx) = 2 tdf(d)(x). 
d 

Therefore /(J)(jc) = 0 for all d, whence/^ e a for all d. Hence a is homogeneous. 
Conversely, suppose a homogeneous. By the Hilbert Nullstellensatz, we know 
that 3£ consists of the zeros of a, and hence consists of the zeros of a set of 
homogeneous generators for a. But if/is one of those homogeneous generators 
of degree d, and (jc) is a point of 3?, then for t transcendental over k(x) we have 

0 =/(*) = tdf(x) =/(«), 

so (tx) is also a zero of a. Hence 3£ is homogeneous, thus proving the proposition. 

Proposition 2.7. Let 3£ be a homogeneous algebraic space. Then each irre¬ 

ducible component V of % is also homogeneous. 

Proof. Let V = Vl9. . ., Vr be the irreducible components of S£, without 
inclusion relation. By Remark 3.3 we know that Vx <JL V2 U . . . U Vr, so there 
is a point (jc) e Vj such that (jc) ^ Vx for i = 2,... , r. By hypothesis, for t transcen¬ 
dental over k(x) it follows that (tx) e 3£ so (tx) e Vt for some i. Specializing to 
t = 1, we conclude that (jc) e VJ, so / = 1, which proves that Vi is homoge¬ 
neous, as was to be shown. 

Let V be a variety defined over A: by a prime ideal p in k[X]. Let (jc) be a 
generic point of V over k. We say that (jc) is homogeneous (over k) if for t 
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transcendental over /:(*), the point (tx) is also a point of V, or in other words, 
(tx) is a specialization of (x). If this is the case, then we have an isomorphism 

k[xl9.. •, xn] « k[txi,..., txn], 

which is the identity on k and sends jq on txr It then follows from the preceding 
propositions that the following conditions are equivalent for a variety V over k: 

V is homogeneous. 
The prime ideal ofV in k[X] is homogeneous. 
A generic point of V over k is homogeneous. 

A homogeneous ideal always has a zero, namely the origin (0), which will 
be called the trivial zero. We shall want to know when a homogeneous algebraic 
set has a non-trivial zero (in some algebraically closed field). For this we introduce 
the terminology of projective space as follows. Let (jt) be some point in An and 
A an element of some field containing k(x). Then we denote by (Ajc) the point 
(Ajcj, . . . , Ajc„). Two points (jc), (y) e An(K) for some field K are called equivalent 
if not all their coordinates are 0, and there exists some element A e K, A =£ 0, 
such that (Ajc) = (y). The equivalence classes of such points in An(K) are called 
the points of projective space in K. We denote this projective space by P*"1, 
and the set of points of projective space in K by P/I_ 1 (AT). We define an algebraic 
space in projective space to be the non-trivial zeros of a homogeneous ideal, 
with two zeros identified if they differ by a common non-zero factor. 

Algebraic spaces over rings 

As we shall see in the next section, it is not sufficient to look only at ideals 
in k[X] for some field k. Sometimes, even often, one wants to deal with polynomial 
equations over the integers Z, for several reasons. In the example of the next 
sections, we shall find universal conditions over Z on the coefficients of a system 
of forms so that these forms have a non-trivial common zero. Furthermore, in 
number theory—diophantine questions—one wants to consider systems of equa¬ 
tions with integer coefficients, and to determine solutions of these equations in 
the integers or in the rational numbers, or solutions obtained by reducing mod 
p for a prime p. Thus one is led to extend the notions of algebraic space and 
variety as follows. Even though the applications of the next section will be over 
Z, we shall now give general definitions over an arbitrary commutative ring R. 

Let f(X) e R[X] = R[Xj,..., Xn] be a polynomial with coefficients in R. 
Let R A be an /^-algebra, by which for the rest of this chapter we mean a 
homomorphism of commutative rings. We obtain a corresponding homomorphism 

R[X] A[X] 

on the polynomial rings, denoted by/ fA whereby the coefficients of fA are 
the images of the coefficients of /under the homomorphism R A. By a zero 
of/ in A we mean a zero offA in A. Similarly, let S be a set of polynomials in 
R[X]. By a zero of S in A we mean a common zero in A of all polynomials 
/ e S. Let a be the ideal generated by S in [X]. Then a zero of S in A is also 
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a zero of a in A. We denote the set of zeros of S in A by 5(A), so that we have 

%S(A) = 2£fl(A). 

We call 2£q(A) an algebraic set over R. Thus we have an association 

2fl: A 2£fl(A) 

which to each /^-algebra associates the set of zeros of a in that algebra. We note 
that /^-algebras form a category, whereby a morphism is a ring homomorphism 
<p:A-+ A' making the following diagram commutative: 

R 

A 

<P 

A' 

Then it is immediately verified that 3£a is a functor from the category of R- 
algebras to the category of sets. Again we call 3£a an algebraic space over R. 

If R is Noetherian, then R[X] is also Noetherian (Chapter IV, Theorem 4.1), 
and so if a is an ideal, then there is always some finite set of polynomials S 
generating the ideal, so = 2£a. 

The notion of radical of a is again defined as the set of polynomials 
h e /?[X] such that hN Ea for some positive integer A. Then the following state¬ 
ment is immediate: 

Suppose that R is entire. Then for every R-algebra R K with a field K, we 

have 

*a(K) = ^rad (a)W- 

We can define affine space An over R. Its points consist of all n-tuples 
= (x) with Jr, in some /^-algebra A. Thus A* is again an association 

A A"(A) 

from /^-algebras to sets of points. Such points are in bijection with 
homormorphisms 

R[X] -> A 

from the polynomial ring over R into A. In the next section we shall limit ourselves 
to the case when A = K is a field, and we shall consider only the functor 
K i-» An(K) for fields K. Furthermore, we shall deal especially with the case 
when R = Z, so Z has a unique homomorphism into a field K. Thus a field K 
can always be viewed as a Z-algebra. 

Suppose finally that R is entire (for simplicity). We can also consider projective 
space over R. Let a be an ideal in [X]. We define a to be homogeneous just as 
before. Then a homogeneous ideal in R[X] can be viewed as defining an algebraic 
subset in projective space Pn(K) for each field K (as an /^-algebra). If R = Z, 
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then a defines an algebraic subset in P'I(Ar) for every field K. Similarly, one can 
define the notion of a homogeneous algebraic space over R, and over the 
integers Z a fortiori. Propositions 2.6 and 2.7 and their proofs are also valid in 
this more general case, viewing = 3£Q as a functor from fields K to sets P'XA'). 

If a is a prime ideal p, then we call 3£p an ^-variety V. If R is Noetherian, 
so R[X] is Noetherian, it follows as before that an algebraic space 3£ over R is 
a finite union of R-varieties without inclusion relations. We shall carry this out 
in §5, in the very general context of commutative rings. Just as we did over a 
field, we may form the factor ring Z[X]/p and the image (jc) of (X) in this factor 
ring is called a generic point of V. 

§3. PROJECTIONS AND ELIMINATION 

Let (W) = (Wj,..., Wm) and (X) = (Xu ... , Xn) be two sets of independent 
variables. Then ideals in k[W, X] define algebraic spaces in the product space 
Am+n. Let a be an ideal in k[W, X]. Let = a fl k[W]. Let be the algebraic 
space of zeros of a and let <3LX be the algebraic space of zeros of a,. We have 
the projection 

pr:3£m+"-+ or pr: Am+n Am 

which maps a point (w, jc) to its first set of coordinates (w). It is clear that 
pr C ,. In general it is not true that pr 2E = 3^. For example, the ideal p gen¬ 
erated by the single polynomial W\ - W2X{ = 0 is prime. Its intersection with 
k[Wx, W2l is the zero ideal. But it is not true that every point in the affine 
(Wj, W2)-space is the projection of a point in the variety 3£p. For instance, the 
point (1, 0) is not the projection of any zero of p. One says in such a case that 
the projection is incomplete. We shall now consider a situation when such a 
phenomenon does not occur. 

In the first place, let p be a prime ideal in k[W9 X] and let V be its variety 
of zeros. Let (w, x) be a generic point of V. Let pj = p fl k[W]. Then (w) is a 
generic point of the variety Vj which is the algebraic space zeros of p{. This is 
immediate from the canonical injective homomorphism 

k[W]/Pl -> k[W, X]/p. 

Thus the generic point (w) of is the projection of the generic point (w, x) of 
V. The question is whether a special point (w') of Vj is the projection of a point 
of V. 

In the subsequent applications, we shall consider ideals which are homo¬ 
geneous only in the X-variables, and similarly algebraic subsets which are homo¬ 
geneous in the second set of variables in An. 
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An ideal a in k[W, X] which is homogeneous in (X) defines an algebraic space 
in Am x P*-1. If V is an irreducible component of the algebraic set defined by 
a, then we may view V as a subvariety of Am x Pn_1. Let pbe the prime ideal 
associated with V. Then p is homogeneous in (X). Let px = p f| k[W]. We shall 
see that the situation of an incomplete projection mentioned previously is elim¬ 
inated when we deal with projective space. 

We can also consider the product Am x Pw, defined by the zero ideal over 
Z. For each field AT, the set of points of Am x P" in AT is Am(K) x Pn(K). An 
ideal a in Z[W, X], homogeneous in (X), defines an algebraic space 2£ = 2£Q in 
Am x P". We may form its projection 2tx on the first factor. This applies in 
particular when a is a prime ideal p, in which case we call 2tQ an arithmetic 
subvariety of Am x Pn. Its projection Vx is an arithmetic subvariety of Am, 
associated with the prime ideal px = pfl Z[W]. 

Theorem 3.1. Let (W) = (Wx,..., Wm) and (X) = (X,,..., Xn) be indepen¬ 

dent families of variables. Let p be a prime ideal in k[W, X] (resp. Z[W, X]) 
and assume p is homogeneous in (X). Let V be the corresponding irreducible 

algebraic space in Am x P*_1. Let px = pCI k[W] (resp. p D Z[W])y and let 

Vx be the projection of V on the first factor. Then Vj is the algebraic space 

of zeros of Pj in Am. 

Proof. Let V have generic point (w, x). We have to prove that every zero 
(w') of pj in a field is the projection of some zero (w', xf) of p such that not all 
the coordinates of (x') are equal to 0. By assumption, not all the coordinates of 
(jc) are equal to 0, since we viewed V as a subset of Am x Pn_1. For definiteness, 
say we are dealing with the case of a field k. By Chapter VII, Proposition 3.3, 
the homomorphism k[w] —» k[w'] can be extended to a place <p of k(wy x). 
By Proposition 3.4 of Chapter VII, there is some coordinate Xj such that 
ipixfxj) ± oo for all i = 1,...,«. We let x[ = <p(Xi/xj) for all i to conclude the 
proof. The proof is similar when dealing with algebraic spaces over Z, replacing 
k by Z. 

Remarks. Given the point (w') e A"1, the point (w', x') in Am x P*-1 may 
of course not lie in k(w'). The coordinates (*') could even be transcendental 
over k(x'). By any one of the forms of the Hilbert Nullstellensatz, say Corollary 
1.3 of Theorem 1.1, we do know that (jc') could be found algebraic over k(w'), 
however. In light of the various versions of the Nullstellensatz, if a set of forms 
has a non-trivial common zero in some field, then it has a non-trivial common 
zero in the algebraic closure of the field generated by the coefficients of the 
forms over the prime field. In a theorem such as Theorem 1.2 below, the conditions 
on the coefficients for the forms to have a non-trivial common zero (or a zero 
in projective space) are therefore also conditions for the forms to have such a 
zero in that algebraic closure. 

We shall apply Theorem 3.1 to show that given a finite family of homogeneous 
polynomials, the property that they have a non-trivial common zero in some 
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algebraically closed field can be expressed in terms of a finite number of universal 
polynomial equations in their coefficients. We make this more precise as follows. 

Consider a finite set of forms (/) = (/i,..., fr). Let dX9. . . , dr be their 
degrees. We assume d{ ^ 1 for i = 1,..., r. Each f can be written 

(1) A = 

where is a monomial in (X) of degree dh and is a coefficient. We 
shall say that (/) has a non-trivial zero (x) if (x) =£ (0) and (jc) = 0 for all i. 
We let (w) = (w)ybe the point obtained by arranging the coefficients w/<(v) of 
the forms in some definite order, and we consider this point as a point in some 
affine space Am, where m is the number of such coefficients. This integer m is 
determined by the given degrees dl9..., dr. In other words, given such degrees, 
the set of all forms (/) = (fl9... , fr) with these degrees is in bijection with 
the points of Am. 

Theorem 3.2. (Fundamental theorem of elimination theory.) Given 

degrees dx, ..., dr, the set of all forms (f\,, fr) in n variables having a 

non-trivial common zero is an algebraic subspace of Am over Z. 

Proof. Let (W) = (WiM) be a family of variables independent of (X). Let 
(F) = (Fj,. .., Fr) be the family of polynomials in Z[W9 X] given by 

(2) F,(W, X) = 2 WUv)M(v)(X) 

where M^V)(X) ranges over all monomials in (X) of degree di9 so (W) = (W)F. 

We call Fl9.. . , Fr generic forms. Let 

a = ideal in Z[W, X] generated by Fx,.. ., Fr. 

Then a is homogeneous in (X). Thus we are in the situation of Theorem 3.1, 
with a defining an algebraic space (2 in Am x P"-1. Note that (w) is a specialization 
of (W), or, as we also say, (/) is a specialization of (F). As in Theorem 3.1, 
let (2j be the projection of (2 on the first factor. Then directly from the definitions, 
(/) has a non-trivial zero if and only if (w)^ lies in dl9 so Theorem 3.2 is a 
special case of Theorem 3.1. 

Corollary 3.3. Let (/) be a family of n forms in ri variables, and assume 

that (w)j- is a generic point of Am, i.e. that the coefficients of these forms are 

algebraically independent. Then (/) does not have a non-trivial zero. 

Proof. There exists a specialization of (/) which has only the trivial zero, 
namely/,' = Xdx',... ,fn = Xdnn. 

Next we follow van der Waerden in showing that (2 and hence (2 x are irreducible. 

Theorem 3.4. The algebraic space (2 x of forms having a non-trivial common 

zero in Theorem 3.2 is actually a Z-variety, i.e. it is irreducible. The prime ideal 
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p in Z[W, X] associated with G consists of all polynomials G(W, X) e Z[W, X] 
swc/i rto for some index j there is an integer s ^ 0 satisfying 

(*)j XjG(W, X) = 0 mod (Fl9... 9 Fr); that is, X]G(W, X) e a. 

If relation (*) holds for one index j, then it holds for every j = 1, ..., n. (Of 

course, the integer s depends on j.) 

Proof. We construct a generic point of G. We select any one of the variables, 
say Xq9 and rewrite the forms Ft as follows: 

Fi(W, X) = FT + Z{X*j 

where Ff is the sum of all monomials except the monomial containing Xdi. 

The coefficients (W) are thereby split into two families, which we denote by (T) 
and (Z), where (Z) = (Zl9..., Zr) are the coefficients of (Xdf9. . . , Xqr)in 

(F{9... , Fr), and (T) is the remaining family of coefficients of Ff 9... 9 Ff. 

We have (W) = (Y, Z), and we may write the polynomials Ft in the form 

Fi(W9 X) = FfY, Z, X) = Ff(Y, X) + ZtXdf. 

Corresponding to the variables (T, X) we choose quantities (y, x) algebraically 
independent over Z. We let 

(3) Zj = -Ff(y, x)/xdq‘ = —Ff(y, x/xq). 

We shall prove that (y, z, x) is a generic point of G. 
From our construction, it is immediately clear that Ffy, z, x) = 0 for all /, 

and consequently if G(W, X) e Z[W, X] satisfies (*), then G(y, z, x) = 0. 
Conversely, let G(Y, Z, X) e Z[T, Z, X] = Z[W, X] satisfy G(y, z, x) = 0. 

From Taylor’s formula in several variables we obtain 

G(Y, Z, X) = G(Y,..., —Ff/Xq‘ + Z(. + Ff/X*.X) 

= G(Y, ~F*/Xdq‘, X) + 2 (Z, + Ff/X^H^Y, Z, X), 

where the sum is taken over terms having one factor (Z,- + Ff/Xd*) to some 
power Pi > 0, and some factor H^. in Z[Y, Z, X]. From the way (y, z, x) was 
constructed, and the fact that G(y, z, x) = 0, we see that the first term vanishes, 
and hence 

G(Y, Z, X) = 2 (Z, + Ff/XdqT'H^(Y, Z, X). 

Clearing denominators of Xq, for some integer 5 we get 

XsqG(Y, Z, X) = 0 mod (Fh . . . , Fr), 

or in other words, (*)q is satisfied. This concludes the proof of the theorem. 

Remark. Of course the same statement and proof as in Theorem 3.4 
holds with Z replaced by a field k. In that case, we denote by a* the ideal in 
k[W9 X] generated by the generic forms, and similarly by p* the associated prime 
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ideal. Then 

a*,i = ak H k[W] and pM = pk D *[W]. 

The ideal p in Theorem 3.4 will be called the prime associated with the 
ideal of generic forms. The intersection Pj = p fl Z[W] will be called the prime 
elimination ideal of these forms. If G denotes as before the zeros of p(or of 
a), and Ctx is its projection on the first factor, then p! is the prime associated 
with Gp The same terminology will be used if instead of Z we work over a 
field k. CNote: homogeneous elements of pj have been called inertia forms in 
the classical literature, following Hurwitz. I am avoiding this terminology be¬ 
cause the word “inertia” is now used in a standard way for inertia groups as in 
Chapter VII, §2.) The variety of zeros of Pj will be called the resultant vari¬ 
ety. It is determined by the given degrees dl9..., dn9 so we could denote it 
by &x(d\,. .., dn). 

Exercise. Show that if p is the prime associated with the ideal of generic 
forms, then p fl Z = (0) is the zero ideal. 

Theorem 3.5. Assume r = n, so we deal with n forms in n variables. Then 

Pj is principal, generated by a single polynomial, so Gj is what one calls a 

hypersurface. If(w) is a generic point of dx over a field k, then the transcen¬ 

dence degree of k{w) over k is m — 1. 

Proof. We prove the second statement first, and use the same notation as in 
the proof of Theorem 3.4. Let Uj = Xj/xn. Then un = 1 and (y), («,,. . . , w„_,) 
are algebraically independent. By (3), we have zt = — Ff(y, u), so 

k(w) = k(y9 z) C k(y9 u)9 

and so the transcendence degree of k(w) over k is ^ m — 1. We claim that this 
transcendence degree is m — 1. It will suffice to prove that ul9... , un-x are 
algebraic over k{w) = k(y, z). Suppose this is not the case. Then there exists a 
place ip of k(w, m), which is the identity on k(w) and maps some Uj on oo. Select 
an index q such that ip{ujuq) is finite for all i = 1,. . . , n — 1. Let = ujuq 

and v\ = ip{ujuq). Denote by Yiq the coefficient of Xdf in F{ and let T* denote 
the variables (T) from which YXq,. .., Ynq are deleted. By (3) we have for 
i = 1, . . . , n: 

0 = y,<iuq + 2i + Ff*(y* u) 

= yiq + 2i/Uq‘ + u/uq). 

Applying the place yields 

0 = Yiq + Ff*(y* v'). 

In particular, yiq e k(y*, v') for each i = 1,..., n. But the transcendence degree 
of k(v') over k is at most n — 1, while the elements (yXqi. . . , ynq9 y*) are 
algebraically independent over k9 which gives a contradiction proving the 
theorem. 
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Remark. There is a result (I learned it from [Jo 80]) which is more precise 
than Theorem 3.5. Indeed, let Q as in Theorem 3.5 be the variety of zeros of 
p, and Ct! its projection. Then this projection is birational in the following sense. 
Using the notation of the proof of Theorem 3.5, the result is not only that k(w) 

has transcendence degree m — 1 over k, but actually we have 

Q(y, z) = Q(w) = Q(y, u). 

Proof. Let = (R), so R is the resultant, generating the principal ideal 
Pj. We shall need the following lemma. 

Lemma 3.6. There is a positive integer s with the following properties. Fix 

an index i with 1 ^ i ^ n — 1. For each pair of n-tuples of integers ^ 0 

(a) = (a,,.. . , an) and (/3) = (ft,..., ft) 

with | a | = | /31 = dif we have 

(f)R c)R \ 
0 mod (F„ ..., Fn). 

To see this, we use the fact from Theorem 3.4 that for some 5, 

XsnR(W) = QXFX + • • • + QnFn with Qj e Z[W, X]. 

Differentiating with respect to Wi (^ we get 

xsn mod (F,.Fn), 

and similarly 

xsn - Q,M(a)(X) mod (F„ ..., Fn). 
0VVi,(a) 

We multiply the first congruence by M{a)(X) and the second by M(j3)(X), and we 
subtract to get our lemma. 

From the above we conclude that 

vanishes on G, i.e. on the point (w, w), after we put Xn = 1. Then we select 

M(a)(X) = Xf> and M(P)(X) = Xf>~lXn for i = 1,.... n - 1, 

and we see that we have the rational expression 

«/ 
dR/dWj,(p) 
dR/dWUa) 

, for i = 1,.. . , n - 1, 
(W)=(w) 

thus showing that Q(w) C Q(w), as asserted. 
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We note that the argument also works over the prime field of characteristic 
p. The only additional remark to be made is that there is some partial derivative 
dR/dWtf(a) which does not vanish on (w). This is a minor technical matter, which 
we leave to the reader. 

The above argument is taken from [Jo 80], Proposition 3.3.1. Jouanolou links 
old-time results as in Macaulay [Ma 16] with more recent techniques of com¬ 
mutative algebra, including the Koszul complex (which will be discussed in 
Chapter XXI). See also his monographs [Jo 90], [Jo 91]. 

Still following van der Waerden, we shall now give a fairly explicit deter¬ 
mination of the polynomial generating the ideal in Theorem 3.5. We deal with 
the generic forms FfW, X) (i = 1,. . . , n). According to Theorem 3.5, the ideal 
Pi is generated by a single element. Because the units in Z[W] consist only of 
±1, it follows that this element is well defined up to a sign. Let 

R(W) = R(Fx,...,Fn) 

be one choice of this element. Later we shall see how to pick in a canonical way 
one of these two possible choices. We shall prove various properties of this 
element, which will be called the resultant of Fx, ..., Fn. 

For each i = 1,..., n we let D( be the product of the degrees with dt omitted; 
that is, 

Dj = dl ■ ■ ■ dj ■ ■ ■ dn. 

We let d be the positive integer such that d - 1 = 2 (dt - 1). 

Lemma 3.7. Given one of the indices, say n, there is an element Rn(W) lying 

in pj, satisfying the following properties. 

(a) For each i, Rn(W)Xf = 0 mod (F„ ..., Fn) in Z[W9 X]. 

(b) For each /, Rn(W) is homogeneous in the set of variables (WiM), and is of 

degree Dn in {Wn i.e. in the coefficient of Fn. 

(c) As a polynomial in Z[W], /?„(W) has content 1, i.e. is primitive. 

Proof. The polynomial Rn(W) will actually be explicitly constructed. Let 
M^X) denote the monomials of degree |<x| = d. We partition the indexing set 
S = {o-} into disjoint subsets as follows. 

Let Sx = {o-J be the set of indices such that M^fX) is divisible by Xf1. 

Let S2 = {(t2) be the set of indices such that M^fX) is divisible by X%2 but 
not by Xf1. 

Let Sn = {cjn} be the set of indices such that M^(X) is divisible by Xdnn but 
not by Xf1,..., X^r,1. 
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Then S is the disjoint union of St,. .., Sn. Write each monomial as follows: 

Mai(X) = HvPQXi' so deg d - dx 

Mai(X) = Han(X)Xd„" so deg H„n = d - dn. 

Then the number of polynomials 

H^FU. . . , HaFn (with <tx e Su ..., an e Sn) 

is precisely equal to the number of monomials of degree d. We let Rn be the 
determinant of the coefficients of these polynomials, viewed as forms in (X) with 
coefficients in Z[W]. Then Rn = Rn(W) e Z[W]. We claim that /?„(W) satisfies 
the properties of the lemma. 

First we note that if crn e Sn, then Han(X) is divisible by a power of X{ at 
most - 1, for i = 1,..., n - 1. On the other hand, the degree of Han(X) in 
Xn is determined by the condition that the total degree is d - dn. Hence Sn has 
exactly Dn elements. It follows at once that Rn(W) is homogeneous of degree Dn 

in the coefficients of Fn, i.e. in (Wn (u)). From the construction it also follows 
that Rn is homogeneous in each set of variables (WiM) for each i = 1,. . ., 
n — 1. 

If we specialize the forms Fi (/ = 1to Xf, then Rn specializes to 1, 
and hence Rn ± 0 and Rn is primitive. For each o-z we can write 

H,rF, = 2 C<r^(W)MJX)y 
a-es 

where Ma(X) (a e S) ranges over all monomials of degree d in (X), and Ca o..(W) 

is one of the variables (W). Then by definition 

Rn(W) = det(C^WVjes,), • • • , C^iWX^) = det(C). 

whereto-! e S\,. . . , (Tn e Sn indexes the columns, and cr indexes the rows. Let 
B = C be the matrix with components in Z[W, X] such that 

BC = det(C)/ = Rnl. 

(See Chapter XIII, Corollary 4.17.) Then for each cr, we have 

R„(W)Mcr(X) = 2 2 BIVlF,. 
i a-^Si ’ 

Given i, we take for cr the index such that M^X) = Xf in order to obtain the 
first relation in Lemma 3.7. By Theorem 3.4, we conclude that Rn(W) e pP This 
concludes the proof of the lemma. 

Of course, we picked an index n to fix ideas. For each i one has a polynomial 
Rt satisfying the analogous properties, and in particular homogeneous of degree 
Dt in the variables which are the coefficients of the form Fr 
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Theorem 3.8. Let R be the resultant of the n generic forms Fi over Z, in n 

variables. Then R satisfies the following properties. 

(a) R is the greatest common divisor in Z[W] of the polynomials Rx, ..., Rn. 

(b) R is homogeneous of degree in the coefficients of Fr 

(c) Let Ft = ... + Wi(di)Xfy so Wi(di) is the coefficient ofXf. Then R contains 

the monomial 
n 

±Ylw 
/= l 

Dt 
iXdiY 

Proof. The idea will be to specialize the forms Fl9... 9 Fn to products of 
generic linear forms, where we can tell what is going on. For that we need a 
lemma of a more general property eventually to be proved. We shall use the 
following notation. Iff\9. . • 9fn are forms with coefficients (w), then we write 

R(f\> •••>/*) = R(w). 

Lemma 3.9. Let G, H be generic independent forms with deg(G//) = dx. 

Then R(GH, F2,..., Fn) is divisible by R(G, F2,..., Fn)R(H, F2,. . ., Fn). 

Proof. By Theorem 3.5, there is an expression 

XsnR(Fl9. . ., Fn) = QXFX + • • • + QnFn with Qt e Z[W9 X]. 

Let WG, WH, Wf2i. . ., WFn be the coefficients of G, H9 F2,. . . , Fn respectively, 
and let (w) be the coefficients of GH, F2,..., Fn. Then 

R(w) = R(GHy F2, ..., Fn)9 

and we obtain 

XsnR(w) = Qx(w9 X)GH + g2(w, X)F2 + Qn(w9 X)Fn. 

Hence R(GH, F2,. . . , Fn) belongs to the elimination ideal of G, F2,. . . , Fn in 
the ring Z[WC, WH, WF2,. .., W/rJ, and similarly with H instead of G. Since 
W// is a family of independent variables over Z[WC, WF2,. . . , WF/j], it follows 
that F(G, F2,. . . , F„) divides R(GHy F2,. . . , F„) in that ring, and similarly for 
R(H, F2,. . . , F„). But (WG) and {WH) are independent sets of variables, and so 
R(G, F2,. . . , Fn)y R(Hy F2,... , Fn) are distinct prime elements in that ring, so 
their product divides R(GHy F2,. . ., Fn) as stated, thus proving the lemma. 

Lemma 3.9 applies to any specialized family of polynomials g, h,fx,. . . , 
fn with coefficients in a field &. Observe that for a system of n linear forms in 
n variables, the resultant is simply the determinant of the coefficients. Thus if 
Lx,.. . , Ln are generically independent linear forms in the variables Xx,. . . , Xn9 

then their resultant R(LX,. . ., Ln) is homogeneous of degree 1 in the coefficients 
of L{ for each i. We apply Lemma 3.9 to the case of forms fl9. .. 9fn~l9 which 
are products of generically independent linear forms. By Lemma 3.9 we conclude 
that for this specialized family of form, their resultant has degree at least Dn in 
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the coefficients of Fn, so for the generic forms Fl9.. . , Fn their resultant has 
degree at least Dn in the coefficients of Fn. Similarly R(FX,. . ., Fn) has degree 
at least Dt in the coefficients of Ft for each i. But R divides the n elements 
/^(W),. . . , Rn(W) constructed in Lemma 3.7. Therefore we conclude that R has 
degree exactly Dt in the coefficients of Fz. By Theorem 3.5, we know that R 

divides each Rt. Let G be the greatest common divisor of Rn in Z[W]. 

Then R divides G and has the same degree in each set of variables (W^) for 
i = 1,. . . , n. Hence there exists c e Z such that G = cR. We must have 
c = ± 1, because, say, Rn is primitive in Z[W]. This proves (a) and (b) of the 
theorem. 

As to the third part, we specialize the forms to f = Xf‘, i = 1,.. . , n. Then 
Rn specializes to 1, and since R divides Rn it follows that R itself specializes to 
±1. Since all coefficients of the forms specialize to 0 except those which we 
denoted by Wi (di), it follows that R(W) contains the monomial which is the product 
of these variables to the power Dh up to the sign ±1. This proves (c), and 
concludes the proof of Theorem 3.8. 

We can now normalize the resultant by choosing the sign such that R contains 
the monomial 

n 

« = n<A). 
with coefficient +1. This condition determines R uniquely, and we then denote 
R also by 

R = Res(Fj,. . . , Fn). 

Given forms f\>... 9fn with coefficients (w) in a field K (actually any commu¬ 
tative ring), we can then define their resultant 

Res(/j,... ,/„) = R(w) 

with the normalized polynomial R. With this normalization, we then have a 
stronger result than Lemma 3.9. 

Theorem 3.10. Let fx = gh be a product of forms such that d tg{gh) = dx. 

Let f2, . . ., fn be arbitrary forms of degrees d2, , dn. Then 

Res (gh, /2,..., fn) = Res (g, f2,..., /„)Res(/z, /2,..., fn). 

Proof. From the fact that the degrees have to add in a product of polynomials, 
together with Theorem 3.8(a) and (b), we now see in Lemma 3.9 that we must 
have the precise equality in what was only a divisibility before we knew the 
precise degree of R in each set of variables. 

Theorem 3.10 is very useful in proving further properties of the determinant, 
because it allows a reduction to simple cases under factorization of polynomials. 
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For instance one has: 

Theorem 3.11. Let Fx.Fn be the generic forms in n variables, and let 

Fx, ..., Fn be the forms obtained by substituting Xn = 0, so that Fx, , Fn__x 

are the generic forms in n — 1 variables. Let n ^ 2. Then 

Res(F„ Xdn») = Res<F„ ..., 

Proof. By Theorem 3.10 it suffices to prove the assertion when dn = 1. By 
Theorem 3.4, for each i = 1,..., n — 1 we have an expression 

(*) XfRes (Fx,...,Fn_x,Xn) = QXFX + ••• + Qn-XFn.x + QnXn 

with Qj e Z[W9 X] (depending on the choice of /). The left-hand side can be 
written as a polynomial in the coefficients of Fx,..., Fn_x with the notation 

Xs,R(WFl,..., WFn_x, lXn) = XfP(WFl,lVFn„) = say; 

thus in the generic linear form in Xl9..., Xn we have specialized all the coef¬ 
ficients to 0 except the coefficient of Xn, which we have specialized to 1. Sub¬ 
stitute Xn = 0 in the right side of (*). By Theorem 3.4, we conclude that 
F(W^_1)) lies^ in the resultant ideal of Fx,... 9 F„_l9 and therefore 
Res(F,,..., Fn_x) divides P(VT(,2-1)). By Theorem 3.8 we know that 
P(W(n~_^) has the same homogeneity degree in Wp. (i = 1,..., n - 1) 
as Res(F1?. . . , Fn_x). Hence there is c e Z such that 

cRqs(Fx, . . ., Fn_x) = Res(F,,. .., F„_j, Xn). 

One finds c = 1 by specializing Fx,... 9 F„_, to Xf1,. . . , XdnnSx respectively, 
thus concluding the proof. 

The next basic lemma is stated for the generic case, for instance in Macaulay 
[Ma 16], and is taken up again in [Jo 90], Lemma 5.6. 

Lemma 3.12. Let A be a commutative ring. Let fx,..., /„, gx, ..., gn be 

homogeneous polynomials in A[Xx,..., Xn]. Assume that 

(9x> • > 9n) C (fx, ..., fn) 

as ideals in A[X\. Then 

Res(/j, ...,/„) divides Res^,... 9 gn) in A. 

Proof. Express each gt = X h^f with htj homogeneous in A[X]. By spe¬ 

cialization, we may then assume that g{ = X //;yFy where Htj and Fj have alge¬ 
braically independent coefficients over Z. By Theorem 3.4, for each i we have 
a relation 

Xj Res(gl9. .. , gn) = Qxgx + • • * + Qngn with some Q{ e Z[WH9 Wf]9 
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where WH, WF denote the independent variable coefficients of the polynomials 
Hij and Fj respectively. In particular, 

(*) Xj Res(gl9..., gn) = 0 mod (Fu ..., Fn)Z[WH, Wf, X]. 

Note that Res(gl9. . . , gn) = P(WH, WF) e Z[Wh, Wf] is a polynomial with 
integer coefficients. If (wF) is a generic point of the resultant variety Gj over 
Z, then /Wtf, vvF) = 0 by (*). Hence Res^,.. . , Fn) divides P(WH, WF), thus 
proving the lemma. 

Theorem 3.13. Let A be a commutative ring and let dx,..., dn be integers 

^ 1 as usual. LeJ f be homogeneous of degree d{ in A[X] = A[XU ..., Xn]. 

Let d be an integer ^ 1, and let gt.gn be homogeneous of degree d in 

A[X]. Then 

fi ° g ~ fiid 1 > • • • > 9n) 

is homogeneous of degree ddif and 

Res(/[ ° g,. ■ ■ ,f„° g) = Res(g{,.... g„)dl 'd" Res... ,fn)d"~' in A. 

Proof. We start with the standard relation of Theorem 3.4: 

(*) XfRes(F„ ..., FJ * 0 mod (F„ ..., F„)Z[Wf, X]. 

We let GGn be independent generic polynomials of degree d, and let WG 
denote their independent variable coefficients. Substituting Gz forX, in (*), we 
find 

GfRes(F,,. .., Fn) = 0 mod (Fx ° G,..., Fn ° G)Z[WF, WG, X]. 

Abbreviate Res(F1?.. ., F„) by fi(F), and let gt = Gf/?(F). By Lemma 3.12, it 
follows that 

Res(/! o G,. . ., Fn o G) divides Res(G^(F),. . . , G*R(F)) in Z[WF, Wc]. 

By Theorem 3.10 and the homogeneity of Theorem 3.8(b) we find that 

Res (G\R(F),GS„R(F)) = Res(G,,.... Gn)M Res (F„ .... F„)w 

with integers M,N ^ 0. Since Res(Gj,..., Gn) and Res(F,,. . . , F„) are distinct 
prime elements in Z[WG, W/r] (distinct because they involve independent vari¬ 
ables), it follows that 

(**) Res(F, o G,..., Fn ° G) = e Res(G1?. .., Gn)fl Res(F,,..., Fn)b 

with integers a, b ^ 0 and e = 1 or —1. Finally, we specialize Ft to WJXf' and 
we specialize Gz to £/zXf, with independent variables (Wx,.. ., Wn9 Ux,. . . , £/„). 
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Substituting in (**), we obtain 

Res(W,£/f'Xf>.WnUdnnXdn") 

= e Res(t/,Xf,..., U„Xdnr ResOV.Xf',..., WnXdn")b. 

By the homogeneity of Theorem 3.8(b) we get 

nww di dnd"' = erii/f^nwf1 ^ d«b. 
/ i i 

From this we get at once £ = 1 and a, 6 are what they are stated to be in the 
theorem. 

Corollary 3.14. Let C = (c/7) a square matrix with coefficients in A. Let 

f(X) = FZ(CX) (where CX is multiplication of matrices, viewing X as a column 

vector). Then 

Res(/,, = det(C)dl-d- Res(Fu .... F„). 

Proof. This is the case when d = 1 and gt is a linear form for each i. 

Theorem 3.15. Let fn be homogeneous in A[X], and suppose 

dn ^ dtfor all i. Let h{ be homogeneous of degree dn — dt in A[X]. Then 

n-\ 

Res(/,, 2 V/) = Res(/,, in A. 
j=\ 

Proof. We may assume f = Fz are the generic forms, Ht are forms generic 
independent from Fj,..., F„, and A = Z[WF, W//], where (W/r) and (W^) 
are the coefficients of the respective polynomials. We note that the ideals 
(Fj,. . ., Fn) and (F^ . .., Fn 4- 2 //,F,) are equal. From Lemma 3.12 we 

conclude that the two resultants in the statement of the theorem differ by a factor 
of 1 or — 1. We may now specialize //z; to 0 to determine that the factor is +1, 
thus concluding the proof. 

Theorem 3.16. Let tt be a permutation of {1,..., n}, and let e(7r) be its 

sign. Then 

Res(/v(I).Fnn)) = e(TT)d' - d» Res(F,,..., Fn). 

Proof. Again using Lemma 3.12 with the ideals (F,,..., Fn) and 
(F„.(1),.. . , F^)), which are equal, we conclude the desired equality up to a 
factor ±1, in Z [WF]. We determine this sign by specializing Fz toXf, and using 
the multiplicativity of Theorem 3.10. We are then reduced to the case when 
Fz = Xh so a linear form; and we can apply Corollary 3.14 to conclude the proof. 

The next theorem was an exercise in van der Waerden’s Moderne Algebra. 
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Theorem 3.17. Let Lx.Ln~x, F be generic forms in n variables, such 

that Lx, ..., Ln__x are of degree 1, and F has degree d = dn. Let 

Aj(J = 1,..., n) 

be times the j-th minor determinant of the coefficient matrix of the 

forms (Lx,..., Ln_x). Then 

Res(Lx,..., L„_,, F) = F(A,,..., A„). 

Proof. We first claim that for all j = 1,..., n we have the congruence 

(*) XnA, - 3 0 mod (Lj,. .. , Ln_x)Z[W, X], 

where as usual, (W) are the coefficients of the forms Lx,... , Ln_x, F. To see 
this, we consider the system of linear equations 

Wi*i + • • • + = MW *) - W,*** 

+ *•' + - W,-lf„^. 

If C = (C1,. . . , Cn~l) is a square matrix with columns G7, then a solution of 
a system of linear equations CX = Cn satisfies Cramer’s rule 

Xjdet(C\ ..., C"'1) = det (C1,..., C\ ..., Cn~x). 

Using the fact that the determinant is linear in each column, (*) falls out. 
Then from the congruence (*) it follows that 

XdnF{A„ ..., A,) - Affix,,..., X„) mod (L,,..., L„_,)Z[W, X], 

whence 

X^F(A,,..., A„) = 0 mod (L„ ..., F). 

Hence by Theorem 3.4 and the fact that Res^,. . ., Ln_x, F) = fi(W) generates 
the elimination ideal, it follows that there exists c e Z[W] such that 

F(A,,. .., A„) = cRes(L,,..., L„_,, F). 

Since the left side is homogeneous of degree 1 in the coefficients WF and homo¬ 
geneous of degree d in the coefficients WLj for each i = 1,. . . , n — 1, it follows 
from Theorem 3.8 that c e Z. Specializing Lz toXz and F toX„ makes Aspecialize 
to 0 if j ^ n and A„ specializes to 1. Hence the left side specializes to 1, and 
so does the right side, whence c = 1. This concludes the proof. 
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§4. RESULTANT SYSTEMS 

The projection argument used to prove Theorem 3.4 has the advantage of 
constructing a generic point in a very explicit way. On the other hand, no explicit, 
or even effective, formula was given to construct a system of forms defining 

We shall now reformulate a version of Theorem 3.4 over Z and we shall 
prove it using a completely different technique which constructs effectively a 
system of generators for an ideal of definition of the arithmetic variety Gj in 
Theorem 3.2. 

Theorem 4.1. Given degrees dx.dr^ 1, and positive integers m, n. Let 

(W) = (WiM) be the variables as in §3, (2) viewed as algebraically independent 

elements over the integers Z. There exists an effectively determinable finite 

number of polynomials Rp(W) e Z[W] having the following property. Let (/) 
be as in (1), a system of forms of the given degrees with coefficients (w) in 

some field k. Then (/) has a non-trivial common zero if and only ifRp(w) = 0 
for all p. 

A finite family {/?p} having the property stated in Theorem 4.1 will be called 
a resultant system for the given degrees. According to van der Waerden 
(Moderne Algebra, first and second edition, §80), the following technique of 
proof using resultants goes back to Kronecker elimination, and to a paper of 
Kapferer (Uber Resultanten und Resultantensysteme, Sitzungsber. Bayer. Akad. 

Miinchen 1929, pp. 179-200). The family of polynomials {Rp(W)} is called a 
resultant system, because of the way they are constructed. They form a set of 
generators for an ideal bx such that the arithmetic variety (2 x is the set of zeros 
of bj. I don’t know how close the system constructed below is to being a set of 
generators for the prime ideal px in Z[W] associated with dx. Actually we shall 
not need the whole theory of Chapter IV, §10; we need only one of the char¬ 
acterizing properties of resultants. 
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Let p, q be positive integers. Let 

fv = v0XI + v.XP-% + • • • + vpxe, 

gw = WoX\ + WlX\-% + ■■■ + wqX“2 

be two generic homogeneous polynomials in Z[v, w, Xl9 X2] = Z[v, w][X]. In 
Chapter IV, §10 we defined their resultant Res(fv, gw) in case X2 = 1, but we 
find it now more appropriate to work with homogeneous polynomials. For our 
purposes here, we need only the fact that the resultant R(v, w) is characterized 
by the following property. If we have a specialization (a, b) of (i>, w) in a field 
K, and if fa,fb have a factorization 

p 

fa = v0 n (X, - a,X2) 
i= 1 

q 

9h = b0U (X, - pjX2) 
7=1 

then we have the symmetric expressions in terms of the roots: 

R(a, b) = Res(fa, fb) = agfeg El (a; ~ Pj) 
i.j 

= aq0 11 9fe(a„ 1) = (-1 )p“bP Ylfa(Pj, 1). 
i j 

From the general theory of symmetric polynomials, it is a priori clear that 
R(v, w) lies in Z[v, w], and Chapter IV, §10 gives an explicit representation 

<Pv,wfv + <l>v,wgw = XP^-'Riv, w) 

where <pv w and e Z[v9 w, X]. This representation will not be needed. The 
next property will provide the basic inductive step for elimination. 

Proposition 4.2. Let fa, gb be homogeneous polynomials with coefficients in 

afield K. Then R(a, b) = 0 if and only if the system of equations 

fa(X) = 0, gb(X) = o 

has a non-trivial zero in some extension of K {which can be taken to be finite). 

If a0 = 0 then a zero of gb is also a zero of fa\ and if b0 = 0 then a zero of fa 

is also a zero of gb. If a0b0 ¥= 0 then from the expression of the resultant as a 
product of the difference of roots (az - fy) the proposition follows at once. 

We shall now prove Theorem 4.1 by using resultants. We do this by induction 
on n. 
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If n = 1, the theorem is obvious. 
If n = 2, r = 1, the theorem is again obvious, taking the empty set for (Rp). 

If n = 2, r = 2, then the theorem amounts to Proposition 4.2. 
Assume now n = 2 and r > 2, so we have a system of homogeneous equations 

o =mx) =f2(X) = ... =fr(X) 

with (X) = (Xx, X2). Let d{ be the degree off and let d = max d{. We replace 
the family {ffiX)} by the family of all polynomials 

fi(X)Xi~d‘ and ft(X)Xd2-d‘, i= l,..., r. 

These two families have the same sets of non-trivial zeros, so to prove Theorem 
4.1 we may assume without loss of generality that all the polynomials fl9. . . , 
fr have the same degree d. 

With n — 2, consider the generic system of forms of degree d in (X): 

(4) Fi(W, X) = 0 with i = 1,. .., r, in two variables (X) = (Xl9 X2), 

where the coefficients of Ft are Wi 0,..., Wi d so that 

(W) = (Wlt09...9 WUd9...9 W,#,..., Wr4). 

The next proposition is a special case of Theorem 4.1, but gives the first step 
of an induction showing how to get the analogue of Proposition 4.2 for such a 
larger system. Let Tx,..., Tr and Ux,, Ur be independent variables over 
Z[W9 X]. Let Fl9..., Fr be the generic forms of §3, (2). Let 

f= FX(W, X)Tx + ••• + Fr(W9X)Tr 

g = FX(W9 X)Ux + • • • + Fr(W9 X)Ur 

so f9ge Z[W9 T9 U][X]. Then /, g are polynomials in (X) with coefficients in 
Z[W9 T9 U]. We may form their resultant 

Res(/, g) e Z[W9 T9 U}. 

Thus Res(/, g) is a polynomial in the variables (T, U) with coefficients in Z[W]. 

We let (QpiW)) be the family of coefficients of this polynomial. 

Proposition 4.3. The system {Q^iW)} just constructed satisfies the property 

of Theorem 4.1, i.e. it is a resultant system for r forms of the same degree d. 

Proof. Suppose that there is a non-trivial solution of a special system 
FfiW9 X) = 0 with (w) in some field k. Then (w, T, U) is a common non-trivial 
zero of/, g9 so Res(/, g) = 0 and therefore Qyjw) = 0 for all pi. Conversely, 
suppose that Q^(w) = 0 for all pi. Let f(X) = Ffw9 X). We want to show 
that/z(X) for i = 1,..., r have a common non-trivial zero in some extension of 
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k. If all are 0 in k[Xl9 X2] then they have a common non-trivial zero. If, say, 
/, =k 0 in k[X], then specializing T2,. .., Tr to 0 and Tx to 1 in the resultant 
Res(/, g), we see that 

Res (fl9f2U2 + +frUr) = 0 

as a polynomial in k[U2,. .., Ur]. After making a finite extension of k if neces¬ 
sary, we may assume that/^X) splits into linear factors. Let {aj be the roots 
of f\(Xl9 1). Then some (az, 1) must also be a zero of f2U2 + • • • + frUn 

which implies that (ah 1) is a common zero of /,,..., fr since U2,. . . , Ur 

are algebraically independent over k. This proves Proposition 4.3. 

We are now ready to do the inductive step with n > 2. Again, let 

fi(X) = Fi(w,X)forj= l,...,r 

be polynomials with coefficients (w) in some fields k. 

Remark 4.4. There exists a non-trivial zero of the system 

f. = o (i = 1, . . . , r) 

in some extension of k if and only if there exist 

(xu .. ., * (0,..., 0) and (xn, t) (0, 0) 

in some extension of k such that 

fi (tx i,..., txn-i, xn) = 0 for i = 1,..., r. 

So we may now construct the system (Rp) inductively as follows. 
Let T be a new variable, and let X("-1) = (Xj,. . . , X^j). Let 

g,(W, X(n-'\ S„, T) = F,(W, TXx,..., TXn_u X„) e Z[W, X<n_I)][X„, T]. 

Then gt is homogeneous in the two variables (Xn, T). By the theorem for two 
variables, there is a system of polynomials (Qin Z[W, X(n'l)] having the 
property: if(w, is a point in a field K, then 

gfw, jc("_1), Xn, T) have a non-trivial common zero for i = 1,.. ., r. 

= 0 for all p,. 

Viewing each Q^ as a polynomial in the variables (X("-1)), we decompose each 
Q^ as a sum of its homogeneous terms, and we let (HX(W, X(/I-1))) be the fam¬ 
ily of these polynomials, homogeneous in (X(AI"1)). From the homogeneity 
property of the forms Fj in (X), it follows that if t is transcendental over K 

and gfw, x(n~l\ Xn, T) have a non-trivial common zero for j = 1,..., r 
then gfw, tx(n~l), Xn, T) also have a non-trivial common zero. Therefore 
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Q^w, tx{n~X)) = 0 for all fi, and so //A(w, jc(/i-1)) = 0. Therefore we may use the 
family of polynomials (Hx) instead of the family (2^), and we obtain the property: 
if(w9 jc(w_1)) is a point in a field K, then 

gfw, x(n~l\ Xn, T) have a non-trivial common zero for i = 1,. .., r 

<^> Hx(w, x(n~l)) = 0 for all A. 

By induction on n, there exists a family (flp(W)) of polynomials in Z[W] 

(actually homogeneous), having the property: if{w) is a point in a field K, then 

Hx(w, X(/2_1)) have a non-trivial common zero for all A 

<=> Rp(w) = 0 for all p. 

In light of Remark 4.4, this concludes the proof of Theorem 4.1 by the resultant 
method. 

§5. SPEC OF A RING 

We shall extend the notions of §2 to arbitrary commutative rings. 
Let A be a commutative ring. By spec(A) we mean the set of all prime ideals 

of A. An element of spec(A) is also called a point of spec(A). 
If f e A, we view the set of prime ideals p of spec(A) containing /as the set 

of zeros of /. Indeed, it is the set of p such that the image of / in the canonical 
homomorphism 

A -> A/p 

is 0. Let a be an ideal, and let 2? (a) (the set of zeros of a) be the set of all 
primes of A containing a. Let a,b be ideals. Then we have: 

Proposition 5.1. 
(i) 2£(ab) = 2(a) U 2(b). 

(ii) //{a/} is a family of ideals, then 2£(2d/) =11 2£(d/). 
(iii) We have 2(a) C 2(b) if and only if rad(a) D rad(b), where rad(a), the 

radical of a, is the set of all elements x e A such that xn e a for some 

positive integer n. 

Proof. Exercise. See Corollary 2.3 of Chapter X. 

A subset C of spec(A) is said to be closed if there exists an ideal a of A such 
that C consists of those prime ideals p such that acp. The complement of a 
closed subset of spec(A) is called an open subset of spec(A). The following 
statements are then very easy to verify, and will be left to the reader. 
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Proposition 5.2. The union of a finite number of closed sets is closed. The 

intersection of an arbitrary family of closed sets is closed. 

The intersection of a finite number of open sets is open. The union of an 

arbitrary family of open sets is open. 

The empty set and spec(/l) itself are both open and closed. 

If 5 is a subset of A, then the set of prime ideals p e spec(A) such that Sep 
coincides with the set of prime ideals p containing the ideal generated by S. 

The collection of open sets as in Proposition 5.2 is said to be a topology on 
spec(A), called the Zariski topology. 

Remark. In analysis, one considers a compact Hausdorff space S. “Haus- 
dorff” means that given two points P, Q there exists disjoint open sets UP, UQ 

containing P and Q respectively. In the present algebraic context, the topology 
is not Hausdorff. In the analytic context, let R be the ring of complex valued 
continuous functions on S. Then the maximal ideals of R are in bijection with 
the points of S (Gelfand-Naimark theorem). To each point PeS, we associate 
the ideal MP of functions / such that f(P) = 0. The association P i—> MP 

gives the bijection. There are analogous results in the complex analytic case. 
For a non-trivial example, see Exercise 19 of Chapter XII. 

Let A, B be commutative rings and q>: A B a homomorphism. Then <p 

induces a map 

cp* = spec(cp) = cp~l: spec(B) -► spec(/l) 

by 

p i ► cp ~ 1 (p). 

Indeed, it is immediately verified that cp~ *(p) is a prime ideal of A. Note however 
that the inverse image of a maximal ideal of B is not necessarily a maximal ideal 
of A. Example? The reader will verify at once that spec(<p) is continuous, in the 
sense that if U is open in spec(£), then cp~ l(U) is open in spec(/l). 

We can then view spec as a contravariant functor from the category of 
commutative rings to the category of topological spaces. 

By a point of spec(A) in a field L one means a mapping 

spec (cp): spec(L) -> spec(/l) 

induced by a homomorphism cp: A L of A into L. 
For example, for each prime number p, we get a point of spec(Z), namely 

the point arising from the reduction map 

Z Z/pZ. 
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The corresponding point is given by the reversed arrow, 

spec(Z) <- spec(Z/pZ). 

As another example, consider the polynomial ring k\_Xl9..., over a 
field k. For each n-tuple (cu ..., c„) in /ca(n) we get a homomorphism 

such that cp is the identity on /c, and <p(Xt) = c{ for all i. The corresponding 
point is given by the reversed arrow 

spec /c[A"] <- spec(/ca). 

Thus we may identify the points in n-space ka(n) with the points of spec k[X~\ 

(over k) in /ca. 
However, one does not want to take points only in the algebraic closure of 

k, and of course one may deal with the case of an arbitrary variety V over k 

rather than all of affine n-space. Thus let k[xl9.. ., xn] be a finitely generated 
entire ring over k with a chosen family of generators. Let V = spec k[x]. Let A 

be a commutative k-algebra, corresponding to a homomorphism k —> A. Then a 
point of V in A may be described either as a homomorphism 

<jp: A, 

or as the reversed arrow 

spec(A) —► spec(fc[x]) 

corresponding to this homomorphism. If we put cz- = <p(jtz), then one may call 
(c) = (ci,. .., cn) the coordinates of the point in A. By a generic point of V 

in a field K we mean a point such that the map <p:k[x] —> K is injective, i.e. an 
isomorphism of k[x\ with some subring of K. 

Let A be a commutative Noetherian ring. We leave it as an exercise to 
verify the following assertions, which translate the Noetherian condition into 
properties of closed sets in the Zariski topology. 

Closed subsets of spec(A) satisfy the descending chain condition, i.e., if 

Cl => C2 =3 C3 =3 ••• 

is a descending chain of closed sets, then we have Cn = Cn+l for all sufficiently 
large n. Equivalently, let {Cf}ie/ be a family of closed sets. Then there exists a 
relatively minimal element of this family, that is a closed set Cio in the family 
such that for all i, if Cz c= Cio then C, = Cio. The proof follows at once from 
the corresponding properties of ideals, and the simple formalism relating 
unions and intersections of closed sets with products and sums of ideals. 



IX, §5 SPEC OF A RING 409 

A closed set C is said to be irreducible if it cannot be expressed as the union 
of two closed sets 

C / Cj u C2 

with Cj ^ C and C2 # C. 

Theorem 5.3. Let A be a Noetherian commutative ring. Then every closed 

set C can be expressed as a finite union of irreducible closed sets, and this 

expression is unique if in the union 

C = Cj u • u Cr 

of irreducible closed sets, we have C, C} if i # j. 

Proof. We give the proof as an example to show how the version of Theorem 
2.2 has an immediate translation in the more general context of spec(A). Suppose 
the family of closed sets which cannot be represented as a finite union of irreducible 
ones is not empty. Translating the Noetherian hypothesis in this case shows that 
there exists a minimal such set C. Then C cannot be irreducible, and we can 
write C as a union of closed sets 

C = C u C", 

with C # C and C" # C. Since C and C" are strictly smaller than C, then we 
can express C and C" as finite unions of irreducible closed sets, thus getting a 
similar expression for C, and a contradiction which proves existence. 

As to uniqueness, let 

C = Cj u • • • u Cr = Zj u • • • u Zs 

be an expression of C as union of irreducible closed sets, without inclusion 
relations. For each Z} we can write 

Z} = (Zj n CJ u • • • u (Zj n Cr). 

Since each Zs n C, is a closed set, we must have Zj = Z, n C, for some i. Hence 
Z; = C, for some i. Similarly, C, is contained in some Zk. Since there is no 
inclusion relation among the ZJs, we must have Z} = Cx = Zh. This argument 
can be carried out for each Z} and each C,. This proves that each Zj appears 
among the CJs and each C, appears among the ZJs, and proves the uniqueness 
of our representation. This proves the theorem. 

Proposition 5.4. Let C be a closed subset ofsptc(A). Then C is irreducible 

if and only if C = 3£(p) for some prime ideal p. 

Proof. Exercise. 

More properties at the same basic level will be given in Exercises 14-19. 
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EXERCISES 

Integrality 

1. (Hilbert-Zariski) Let k be a field and let V be a homogeneous variety with generic 
point (*) over k. Let be the algebraic set of zeros in ka of a homogeneous ideal in 

k[X] generated by forms fr in k[X]. Prove that V 0 has only the trivial 
zero if and only if each jc, is integral over the ring k[f{x)] = &[/,(jc), . .. , fr(x)]. 

(Compare with Theorem 3.7 of Chapter VII.) 

2. Let fr be forms in n variables and suppose n > r. Prove that these forms 
have a non-trivial common zero. 

3. Let R be an entire ring. Prove that R is integrally closed if and only if the local ring 
Rp is integrally closed for each prime ideal p. 

4. Let R be an entire ring with quotient field K. Let t be transcendental over K. Let 

f(t) = E K[t]. Prove: 
(a) If f(t) is integral over R[t], then all at are integral over R. 

(b) If R is integrally closed, then R[t] is integrally closed. 

For the next exercises, we let R = k[x] = k[X]/p, where p is a homogeneous prime 
ideal. Then (*) is a homogeneous generic point for a k-variety V. We let / be the integral 
closure of R in £(jc). We assume for simplicity that k(x) is a regular extension of k. 

5. Let z = Ec,.*,. with c, E k, and z =£ 0. If k[x] is integrally closed, prove that k[x/z] 

is integrally closed. 

6. Define an element/ E k(x) to be homogeneous iff(tx) = tdf{x) for t transcendental 
over k(x) and some integer d. Let / E /. Show that / can be written in the form 

/ = 2/, where eachis homogeneous of degree i ^ 0, and where also f( E /. (Some 
fi may be 0, of course.) 

We let Rm denote the set of elements of R which are homogeneous of degree m. 

Similarly for Im. We note that Rm and lm are vector spaces over k, and that R (resp. /) 

is the direct sum of all spaces Rm (resp. Im) for m = 0, 1,. . . This is obvious for /?, and 
it is true for I because of Exercise 6. 

7. Prove that / can be written as a sum / = Rz{ + • • • + Rzs, where each z, is homoge¬ 
neous of some degree dt. 

8. Define an integer m ^ 1 to be well behaved if Iqm = lqm for all integers q ^ 1. If 

R = /, then all m are well behaved. In Exercise 7, suppose m ^ max dt. Show that 
m is well behaved. 

9. (a) Prove that lm is a finite dimensional vector space over k. Let w0,. .. , wM be a 
basis for Im over k. Then k[Im] = k[w]. 

(b) If m is well behaved, show that k[Im] is integrally closed. 
(c) Denote by &((*)) the field generated over k by all quotients xjxj with Xj =£ 0, 

and similarly for &((w)). Show that k((x)) = k((w)). 

(If you want to see Exercises 4-9 worked out, see my Introduction to Algebraic 

Geometry, Interscience 1958, Chapter V.) 
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Resultants 

10. Prove that the resultant defined for n forms in n variables in §3 actually coincides 
with the resultant of Chapter IV, or §4 when n = 2. 

11. Let o = (fx,. . . ,/r) be a homogeneous ideal in k[Xx,. . . , Xn) (with k algebraically 
closed). Assume that the only zeros of a consist of a finite number of points 
(jc(1)), . .. , (x(d)) in projective space P"-1, so the coordinates of each x(j) can be 
taken in k. Let be independent variables and let 

LM(X) = uxX j + • • • + unXn. 

Let Rx(u),. . . , Rs(u) E k[u] be a resultant system for... , fn Lu. 
(a) Show that the common non-trivial zeros of the system /?,(«) (/ = 1,..., s) 

in k are the zeros of the polynomial 

n lu(x<») e m. 
j 

(b) Let D(u) be the greatest common divisor of Rx(u),... , Rs(u) in k[u]. Show 
that there exist integers rrij ^ 1 such that (up to a factor in k) 

d 

D(u) = n Lu{xU))m<. 
7=1 

[See van der Waerden, Moderne Algebra, Second Edition, Volume II, §79.] 

12. For forms in 2 variables, prove directly from the definition used in §4 that one has 

Res(/0, h) = Res(/, h) Res(g, h) 

Res(/, g) = (-l)(deg/)(deg9)Res(g9f). 

13. Let k be a field and let Z -* k be the canonical homomorphism. If F E Z[W, X], we 
denote by F the image of F in k[W,, X] under this homomorphism. Thus we get R, 

the image of the resultant R. 
(a) Show that R is a generator of the prime ideal p* , of Theorem 3.5 over the 

field k. Thus we may denote R by Rk. 

(b) Show that R is absolutely irreducible, and so is Rk. In other words, Rk is 
irreducible over the algebraic closure of k. 

Spec of a ring 

14. Let A be a commutative ring. Define spec(A) to be connected if spec(A) is not the 
union of two disjoint non-empty closed sets (or equivalently, spec(A) is not the union 
of two disjoint, non-empty open sets). 

(a) Suppose that there are idempotents elf e2 in A (that is e\ = ex and e\ — e2), 
=£ 0, 1, such that exe2 = 0 and ex + e2 = 1. Show that spec(A) is not 
connected. 

(b) Conversely, if spec(A) is not connected, show that there exist idempotents 
as in part (a). 

In either case, the existence of the idempotents is equivalent with the fact that the 
ring A is a product of two non-zero rings, A = Ax X A2. 
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15. Prove that the Zariski topology is compact, in other words: let be a family of 
open sets such that 

U Ui = spec (A). 
i 

Show that there is a finite number of open sets Uiv ..., Uin whose union is spec(A). 
[Hint: Use closed sets, and use the fact that if a sum of ideals is the unit ideal, then 1 
can be written as a finite sum of elements.] 

16. Let/be an element of A. Let 5 be the multiplicative subset {1, /, /2, /3,. . .} con¬ 
sisting of the powers of /. We denote by Af the ring S~lA as in Chapter II, §3. 
From the natural homomorphism A -* Af one gets the corresponding map 

spec(Ay) —> spec(A). 
(a) Show that spec(Ay) maps on the open set of points in spec(A) which are not 

zeros of /. 
(b) Given a point p E spec(A), and an open set U containing p, show that there 

exists / such that p E spec(Ay) C U. 

17. Let Ui = spec(A/() be a finite family of open subsets of spec(A) covering spec(A). 
For each /, let a,// E Afr Assume that as functions on U, D Uj we have ajfi — dj/fj 
for all pairs /, j. Show that there exists a unique element a El A such that a = cii/fi 
in Ajx for all i. 

18. Let He a field and let k[xlt... , xn] - A C ^be a finitely generated subring of 
some extension field K. Assume that k(x{,. . . , xn) has transcendence degree r. Show 
that every maximal chain of prime ideals 

ADPj DP2D ... DPmD {0}, 

with P, ¥= A, Pi =£ P/+1, Pm i= {0}, must have m = r. 

19. Let A = Z[jcj, ..., xn] be a finitely generated entire ring over Z. Show that every 
maximal chain of prime ideals as in Exercise 18 must have m = r + 1. Here, r = 
transcendence degree of QC^,..., jc„) over Q. 



CHAPTER X 
Noetherian Rings and 
Modules 

This chapter may serve as an introduction to the methods of algebraic geometry 
rooted in commutative algebra and the theory of modules, mostly over a Noeth¬ 
erian ring. 

§1. BASIC CRITERIA 

Let A be a ring and M a module (i.e., a left /1-module). We shall say that 
M is Noetherian if it satisfies any one of the following three conditions: 

(1) Every submodule of M is finitely generated. 

(2) Every ascending sequence of submodules of M, 

Ml <= M2 <= M 3 c= . • 

such that Mt # Mi+l is finite. 

(3) Every non-empty set S of submodules of M has a maximal element 
(i.e., a submodule M0 such that for any element N of 5 which contains 
M0 we have N = M0). 

We shall now prove that the above three conditions are equivalent. 
(1) => (2) Suppose we have an ascending sequence of submodules of M as 

above. Let N be the union of all the M, (i = 1,2,...). Then N is finitely gen¬ 
erated, say by elements xl9...,xr9 and each generator is in some M{. Hence 
there exists an index j such that 

Xj,...,XrG Mj. 

413 



414 NOETHERIAN RINGS AND MODULES X, §1 

Then 
<Xj,..., xr> c Mj cz N = <x„..., xr>, 

whence equality holds and our implication is proved. 
(2) => (3) Let N0 be an element of S. If N0 is not maximal, it is properly 

contained in a submodule Nv If Nx is not maximal, it is properly contained in 
a submodule N2. Inductively, if we have found Nt which is not maximal, it is 
contained properly in a submodule Ni+l. In this way we could construct an 
infinite chain, which is impossible. 

(3) =>(1) Let N be a submodule of M. Let a0 e N. If N # <a0>, then 
there exists an element a{ e N which does not lie in <a0>. Proceeding induc¬ 
tively, we can find an ascending sequence of submodules of N, namely 

<tf0> c (a0, «!> c <a0, al9 a2> <= • • • 

where the inclusion each time is proper. The set of these submodules has a 
maximal element, say a submodule <a0, alf..., ar>, and it is then clear that 
this finitely generated submodule must be equal to N, as was to be shown. 

Proposition 1.1. Let M be a Noetherian A-module. Then every submodule 

and every factor module of M is Noetherian. 

Proof. Our assertion is clear for submodules (say from the first condi¬ 
tion). For the factor module, let N be a submodule and f :M^> M/N the 
canonical homomorphism. Let <= M2 <= • be an ascending chain of sub- 
modules of M/N and let Mf = f~1(Mi). Then Mx c M2 cz • • • is an ascending 
chain of submodules of M, which must have a maximal element, say Mr, so 
that Mt = Mr for r ^ i. Then /(M,) = Mf and our assertion follows. 

Proposition 1.2. Let M be a module, N a submodule. Assume that N and 

M/N are Noetherian. Then M is Noetherian. 

Proof. With every submodule L of M we associate the pair of modules 

Lh-+(L n N,(L + N)/N). 

We contend: If E cz F are two submodules of M such that their associated 
pairs are equal, then E = F. To see this, let x e F. By the hypothesis that 
(E -f N)/N = (F + N)/N there exist elements u9 v e N and y e E such that 
y + u = x + v. Then 

x — y = u- veFnN = Er\N. 

Since y e E, it follows the x e E and our contention is proved. If we have an 
ascending sequence 

c E2 cz • • • 
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then the associated pairs form an ascending sequence of submodules of N and 
M/N respectively, and these sequences must stop. Hence our sequence 

c- E2 ' also stops, by our preceding contention. 

Propositions 1.1 and 1.2 may be summarized by saying that in an exact 
sequence 0 -► M' -► M -> M" -* 0, M is Noetherian if and only if M' and M" 

are Noetherian. 

Corollary 1.3. Let M be a module, and let N, N' be submodules. If 

M = N + AT and if both N, AT are Noetherian, then M is Noetherian. A 

finite direct sum of Noetherian modules is Noetherian. 

Proof. We first observe that the direct product N x AT is Noetherian 
since it contains N as a submodule whose factor module is isomorphic to AT, 
and Proposition 1.2 applies. We have a surjective homomorphism 

N x AT -► M 

such that the pair (x, x') with x e N and x' e N' maps onx-f- x'. By Prop¬ 
osition 1.1, it follows that M is Noetherian. Finite products (or sums) follow 
by induction. 

A ring A is called Noetherian if it is Noetherian as a left module over itself. 
This means that every left ideal is finitely generated. 

Proposition 1.4. Let A be a Noetherian ring and let M be a finitely generated 

module. Then M is Noetherian. 

Proof. Let Xj,..., xn be generators of M. There exists a homomorphism 

/M x X x ••• x i4-+Af 

of the product of A with itself n times such that 

/(«i> •••.«») = + • • • + anxn. 

This homomorphism is surjective. By the corollary of the preceding proposition, 
the product is Noetherian, and hence M is Noetherian by Proposition 1.1. 

Proposition 1.5. Let A be a ring which is Noetherian, and let cp: A -► B be 

a surjective ring-homomorphism. Then B is Noetherian. 

Proof. Let a • • • c b„ c • • • be an ascending chain of left ideals of B 

and let a, = <p-1(b,). Then the a, form an ascending chain of left ideals of A 

which must stop, say at ar. Since <p(af) = b, for all i, our proposition is proved. 

Proposition 1.6. Let A be a commutative Noetherian ring, and let S be a 

multiplicative subset of A. Then S~lA is Noetherian. 

Proof. We leave the proof as an exercise. 
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Examples. In Chapter IV, we gave the fundamental examples of Noeth- 
erian rings, namely polynomial rings and rings of power series. The above 
propositions show how to construct other examples from these, by taking factor 
rings or modules, or submodules. 

We have already mentioned that for applications to algebraic geometry, it is 
valuable to consider factor rings of type k[X]/a, where a is an arbitrary ideal. 
For this and similar reasons, it has been found that the foundations should be 
laid in terms of modules, not just ideals or factor rings. Notably, we shall first 
see that the prime ideal associated with an irreducible algebraic set has an analogue 
in terms of modules. We shall also see that the decomposition of an algebraic 
set into irreducibles has a natural formulation in terms of modules, namely by 
expressing a submodule as an intersection or primary modules. 

In §6 we shall apply some general notions to get the Hilbert polynomial of 
a module of finite length, and we shall make comments on how this can be 
interpreted in terms of geometric notions. Thus the present chapter is partly 
intended to provide a bridge between basic algebra and algebraic geometry. 

§2. ASSOCIATED PRIMES 

Throughout this section, we let A be a commutative ring. Modules and homo- 

morphisms are A-modules and A-homomorphisms unless otherwise specified. 

Proposition 2.1. Let S be a multiplicative subset of A, and assume that S 

does not contain 0. Then there exists an ideal of A which is maximal in the 

set of ideals not intersecting S, and any such ideal is prime. 

Proof. The existence of such an ideal p follows from Zorn’s lemma (the 
set of ideals not meeting S is not empty, because it contains the zero ideal, and is 
clearly inductively ordered). Let p be maximal in the set. Let a, b e A, ab e p, 
but a $ p and b $ p. By hypothesis, the ideals (a, p) and (b, p) generated by a 

and p (or b and p respectively) meet S, and there exist therefore elements 
s, s' e 5, c, c\ x, x' e A, p, p' e p such that 

s = ca + xp and s' = c'b + x'p'. 

Multiplying these two expressions, we obtain 

ssf = cc'ab + p" 

with some p" e p, whence we see that ss' lies in p. This contradicts the fact 
that p does not intersect S, and proves that p is prime. 

An element a of A is said to be nilpotent if there exists an integer n ^ 1 such 
that an = 0. 
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Corollary 2.2. An element a of A is nilpotent if and only if it lies in every 

prime ideal of A. 

Proof. If an = 0, then an e p for every prime p, and hence aep. If an # 0 
for any positive integer n, we let S be the multiplicative subset of powers of a, 
namely {1, a, a2,...}, and find a prime ideal as in the proposition to prove the 
converse. 

Let a be an ideal of A. The radical of a is the set of all a e A such that an e a 

for some integer n ^ 1, (or equivalently, it is the set of elements as A whose 
image in the factor ring A/a is nilpotent). We observe that the radical of a is an 
ideal, for if an = 0 and bm = 0 then (a + b)k = 0 if k is sufficiently large: In the 
binomial expansion, either a or b will appear with a power at least equal to 
n or m. 

Corollary 2.3. An element a of A lies in the radical of an ideal a if and only 

if it lies in every prime ideal containing a. 

Proof. Corollary 2.3 is equivalent to Corollary 2.2 applied to the ring A/a. 

We shall extend Corollary 2.2 to modules. We first make some remarks on 
localization. Let S be a multiplicative subset of A. If M is a module, we can 
define S~lM in the same way that we defined S~1 A. We consider equivalence 
classes of pairs (x,s) with xe M and seS, two pairs (x,s) and (x\s') being 
equivalent if there exists Sj e S such that s^s'x - sx') = 0. We denote the 
equivalence class of (x, s) by x/s, and verify at once that the set of equivalence 
classes is an additive group (under the obvious operations). It is in fact an 
/1-module, under the operation 

(a, x/s) i—► ax/s. 

We shall denote this module of equivalence classes by S~lM. (We note that 
S~lM could also be viewed as an S~1/1-module.) 

If P is a prime ideal of A, and S is the complement of p in A, then S is 
also denoted by Mp. 

It follows trivially from the definitions that if N -► M is an injective homo¬ 
morphism, then we have a natural injection S~lN -► S~ lM. In other words, if 
N is a submodule of M, then S-1N can be viewed as a submodule of S-1M. 
If x g N and s e 5, then the fraction x/s can be viewed as an element of S~1N 

or S~ lM. If x/s = 0 in 5“ 1M, then there exists sx e S such that stx = 0, and 
this means that x/s is also 0 in S~1N. Thus if p is a prime ideal and N is a sub- 
module of M, we have a natural inclusion of Np in Mv. We shall in fact identify 
Nv as a submodule of Mp. In particular, we see that Mp is the sum of its sub- 
modules (Ax)p9 for x e M (but of course not the direct sum). 

Let x g M. The annihilator a of x is the ideal consisting of all elements 
a e A such that ax = 0. We have an isomorphism (of modules) 

A/a ^ Ax 
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under the map 

a -* ax. 

Lemma 2.4. Let x be an element of a module M, and let a be its annihilator. 

Let p be a prime ideal of A. Then (Ax)p # 0 if and only if p contains a. 

Proof. The lemma is an immediate consequence of the definitions, and 
will be left to the reader. 

Let a be an element of A. Let M be a module. The homomorphism 

x t—> ax, x e M 

will be called the principal homomorphism associated with a, and will be de¬ 
noted by aM. We shall say that aM is locally nilpotent if for each xe M there 
exists an integer n(x) ^ 1 such that an{x)x = 0. This condition implies that 
for every finitely generated submodule N of M, there exists an integer n ^ 1 
such that anN = 0: We take for n the largest power of a annihilating a finite 
set of generators of N. Therefore, if M is finitely generated, aM is locally 

nilpotent if and only if it is nilpotent. 

Proposition 2.5. Let M be a module, a e A. Then aM is locally nilpotent 

if and only if a lies in every prime ideal p such that Mp # 0. 

Proof. Assume that aM is locally nilpotent. Let p be a prime of A such 
that Mp # 0. Then there exists xe M such that (Ax)p # 0. Let n be a positive 
integer such that anx = 0. Let a be the annihilator of x. Then an e a, and hence 
we can apply the lemma, and Corollary 4.3 to conclude that a lies in every prime 
p such that Mp # 0. Conversely, suppose aM is not locally nilpotent, so there 
exists x e M such that anx = 0 for all n ^ 0. Let S = {1, a, a2,. . .}, and 
using Proposition 2.1 let p be a prime not intersecting S. Then (Ax)p 4 0, so 
Mp 4 0 and a £ p, as desired. 

Let M be a module. A prime ideal p of A will be said to be associated with 
M if there exists an element x e M such that p is the annihilator of x. In par¬ 
ticular, since p # A, we must have x # 0. 

Proposition 2.6. Let M be a module # 0. Let p be a maximal element in the 

set of ideals which are annihilators of elements x e M, x # 0. Then p is prime. 

Proof. Let p be'the annihilator of the element x # 0. Then p # A. Let 
a9 b e A, ab e p, a $ p. Then ax # 0. But the ideal (b9 p) annihilates ax9 and 
contains p. Since p is maximal, it follows that b e p, and hence p is prime. 

Corollary 2.7. If A is Noether ian and M is a module 4= 0, then there exists 

a prime associated with M. 

Proof. The set of ideals as in Proposition 2.6 is not empty since M =£ 0, 
and has a maximal element because A is Noetherian. 
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Corollary 2.8. Assume that both A and M are Noetherian, M # 0. Then 

there exists a sequence of submodules 

M = Mj M2 => • • • 3 Mr = 0 

such that each factor module MJMi+1 is isomorphic to A/p( for some 

prime pt. 

Proof. Consider the set of submodules having the property described in 
the corollary. It is not empty, since there exists an associated prime p of M, 

and if p is the annihilator of x, then Ax » A/p. Let N be a maximal element in 
the set. If N # M, then by the preceding argument applied to M/N, there exists 
a submodule AT of M containing N such that N'/N is isomorphic to A/p for 
some p, and this contradicts the maximality of N. 

Proposition 2.9. Let A be Noetherian, and a e A. Let M be a module. 

Then aM is injective if and only if a does not lie in any associated prime of M. 

Proof. Assume that aM is not injective, so that ax = 0 for some xeM, 
x ± 0. By Corollary 2.7, there exists an associated prime p of Ax, and a is an 
element of p. Conversely, if aM is injective, then a cannot lie in any associated 
prime because a does not annihilate any non-zero element of M. 

Proposition 2.10. Let A be Noetherian, and let M be a module. Let a e A. 

The following conditions are equivalent: 

(i) aM is locally nilpotent. 

(ii) a lies in every associated prime of M. 

(iii) a lies in every prime p such that Mp ^ 0. 

If p is a prime such that Mp =£ 0, then p contains an associated prime of M. 

Proof. The fact that (i) implies (ii) is obvious from the definitions, and 
does not need the hypothesis that A is Noetherian. Neither does the fact that 
(iii) implies (i), which has been proved in Proposition 2.5. We must therefore 
prove that (ii) implies (iii) which is actually implied by the last statement. The 
latter is proved as follows. Let p be a prime such that A/p =£ 0. Then there exists 
x e M such that (Ax)p =£ 0. By Corollary 2.7, there exists an associated prime 
q of (Ax)p in A. Hence there exists an element y/s of (Ax)p, with y e Ax, 

s £p, and y/s =£ 0, such that q is the annihilator of y/s. It follows that q c= p, 
for otherwise, there exists b e q, b £ p, and 0 = by/s, whence y/s = 0, contra¬ 
diction. Let b\,... , bn be generators for q. For each i, there exists st e A, 

^ p, such that s,bty = 0 because bty/s = 0. Let t = sY • • • sn. Then it is 
trivially verified that q is the annihilator of ty in A. Hence q c= p, as desired. 

Let us define the support of M by 

supp(M) = set of primes p such that Mp # 0. 
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We also have the annihilator of M, 

ann(Af) = set of elements a s A such that aM = 0. 

We use the notation 

ass(M) = set of associated primes of M. 

For any ideal a we have its radical, 

rad(a) = set of elements as A such that an e a for some integer n ^ 1. 

Then for finitely generated M, we can reformulate Proposition 2.10 by the 
following formula: 

rad(ann(M)) = f| P = 0 P- 
pesupp(M) peass(M) 

Corollary 2.11. Let A be Noetherian, and let M be a module. The following 

conditions are equivalent: 

(i) There exists only one associated prime of M. 

(ii) We have M # 0, and for every as A, the homomorphism aM is injective, 

or locally nilpotent. 

If these conditions are satisfied, then the set of elements as A such that aM 

is locally nilpotent is equal to the associated prime of M. 

Proof. Immediate consequence of Propositions 2.9 and 2.10. 

Proposition 2.12. Let N be a submodule of M. Every associated prime of 

N is associated with M also. An associated prime of M is associated with N 

or with M/N. 

Proof. The first assertion is obvious. Let p be an associated prime of M, 

and say p is the annihilator of the element x # 0. If Ax n N = 0, then Ax is 
isomorphic to a submodule of M/N, and hence pis associated with M/N. Suppose 
Ax fl N =£ 0. Let y = ax s N with a e A and y =/= 0. Then p annihilates y. 

We claim p = ann(y). Let b s A and by = 0. Then ba s p but a £ p, so 
b e p. Hence p is the annihilator of y in A, and therefore is associated with 
N, as was to be shown. 
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§3. PRIMARY DECOMPOSITION 

We continue to assume that A is a commutative ring, and that modules (resp. 

homomorphisms) are A-modules (resp. A-homomorphisms), unless otherwise 

specified. 

Let M be a module. A submodule Q of M is said to be primary if Q # M, 
and if given a e A, the homomorphism aM/Q is either injective or nilpotent. 
Viewing A as a module over itself, we see that an ideal q is primary if and only 
if it satisfies the following condition: 

Given a, b e A, ab e q and a $ q, then bn e q for some n ^ 1. 

Let Q be primary. Let p be the ideal of elements ae A such that aM/Q is 
nilpotent. Then p is prime. Indeed, suppose that a, b e A, ab e p and a $ p. 
Then aM/Q is injective, and consequently anM/Q is injective for all n ^ 1. Since 
(ab)M/Q is nilpotent, it follows that bMIQ must be nilpotent, and hence that hep, 
proving that p is prime. We shall call p the prime belonging to Q, and also say 
that Q is p-primary. 

We note the corresponding property for a primary module Q with prime p: 

Let b e A and x e M be such that bx e Q. If x £ Q then b e p. 

Examples. Let m be a maximal ideal of A and let q be an ideal of A such 
that m^Cq for some positive integer k. Then q is primary, and m belongs to 
q. We leave the proof to the reader. 

The above conclusion is not always true if m is replaced by some prime ideal 
p. For instance, let R be a factorial ring with a prime element t. Let A be the 
subring of polynomials f(X) e R[X] such that 

f(X) = a0 + axX + ... 

with ax divisible by t. Let p = (tX, X2). Then p is prime but 

p2 = (f2X2, tX3, X4) 

is not primary, as one sees because X2 £ p2 but tk $ p2 for all k ^ 1, yet 
r2X2 e p2. 

Proposition 3.1. Let M be a module, and Qj, . . . , Qr submodules which are 

p-primary for the same prime p. Then Qx n • • • n Qr is also p-primary. 

Proof. Let Q = Qx n • • • n Qr. Let u 6 p. Let nt be such that (aM/Q)ni = 0 
for each i = 1,..., r and let n be the maximum of nl9..., nr. Then anM/Q = 0, 
so that aM/Q is nilpotent. Conversely, suppose a $ p. Let xeM, x £ Qj for 
some j. Then anx $ Q} for all positive integers n, and consequently aM/Q is 
injective. This proves our proposition. 
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Let iVbea submodule of M. When N is written as a finite intersection of 
primary submodules, say 

N = Qi n ••• n Qr, 

we shall call this a primary decomposition of N. Using Proposition 3.1, we 
see that by grouping the Q{ according to their primes, we can always obtain 
from a given primary decomposition another one such that the primes belonging 
to the primary ideals are all distinct. A primary decomposition as above such 
that the prime ideals p1?..., pr belonging to Qu ..., Qr respectively are distinct, 
and such that N cannot be expressed as an intersection of a proper subfamily 
of the primary ideals {Q t,..., Qr} will be said to be reduced. By deleting some* 
of the primary modules appearing in a given decomposition, we see that if N 

admits some primary decomposition, then it admits a reduced one. We shall 
prove a result giving certain uniqueness properties of a reduced primary 
decomposition. 

Let A be a submodule of M and let jc i—> jc be the canonical homomorphism. 
Let Q be a submodule of M — M/N and let Q be its inverse image in M. Then 
directly from the definition, one sees that Q is primary if and only if Q is primary; 
and if they are primary, then the prime belonging to Q is also the prime belonging 
to Q. Furthermore, if N = Qx D . . . D Qr is a primary decomposition of N in 
Af, then 

(0) = qx n ... n Qr 

is a primary decomposition of (0) in M, as the reader will verify at once from 
the definitions. In addition, the decomposition of N is reduced if and only if the 
decomposition of (0) is reduced since the primes belonging to one are the same 
as the primes belonging to the other. 

Let Qx n • • n Qr = N be a reduced primary decomposition, and let p, 
belong to Qt. If p, does not contain pf (j / i) then we say that pt is isolated. 

The isolated primes are therefore those primes which are minimal in the set 
of primes belonging to the primary modules Qt. 

Theorem 3.2. Let N be a submodule of M, and let 

N = <2i n ••• n Qr = Q\ n ••• n Q's 

be a reduced primary decomposition of N. Then r = s. The set of primes 

belonging to <21?.. •, Qr and Q\,..., Q'r is the same. If {pj,..., pm} is the 

set of isolated primes belonging to these decompositions, then Qt = Q\ for 

i = 1,..., m, in other words, the primary modules corresponding to isolated 

primes are uniquely determined. 

Proof. The uniqueness of the number of terms in a reduced decomposition 
and the uniqueness of the family of primes belonging to the primary components 
will be a consequence of Theorem 3.5 below. 
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There remains to prove the uniqueness of the primary module belonging 
to an isolated prime, say pv By definition, for each j = 2,..., r there exists 
a} e pj and a} $ pv Let a = a2 • • • ar be the product. Then a e pj for all j > 1, 
but a i p i. We can find an integer n ^ 1 such that anM/Q = 0 for j = 2,..., r. 
Let 

Nj = set of x e M such that anx e N. 

We contend that Qt = Nv This will prove the desired uniqueness. Let xeQv 

Then anx e Q{ n • • n Qr = N, so xe N v Conversely, let x e Nl9 so that 
anx g N, and in particular anxeQv Since a $pu we know by definition that 
aMjQx is injective. Hence xeQu thereby proving our theorem. 

Theorem 3.3. Let M be a Noetherian module. Let N be a submodule of 

M. Then N admits a primary decomposition. 

Proof. We consider the set of submodules of M which do not admit a 
primary decomposition. If this set is not empty, then it has a maximal element 
because Af is Noetherian. Let N be this maximal element. Then N is not 
primary, and there exists a e A such that aM/N is neither injective nor nilpotent. 
The increasing sequence of modules 

Ker aM/N <= Ker a2M/N c Ker a3M/N <= • • • 

stops, say at arM/N. Let (p \ M/N -► M/N be the endomorphism cp = arM/N. 

Then Ker (p2 = Ker cp. Hence 0 = Ker cp n Im cp in M/N, and neither the 
kernel nor the image of cp is 0. Taking the inverse image in M, we see that N is 
the intersection of two submodules of M, unequal to N. We conclude from the 
maximality of N that each one of these submodules admits a primary de¬ 
composition, and therefore that N admits one also, contradiction. 

We shall conclude our discussion by relating the primes belonging to a 
primary decomposition with the associated primes discussed in the previous 
section. 

Proposition 3.4. Let A and M be Noetherian. A submodule Q of M is 

primary if and only if M/Q has exactly one associated prime p, and in that 

case, p belongs to Q, i.e. Q is p-primary. 

Proof. Immediate consequence of the definitions, and Corollary 2.11. 

Theorem 3.5. Let A and M be Noetherian. The associated primes of M 

are precisely the primes which belong to the primary modules in a reduced 

primary decomposition of 0 in M. In particular, the set of associated primes 

of M is finite. 

Proof. Let 
0 = Qi n • • • n Qx 
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be a reduced primary decomposition of 0 in M. We have an injective homo¬ 
morphism 

M 0M/&. 
i= 1 

By Proposition 2.12 and Proposition 3.4, we conclude that every associated 
prime of M belongs to some Qt. Conversely, let N = Q2 n • n Qr. Then 
N # 0 because our decomposition is reduced. We have 

N = N/(N n Qx) » (N + SO/Si <= M/^. 

Hence N is isomorphic to a submodule of M/Qu and consequently has an 
associated prime which can be none other than the prime belonging to Qv 

This proves our theorem. 

Theorem 3.6. Let A be a Noetherian ring. Then the set of divisors of zero 

in A is the set-theoretic union of all primes belonging to primary ideals in a 

reduced primary decomposition of 0. 

Proof. An element of a e A is a divisor of 0 if and only if aA is not injective. 
According to Proposition 2.9, this is equivalent to a lying in some associated 
prime of A (viewed as module over itself). Applying Theorem 3.5 concludes the 
proof. 

§4. NAKAYAMA’S LEMMA 

We let A denote a commutative ring, but not necessarily Noetherian. 

When dealing with modules over a ring, many properties can be obtained 
first by localizing, thus reducing problems to modules over local rings. In practice, 
as in the present section, such modules will be finitely generated. This section 
shows that some aspects can be reduced to vector spaces over a field by reducing 
modulo the maximal ideal of the local ring. Over a field, a module always has 
a basis. We extend this property as far as we can to modules finite over a local 
ring. The first three statements which follow are known as Nakayama’s lemma. 

Lemma 4.1. Let a be an ideal of A which is contained in every maximal ideal 

of A. Let E be a finitely generated A-module. Suppose that aE = E. Then 

E = {0}. 
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Proof. Induction on the number of generators of E. Let xl9..., xs be 
generators of E. By hypothesis, there exist elements al9... 9 as e a such that 

xs = axxx + • • • + asxs, 

so there is an element a (namely as) in a such that (1 -f a)xs lies in the module 
generated by the first s — 1 generators. Furthermore 1 + a is a unit in A, 

otherwise 1 + a is contained in some maximal ideal, and since a lies in all 
maximal ideals, we conclude that 1 lies in a maximal ideal, which is not possible. 
Hence xs itself lies in the module generated by s - 1 generators, and the proof 
is complete by induction. 

Lemma 4.1 applies in particular to the case when A is a local ring, and 
a = m is its maximal ideal. 

Lemma 4.2. Let Abe a local ring, let E be a finitely generated A-module, and 

F a submodule. If E = F + mE, then E = F. 

Proof. Apply Lemma 4.1 to E/F. 

Lemma 4.3. Let A be a local ring. Let E be a finitely generated A-module. 

If X\, . . . , xn are generators for E mod m E, then they are generators for E. 

Proof. Take F to be the submodule generated by xl9 ..., x„. 

Theorem 4.4. Let A be a local ring and E a finite projective A-module. 

Then E is free. In fact, if xl9 ..., xn are elements of E whose residue classes 

Xj,..., xn are a basis of E/mE over A/m, then xl9..., xn are a basis of E 

over A. If xl9... 9 xr are such that xl9...,xr are linearly independent over 

A/m9 then they can be completed to a basis of E over A. 

Proof. I am indebted to George Bergman for the following proof of the 
first statement. Let F be a free module with basis el9 . . . , en9 and let/: F —> E 

be the homomorphism mapping et to x,-. We want to prove that /is an isomor¬ 
phism. By Lemma 4.3, / is surjective. Since E is projective, it follows that / 
splits, i.e. we can write F = P() © P\9 where P0 = Ker/and P\ is mapped 
isomorphically onto E by /. Now the linear independence of x\9 . . . , xn mod 
mE shows that 

Pa C mE = mP0 C m/V 

Hence Pa C mP(). Also, as a direct summand in a finitely generated module, P() 

is finitely generated. So by Lemma 4.3, P„ = (0) and /is an isomorphism, as 
was to be proved. 

As to the second statement, it is immediate since we can complete a given 
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sequence xx, ... 9 xr with xX9 ... 9xr linearly independent over A/m, to a 
sequence x\9 ... 9 xn with x\9 ... 9xn lineary independent over A/m, and then 
we can apply the first part of the proof. This concludes the proof of the theorem. 

Let £ be a module over a local ring A with maximal ideal m. We let 
E(m) = E/mE. If /:£-►£ is a homomorphism, then / induces a homo¬ 
morphism 

f(m): E(m) -» F(m). 

If / is surjective, then it follows trivially that f(m) is surjective. 

Proposition 4.5. Let f :E -*■ F be a homomorphism of modules, finite over a 

local ring A. Then: 

(i) If f(m) is surjective, so is f. 

(ii) Assume f is injective. If /(m) is surjective, then f is an isomorphism. 

(iii) Assume that E, F are free. 7//(m) is injective (resp. an isomorphism) then 

f is injective (resp. an isomorphism). 

Proof. The proofs are immediate consequences of Nakayama’s lemma and 
will be left to the reader. For instance, in the first statement, consider the exact 
sequence 

E -► F -► F/lm f -» 0 

and apply Nakayama to the term on the right. In (iii), use the lifting of bases 
as in Theorem 4.4. 

§5. FILTERED AND GRADED MODULES 

Let A be a commutative ring and E a module. By a filtration of E one means 
a sequence of submodules 

E = E0 zd Ex zd E2 • • • =5 En => • • • 

Strictly speaking, this should be called a descending filtration. We don’t 
consider any other. 

Example. Let a be an ideal of a ring A, and E an /4-module. Let 

En = anE. 

Then the sequence of submodules {£„} is a filtration. 

More generally, let {£„} be any filtration of a module E. We say that it is 
an a-filtration if aEn c En+l for all n. The preceding example is an a-filtration. 
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We say that an a-filtration is a-stable, or stable if we have aEn = En+1 for all n 

sufficiently large. 

Proposition 5.1. Let {En} and {E'n} be stable a-filtrations of E. Then there 

exists a positive integer d such that 

En+d cz E'n and E'n+d cz En 

for all n ^ 0. 

Proof. It suffices to prove the proposition when En = anE. Since 
aEn cz En+i for all n, we have anE cz En. By the stability hypothesis, there 
exists d such that 

En + d = anEd cz anE, 

which proves the proposition. 

A ring A is called graded (by the natural numbers) if one can write A as a 
direct sum (as abelian group), 

A = ©M„, 
n = 0 

such that for all integers m, n 7> 0 we have AnAm cz An+m. It follows in par¬ 
ticular that A0 is a subring, and that each component An is an A0-module. 

Let A be a graded ring. A module E is called a graded module if E can be 
expressed as a direct sum (as abelian group) 

E = © En, 
n = 0 

such that AnEm cz En+m. In particular, En is an A0-module. Elements of En are 
then called homogeneous of degree n. By definition, any element of E can be 
written uniquely as a finite sum of homogeneous elements. 

Example. Let k be a field, and let X0,..., Xr be independent variables. 
The polynomial ring A = k[X0,..., Xr~\ is a graded algebra, with k = A0. 

The homogeneous elements of degree n are the polynomials generated by the 
monomials in X0i..., Xr of degree n, that is 

r 

X%> • • • Xd/ with X di = "• 
i = 0 

An ideal / of A is called homogeneous if it is graded, as an A-module. If this 
is the case, then the factor ring A/I is also a graded ring. 

Proposition 5.2. Let A be a graded ring. Then A is Noetherian if and only 

if A0 is Noetherian, and A is finitely generated as A0-algebra. 
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Proof. A finitely generated algebra over a Noetherian ring is Noetherian, 
because it is a homomorphic image of the polynomial ring in finitely many 
variables, and we can apply Hilbert’s theorem. 

Conversely, suppose that A is Noetherian. The sum 

A+ = ®A„ 
n= 1 

is an ideal of A, whose residue class ring is A0, which is thus a homomorphic 
image of A, and is therefore Noetherian. Furthermore, A+ has a finite number 
of generators xl9..., xs by hypothesis. Expressing each generator as a sum of 
homogeneous elements, we may assume without loss of generality that these 
generators are homogeneous, say of degrees dl9..., d5 respectively, with all 
d( > 0. Let B be the subring of A generated over A0 by xl9..., xs. We claim 
that An a B for all n. This is certainly true for n = 0. Let n > 0. Let x be 
homogeneous of degree n. Then there exist elements at e An_di such that 

s 

x = 
i = 1 

Since dt > 0 by induction, each ax is in A0[xx,..., xj = B, so this shows x e B 

also, and concludes the proof. 

We shall now see two ways of constructing graded rings from filtrations. 
First, let A be a ring and a an ideal. We view A as a filtered ring, by the 

powers a”. We define the first associated graded ring to be 

S.(A) = S = 0 a". 
n = 0 

Similarly, if E is an /1-module, and E is filtered by an a-filtration, we define 

Es= ©£„• 
n = 0 

Then it is immediately verified that Es is a graded S-module. 
Observe that if A is Noetherian, and a is generated by elements xl9... 9xs 

then S is generated as an /1-algebra also by xl9..., xs, and is therefore also 
Noetherian. 

Lemma 5.3. Let A be a Noetherian ring, and E a finitely generated module, 
with an a-filtration. Then Es is finite over S if and only if the filtration of E 

is a-stable. 

Fn=@Ei, 

Proof. Let 
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and let 

G„ = E0 © • • • ® En © aEn © a2E„ © a3E„ © • • • 

Then Gn is an S-submodule of £s, and is finite over S since Fn is finite over A. 

We have 

Gn c Gn + 1 and U Gn = Es. 

Since S is Noetherian, we get: 

Es is finite over S <=> Es = GN for some N 

oEN + m = for all m ^ 0 

<=> the filtration of E is a-stable. 

This proves the lemma. 

Theorem 5.4. (Artin-Rees). Let A be a Noetherian ring, a an ideal, E a 

finite A-module with a stable a-filtration. Let F be a submodule, and let 

Fn = F n En. Then {Fn} is a stable a-filtration of F. 

Proof. We have 

a(F n £,,) a aF n aEn a F n £„+,, 

so {£„} is an a-filtration of F. We can then form the associated graded S-module 
Fs,which is a submodule of Es, and is finite over S since S is Noetherian. We 
apply Lemma 5.3 to conclude the proof. 

We reformulate the Artin-Rees theorem in its original form as follows. 

Corollary 5.5. Let A be a Noetherian ring, E a finite A-module, and F a 

submodule. Let a be an ideal. There exists an integer s such that for all 

integers n ^ s we have 

anE nF = an~\asE n £). 

Proof. Special case of Theorem 5.4 and the definitions. 

Theorem 5.6. (Krull). Let A be a Noetherian ring, and let a be an ideal 

contained in every maximal ideal of A. Let E be a finite A-module. Then 

n <*"£ = o. 
n = 1 

Proof. Let £ = (°) anE and apply Nakayama’s lemma to conclude the 
proof. 
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Corollary 5.7. Let o be a local Noetherian ring with maximal ideal m. Then 

f) m" = 0. 
n = 1 

Proof. Special case of Theorem 5.6 when E = A. 

The second way of forming a graded ring or module is done as follows. Let 
A be a ring and a an ideal of A. We define the second associated graded ring 

gr „04)= ©an/a" + 1. 
n = 0 

Multiplication is defined in the obvious way. Let a e an and let a denote its 
residue class mod an+l. Let beam and let h denote its residue class mod am+1. 

We define the product ah to be the residue class of ab mod am+n+l. It is easily 
verified that this definition is independent of the choices of representatives and 
defines a multiplication on gr0(/4) which makes gra(A) into a graded ring. 

Let £ be a filtered /1-module. We define 

gr (£)= ©£„/£„+!• 
n = 0 

If the filtration is an a-filtration, then gr(£) is a graded gr0(/l)-module. 

Proposition 5.8. Assume that A is Noetherian, and let a be an ideal of A. 

Then gra(/l) is Noetherian. IfE is a finite A-module with a stable a-filtration, 
then gr(£) is a finite gra(A)-module. 

Proof. Let xl9..., xs be generators of a. Let x, be the residue class of xf 
in a/a2. Then 

gra(/l) = (A/a)[xu ..., xs] 

is Noetherian, thus proving the first assertion. For the second assertion, we 
have for some d, 

Ed+m = amEd for all m ^ 0. 

Hence gr(£) is generated by the finite direct sum 

gr(£)0 ® • • • © gr(E)d. 

But each gr(£)„ = En/En+1 is finitely generated over A, and annihilated by a, 
so is a finite /1/a-module. Hence the above finite direct sum is a finite A/a- 

module, so gr(£) is a finite gr0(4)-module, thus concluding the proof of the 
proposition. 
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§6. THE HILBERT POLYNOMIAL 

The main point of this section is to study the lengths of certain filtered 
modules over local rings, and to show that they are polynomials in appropriate 
cases. However, we first look at graded modules, and then relate filtered 
modules to graded ones by using the construction at the end of the preceding 
section. 

We start with a graded Noetherian ring together with a finite graded A-module 
E, so 

oc oc 

A = © An and E = 0 En- 
n =0 n=0 

We have seen in Proposition 5.2 that A0 is Noetherian, and that A is a finitely 
generated A0-algebra. The same type of argument shows that £ has a finite number 
of homogeneous generators, and En is a finite A0-module for all n ^ 0. 

Let <p be an Euler-Poincare Z-valued function on the class of all finite 
A0-modules, as in Chapter III, §8. We define the Poincare series with respect 
to <p to be the power series 

P„(E,t)= I <p(EX e Z[[t]]. 
n = 0 

We write P(E, t) instead of P^E, t) for simplicity. 

Theorem 6.1. (Hilbert-Serre). Let s be the number of generators of A as 

A0-algebra. Then P(£, t) is a rational function of type 

P(E, 0 = 
m 

fi (l - td o 

with suitable positive integers d{, and f(t) e Z[t]. 

Proof. Induction on s. For s = 0 the assertion is trivially true. Let s= 1. 
Let A = AqU,, ..., deg. x, = d, g 1. Multiplication by xs on E gives rise 
to an exact sequence 

0 K„ En * En + a En+is -»0. 

Let 

K = @K„ and L = @L„. 
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Then K, L are finite A-modules (being submodules and factor modules of E), 
and are annihilated by xs, so are in fact graded A0[x1? . . . , x^-J-modules. By 
definition of an Euler-Poincare function, we get 

cp(Kn) - (p(En) + (p(En+ds) - (p(Ln + ds) = 0. 

Multiplying by tn+ds and summing over n, we get 

(1 - td*)P(E, t) = P(L, t) - tdsP(K, t) + tft), 

where g(r) is a polynomial in Z[r]. The theorem follows by induction. 

Remark. In Theorem 6.1, if A = A0[xu ..., xs] then d( = deg x, as shown 
in the proof. The next result shows what happens when all the degrees are 
equal to 1. 

Theorem 6.2. Assume that A is generated as an A0-algebra by homogeneous 

elements of degree 1. Let d be the order of the pole of P(E, t) at t = 1. Then 

for all sufficiently large n, (p(En) is a polynomial in n of degree d — 1. (For 

this statement, the zero polynomial is assumed to have degree — 1.) 

Proof By Theorem 6.1, <p(En) is the coefficient of tn in the rational function 

p(£, t) = f(t)/( i - ty. 

Cancelling powers of 1 - t, we write P(£, t) = h(t)/(\ - t)d, and h( 1)^0, with 
h(t) e Z[f]. Let 

mo = X aktk 

We have the binomial expansion 

IC; -7 > 
For convenience we let ^ = 0 for n ^ 0 and ^ = 1 for n = — 1. We 

then get 

^ (d + n — k — l\ 
<P(E„) = X a*( _ j j for al] n ^ m. 

The sum on the right-hand side is a polynomial in n with leading term 

(Za*) 
„d- 1 

(d - l)! 
# 0. 

This proves the theorem. 
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The polynomial of Theorem 6.2 is called the Hilbert polynomial of the 
graded module £, with respect to <p. 

We now put together a number of results of this chapter, and give an application 
of Theorem 6.2 to certain filtered modules. 

Let A be a Noetherian local ring with maximal ideal m. Let q be an m- 
primary ideal. Then A/q is also Noetherian and local. Since some power of m 
is contained in q, it follows that A/q has only one associated prime, viewed as 
module over itself, namely m/q itself. Similarly, if M is a finite A/q-module, 
then M has only one associated prime, and the only simple /4/q-module is in 
fact an ,4/m-module which is one-dimensional. Again since some power of m 
is contained in q, it follows that A/q has finite length, and M also has finite 
length. We now use the length function as an Euler-Poincare function in 
applying Theorem 6.2. 

Theorem 6.3. Let A be a Noetherian local ring with maximal ideal m. 
Let q be an m-primary ideal, and let E be a finitely generated A-module, with 

a stable q-filtration. Then: 

(i) E/En has finite length for n ^ 0. 

(ii) For all sufficiently large n, this length is a polynomial g(ri) of degree ^ s, 
where s is the least number of generators of q. 

(iii) The degree and leading coefficient of g(n) depend only on E and q, but not 

on the chosen filtration. 

Proof. Let 

G = grq(^l) = ®q7q"+1. 

Then gr(£) = ® EJEn+i is a graded G-module, and G0 = A/q. By Proposition 
5.8, G is Noetherian and gr(£) is a finite G-module. By the remarks preceding 
the theorem, E/En has finite length, and if cp denotes the length, then 

cp(E/En)= t<P(Ej-i/Ej). 
j= i 

If x,,..., xs generate q, then the images xl9..., xs in q/q2 generate G as A/q- 

algebra, and each xf has degree 1. By Theorem 6.2 we see that 

(p(EJEn+1) = h{n) 

is a polynomial in n of degree ^ 5 — 1 for sufficiently large n. Since 

<p(E/En+l) - <p(E/En) = h(n), 

it follows by Lemma 6.4 below that (p(E/En) is a polynomial g(n) of degree 
^ s for all large n. The last statement concerning the independence of the degree 
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of g and its leading coefficient from the chosen filtration follows immediately 
from Proposition 5.1, and will be left to the reader. This concludes the proof. 

From the theorem, we see that there is a polynomial Xe,q such that 

Xe,» = length(£/q"E) 

for all sufficiently large n. If E = A, then ^ q is usually called the characteristic 
polynomial of q. In particular, we see that 

Xa.„( «) = length(/f/q") 

for all sufficiently large n. 

For a continuation of these topics into dimension theory, see [AtM 69] and 
[Mat 80]. 

We shall now study a particularly important special case having to do with 
polynomial ideals. Let k be a field, and let 

A = k[X0, ...,XN] 

be the polynomial ring in N + 1 variable. Then A is graded, the elements of 
degree n being the homogeneous polynomials of degree n. We let a be a homo¬ 
geneous ideal of A, and for an integer n ^ 0 we define: 

<p(n) = dim* An 

<p(n, a) = dim* an 

X(n, a) = dim* An/an = dim* An - dim* an = q>(n) - <p(n, a). 

As earlier in this section, An denotes the k-space of homogeneous elements of 
degree n in A, and similarly for a„. Then we have 

(N + n\ 

^ ~ \ N / 

We shall consider the binomial polynomial 

(T\ _T(T - l) (T - d + 1) Td 
(1) ^dJ ~-+ lower terms- 

If/is a function, we define the difference function A/by 

Af(T) = f(T + 1) — f(T). 

Then one verifies directly that 
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Lemma 6.4. Let P e Q[T] be a polynomial of degree d with rational 

coefficients. 

(a) If P{n) E Z for all sufficiently large integers n, then there exist integers 

c0, , cd such that 

,m-‘*C)+e'C-,) + 
In particular, P(n) e Z for all integers n. 

(b) Iff: Z —» Z is any function, and if there exists a polynomial Q(T) e Q|T] 
such that Q(Z) C Z and Af(n) = Q(n) for all n sufficiently large, then 

there exists a polynomial P as in (a) such thatf(n) = P(n)for all n sufficiently 

large. 

Proof. We prove (a) by induction. If the degree of P is 0, then the assertion 
is obvious. Suppose deg P ^ 1. By (1) there exist rational numbers c0,. . . , cd 

such that P(T) has the expression given in (a). But AP has degree strictly smaller 
than deg P. Using (2) and induction, we conclude that c0,. .., cd-x must be 
integers. Finally cd is an integer because P(n) e Z for n sufficiently large. This 
proves (a). 

As for (b), using (a), we can write 

&t)=c°C_ i)+ •••+ c“-' 

with integers c0,.. ., cd-x. Let Pl be the “integral” of Q, that is 

Pi(T) = c0Q + • • • + Q_,Q, so AP, = Q. 

Then A(/ - P\)(n) = 0 for all n sufficiently large. Hence (/ - P{)(n) is equal 

to a constant cd for all n sufficiently large, so we let P = Px + cd to conclude 
the proof. 

Proposition 6.5. Let a, b be homogeneous ideals in A. Then 

<p(n, a + b) = (p(n, a) + <p(n, b) — (p(n9 a fl b) 

X(n9 a + b) = x(n9 a) + x(”> b) - x(n> a H b). 

Proof. The first is immediate, and the second follows from the definition 
of 
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Theorem 6.6. Let F be a homogeneous polynomial of degree d. Assume that 
F is not a divisor of zero mod a, that is: if G e A, FG e a, then G e a. Then 

X(n, + (F)) = ^(n,Q) - *(" - d, a). 

Proo/. First observe that trivially 

<p(n, (F)) = <p(n - d), 

because the degree of a product is the sum of the degrees. Next, using the 
hypothesis that F is not divisor of 0 mod a, we conclude immediately 

(pin, a fl (F)) = (pin - d, a). 

Finally, by Proposition 6.5 (the formula for *), we obtain: 

X(n, a + (F)) = x(n> <*) + *("> (F)) - *("> a H (F)) 

= x(n> a) + 9(«) “ (pin, (F)) - (pin) + (pin, a fl (F)) 

= Xin, a) “ (pin - d) + <p(n - d,a) 

= x(n, a) - - J,a) 

thus proving the theorem. 

We denote by m the maximal ideal m = (X0,..., Xyv) in A. We call m the 
irrelevant prime ideal. An ideal is called irrelevant if some positive power of 
m is contained in the ideal. In particular, a primary ideal q is irrelevant if and 
only if m belongs to q. Note that by the Hilbert nullstellensatz, the condition 
that some power of m is contained in a is equivalent with the condition that the 
only zero of a (in some algebraically closed field containing k) is the trivial zero. 

Proposition 6.7. Let a be a homogeneous ideal. 
(a) If a is irrelevant, then x(n, a) = 0 for n sufficiently large. 
(b) In general, there is an expression a = q j fl ... C\qsas a reduced primary 

decomposition such that all qi are homogeneous. 
(c) If an irrelevant primary ideal occurs in the decomposition, let b be the 

intersection of all other primary ideals. Then 

X(n, a) = x(n, b) 

for all n sufficiently large. 

Proof. For (a), by assumption we have An = a„ for n sufficiently large, so 
the assertion (a) is obvious. We leave (b) as an exercise. As to (c), say qs is 
irrelevant, and let b = q{ fl . . . fl q5_P By Proposition 6.5, we have 

X(n, b + qs) = x(n, b) + x(n, qs) ~ x(n> <>). 

But b + qs is irrelevant, so (c) follows from (a), thus concluding the proof. 
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We now want to see that for any homogeneous ideal a the function / such 
that 

f(n) = *(«, a) 

satisfies the conditions of Lemma 6.4(b). First, we observe that if we change 
the ground field from k to an algebraically closed field K containing k, and we 
let Ak — K[Xq, . . . , Xyy], ak = Kb* then 

dim* A„ = dim* AK n and dim* a„ = dim* a* 

Hence we can assume that k is algebraically closed. 
Second, we shall need a geometric notion, that of dimension. Let V be a 

variety over k, say affine, with generic point (*) = (*,,..., xN). We define its 
dimension to be the transcendence degree of k(x) over k. For a projective variety, 
defined by a homogeneous prime ideal p, we define its dimension to be the 
dimension of the homogeneous variety defined by p minus 1. 

We now need the following lemma. 

Lemma 6.8. Let V, W be varieties over a field k. 

IfVDW and dim V = dim W, then V = W. 

Proof. Say V, W are in affine space AN. Letpv and pw be the respective 
prime ideals of V and W in k[X]. Then we have a canonical homomorphism 

k[X]/Pv « k[x] k[y] - k[X]/pw 

from the affine coordinate ring of V onto the affine coordinate ring of W. If the 
transcendence degree of /:(*) is the same as that of k(y), and say y{,. . . , yr form 
a transcendence basis of £(y) over k, then jcl5..., xr is a transcendence basis 
of k(x) over k, the homomorphism k[x] —> /:[y] induces an isomorphism 

/;[*!,. .., xr] A *[^j,. .'. , yr], 

and hence an isomorphism on the finite extension k[x] to k[y], as desired. 

Theorem 6.9. Let a be a homogeneous ideal in A. Let r be the maximum 

dimension of the irreducible components of the algebraic space in projective 

space defined by a. Then there exists a polynomial P e Q[T] of degree ^ r, 
such that P(Z) C Z, and such that 

P(n) = x(n, a) 

for all n sufficiently large. 
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Proof. By Proposition 6.7(c), we may assume that no primary component 
in the primary decomposition of a is irrelevant. Let Z be the algebraic space of 
zeros of a in projective space. We may assume k algebraically closed as noted 
previously. Then there exists a homogeneous polynomial L e k[X] of degree 1 
(a linear form) which does not lie in any of the prime ideals belonging to the 
primary ideals in the given decomposition. In particular, L is not a divisor of 
zero mod a. Then the components of the algebraic space of zeros of a + (L) 
must have dimension ^ r — 1. By induction and Theorem 6.6, we conclude 
that the difference 

X(n, a) - x(n “ L a) 

satisfies the conditions of Lemma 6.4(b), which concludes the proof. 

The polynomial in Theorem 6.9 is called the Hilbert polynomial of the 
ideal a. 

Remark. The above results give an introduction for Hartshorne’s [Ha 77], 
Chapter I, especially §7. If Z is not empty, and if we write 

nr 
X(n, a) = c— + lower terms, 

then c > 0 and c can be interpreted as the degree of Z, or in geometric terms, 
the number of points of intersection of Z with a sufficiently general linear variety 
of complementary dimension (counting the points with certain multiplicities). 
For explanations and details, see [Ha77], Chapterl, Proposition 7.6 and Theorem 
7.7; van der Waerden [vdW 29] which does the same thing for multihomogeneous 
polynomial ideals; [La 58], referred to at the end of Chapter VIII, §2; and the 
papers [MaW 85], [Ph 86], making the link with van der Waerden some six 
decades before. 
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§7. INDECOMPOSABLE MODULES 

Let A be a ring, not necessarily commutative, and E an /4-module. We 
say that E is Artinian if E satisfies the descending chain condition on sub- 
modules, that is a sequence 

Et ZD E2 =5 £3 ... 

must stabilize: there exists an integer N such that if n ^ N then En = En+1. 

Example 1. If k is a field, A is a /c-algebra, and £ is a finite-dimensional 
vector space over k which is also an /4-module, then E is Artinian as well as 
Noetherian. 

Example 2. Let A be a commutative Noetherian local ring with maximal 
ideal m, and let q be an m-primary ideal. Then for every positive integer n, 
A/qn is Artinian. Indeed, A/qn has a Jordan-Holder filtration in which each 
factor is a finite dimensional vector space over the field /4/m, and is a module 
of finite length. See Proposition 7.2. 

Conversely, suppose that A is a local ring which is both Noetherian and 
Artinian. Let m be the maximal ideal. Then there exists some positive integer 
n such that m" = 0. Indeed, the descending sequence m" stabilizes, and 
Nakayama’s lemma implies our assertion. It then also follows that every 
primary ideal is nilpotent. 

As with Noetherian rings and modules, it is easy to verify the following 
statements: 

Proposition 7.1. Let A be a ring, and let 

0 _► E' E - E" - 0 

be an exact sequence of A-modules. Then E is Artinian if and only if E' and 

E" are Artinian. 

We leave the proof to the reader. The proof is the same as in the Noetherian 
case, reversing the inclusion relations between modules. 

Proposition 7.2. A module E has a finite simple filtration if and only if E 

is both Noetherian and Artinian. 

Proof. A simple module is generated by one element, and so is Noetherian. 
Since it contains no proper submodule =£ 0, it is also Artinian. Proposition 7.2 
is then immediate from Proposition 7.1. 

A module E is called decomposable if E can be written as a direct sum 

E = Ex 0 E2 
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with Ex # E and E2 # E. Otherwise, E is called indecomposable. If E is 
decomposable as above, let e{ be the projection on the first factor, and 
e2 = 1 — ex the projection on the second factor. Then ei9 e2 are idempotents 
such that 

el #1, e2 ^ ex + e2 = 1 and ele2 = e2ex = 0. 

Conversely, if such idempotents exist in End(£) for some module £, then E is 
decomposable, and e{ is the projection on the submodule etE. 

Let u: E -> E be an endomorphism of some module E. We can form the 
descending sequence 

Im w d Im m2 d Im m3 d • • . 

If E is Artinian, this sequence stabilizes, and we have 

Im un = Im un+i for all sufficiently large n. 

We call this submodule u°°(£), or Im u00. 
Similarly, we have an ascending sequence 

Ker u c= Ker u2 c Ker u3 a • • • 

which stabilizes if E is Noetherian, and in this case we write 

Ker w00 = Ker un for n sufficiently large. 

Proposition 7.3. (Fitting’s Lemma). Assume that E is Noetherian and 
Artinian. Let u e End(£). Then E has a direct sum decomposition 

E = Im w00 © Ker u00. 

Furthermore, the restriction ofutolmu™ is an automorphism, and the restric¬ 
tion of u to Ker w00 is nilpotent. 

Proof. Choose n such that Im w00 = Im un and Ker w00 = Ker un. We 
have 

Im u00 n Ker u00 = {0}, 

for if x lies in the intersection, then x = un(y) for some y e £, and then 
0 = un(x) = u2n(y). So y e Ker u2n = Ker un9 whence x = un{y) = 0. 

Secondly, let xe E. Then for some y e un(E) we have 

un(x) = un(y). 
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Then we can write 

x = x - un(y) 4- un(y\ 

which shows that E = Im w00 + Ker w00. Combined with the first step of the 
proof, this shows that £ is a direct sum as stated. 

The final assertion is immediate, since the restriction of u to Im w00 is sur¬ 
jective, and its kernel is 0 by the first part of the proof. The restriction of u to 
Ker w00 is nilpotent because Ker w00 = Ker un. This concludes the proof of the 
proposition. 

We now generalize the notion of a local ring to a non-commutative ring. 
A ring A is called local if the set of non-units is a two-sided ideal. 

Proposition 7.4. Let E be an indecomposable module over the ring A. Assume 

E Noetherian and Artinian. Any endomorphism of E is either nilpotent or an 

automorphism. Furthermore End(F) is local. 

Proof. By Fitting’s lemma, we know that for any endomorphism u, we 
have E = Im w00 or E = Ker w00. So we have to prove that End(F) is local. 
Let u be an endomorphism which is not a unit, so u is nilpotent. For any 
endomorphism v it follows that uv and vu are not surjective or injective respec¬ 
tively, so are not automorphisms. Let uu u2 be endomorphisms which are not 
units. We have to show ut 4- u2 is not a unit. If it is a unit in End(F), let 
vt = ufux 4- w2)_1. Then vt 4- v2 = 1. Furthermore, vx = 1 — v2 is invertible 
by the geometric series since v2 is nilpotent. But vx is not a unit by the first part 
of the proof, contradiction. This concludes the proof. 

Theorem 7.5. (Krull-Remak-Schmidt). Let E # 0 be a module which is 

both Noetherian and Artinian. Then E is a finite direct sum of indecomposable 

modules. Up to a permutation, the indecomposable components in such a 

direct sum are uniquely determined up to isomorphism. 

Proof. The existence of a direct sum decomposition into indecomposable 
modules follows from the Artinian condition. If first E = E{ ® E2, then either 
Ej, E2 are indecomposable, and we are done; or, say, Ex is decomposable. 
Repeating the argument, we see that we cannot continue this decomposition 
indefinitely without contradicting the Artinian assumption. 

There remains to prove uniqueness. Suppose 

E = E, 0 • • • 0 Er = Fx 0 • • • © Fs 

where Ei9 Fj are indecomposable. We have to show that r = s and after some 
permutation, £, « F,. Let e{ be the projection of E on Ei9 and let Uj be the 
projection of E on Fj9 relative to the above direct sum decompositions. Let: 
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Then £ Uj = id£ implies that 

I.vJwj\El = id£l. 
j= 1 

By Proposition 7.4, End^) is local, and therefore some VjWj is an automor¬ 
phism of Ev After renumbering, we may assume that is an automorphism 
of Ev We claim that v{ and Wj induce isomorphisms between Ex and Fu 

This follows from a lemma. 

Lemma 7.6. Let Af, N be modules, and assume N indecomposable. Let 

u: M -> N and v: N -► M fee such that vu is an automorphism. Then w, v 

are isomorphisms. 

Proof. Let e = u(vu)~lv. Then e2 = e is an idempotent, lying in End(Af), 
and therefore equal to 0 or 1 since N is assumed indecomposable. But e # 0 
because idM # 0 and 

0 # idM = id^ = (vu) lvu(vu) 1vu. 

So e = idN. Then u is injective because vu is an automorphism; v is injective 
because e = idN is injective; u is surjective because e = id^; and v is surjective 
because vu is an automorphism. This concludes the proof of the lemma. 

Returning to the theorem, we now see that 

E = F, © (E2 ® • • • ® Er). 

Indeed, ex induces an isomorphism from Fx to Eu and since the kernel of ex 

is E2 ® • • • ® Er it follows that 

Fj n (E2 © • • • © Er) = 0. 

But also, Fj = E{ (mod E2 ® • • • ® Fr), so E is the sum of Fx and E2 © • • • © Fr, 
whence E is the direct sum, as claimed. But then 

E/Fl « F2 ® • • • ® Fs ^ E2 © • • • © Er. 

The proof is then completed by induction. 

We apply the preceding results to a commutative ring A. We note that an 
idempotent in A as a ring is the same thing as an idempotent as an element of 
End(A), viewing A as module over itself. Furthermore End(A) « A. Therefore, 
we*find the special cases: 

Theorem 7.7. Let A be a Noetherian and Artinian commutative ring. 
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(i) If A is indecomposable as a ring, then A is local 

(ii) In general A is a direct product of local rings, which are Artinian and 

Noetherian. 

Another way of deriving this theorem will be given in the exercises. 

EXERCISES 

1. Let A be a commutative ring. Let M be a module, and N a submodule. Let 
N = Q{ n • • • n Qr be a primary decomposition of N. Let (?, = QJN. Show that 
0 = Q{ n • • • n Qr is a primary decomposition of 0 in M/N. State and prove the 

converse. 

2. Let p be a prime ideal, and a, b ideals of A. If ab c: p, show that q c p or b c p. 

3. Let q be a primary ideal. Let a, b be ideals, and assume ab c q. Assume that b is 
finitely generated. Show that acqor there exists some positive integer n such that 

b" c q. 

4. Let A be Noetherian, and let q be a p-primary ideal. Show that there exists some n ^ 1 

such that p" c: q. 

5. Let A be an arbitrary commutative ring and let S be a multiplicative subset. Let p 
be a prime ideal and let q be a p-primary ideal. Then p intersects S if and only if q 
intersects S. Furthermore, if q does not intersect S, then S-1q is S' ^-primary in 

S~ lA. 

6. If a is an ideal of A, let as = S' *a. If (ps : A -> S'1A is the canonical map, abbreviate 
cps !(as) by as n A, even though <ps is not injective. Show that there is a bijection 
between the prime ideals of A which do not intersect S and the prime ideals of S'1 A, 

given by 

p i—► ps and ps i-> ps n /t = p. 

Prove a similar statement for primary ideals instead of prime ideals. 

7. Let a = qj n • • • n qr be a reduced primary decomposition of an ideal. Assume that 
q,,..., q, do not intersect S, but that q^ intersects S for j > i. Show that 

= QlS n n QiS 

is a reduced primary decomposition of as. 

8. Let A be a local ring. Show that any idempotent ^ 0 in A is necessarily the unit 
element. (An idempotent is an element e e A such that e2 = e.) 

9. Let A be an Artinian commutative ring. Prove: 
(a) All prime ideals are maximal. [Hint : Given a prime ideal p, let x e A, x(p) = 0. 

Consider the descending chain (x) => (x2) => (x3) => • • •.] 
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(b) There is only a finite number of prime, or maximal, ideals. [Hint: Among all 
finite intersections of maximal ideals, pick a minimal one.] 

(c) The ideal N of nilpotent elements in A is nilpotent, that is there exists a positive 
integer k such that Nk = (0). [Hint: Let k be such that Nk = Nk +'. Let a = Nk. 
Let b be a minimal ideal # 0 such that bo ^ 0. Then b is principal and bo = b.] 

(d) A is Noetherian. 
(e) There exists an integer r such that 

A = f] A/mr 

where the product is taken over all maximal ideals. 

(f) We have 

a = rk 
where again the product is taken over all prime ideals p. 

10. Let A, B be local rings with maximal ideals m^, mfl, respectively. Let/: A -> B be a 
homomorphism. We say that / is local if f~\mB) = mA. Suppose this is the case. 
Assume A, B Noetherian, and assume that: 

1. A/\\\a -> B/\\\h is an isomorphism, 

2. -> mw/mg is surjective: 

3. B is a finite /1-module, via f. 

Prove that f is surjective. [Hint: Apply Nakayama twice.] 

For an ideal a, recall from Chapter IX, §5 that (a) is the set of primes containing a. 

11. Let A be a commutative ring and M an /1-module. Define the support of M by 

supp(M) = {p e spec(/l): Mp ^ 0}. 

If M is finite over A, show that supp(M) = (ann(M)), where ann(M) is the annihilator 
of M in A, that is the set of elements a El A such that aM = 0. 

12. Let A be a Noetherian ring and M a finite A-module. Let / be an ideal of A such that 
supp(Af) C^(/). Then InM ~ 0 for some n > 0. 

13. Let A be any commutative ring, and M, N modules over A. If M is finitely presented, 
and S is a multiplicative subset of A, show that 

S_1 Horna(M, N) « Homs-M(S-1M, S~lN). 

This is usually applied when A is Noetherian and M finitely generated, in which case 
M is also finitely presented since the module of relations is a submodule of a finitely 
generated free module. 

14. (a) Prove Proposition 6.7(b). 
(b) Prove that the degree of the polynomial P in Theorem 6.9 is exactly r. 

Locally constant dimensions 

15. Let A be a Noetherian local ring. Let £ be a finite A-module. Assume that A has no 
nilpotent elements. For each prime ideal p of A, let k(p) be the residue class field. If 
dimMp) £p/p£p is constant for all p, show that E is free. [Hint: Let x,,..., xr e A be 
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such that the residue classes mod the maximal ideal form a basis for £/m£ over k(m). 
We get a surjective homomorphism 

0. 

Let J be the kernel. Show that Jp c mpAp for all p so J c= p for all p and J = 0.] 

16. Let A be a Noetherian local ring without nilpotent elements. Let/: E -> F be a homo¬ 
morphism of A -modules, and suppose £, F are finite free. For each prime p of A let 

/<p) : EJpEp -> Fp/pFp 

be the corresponding /c(p)-homomorphism, where k(p) = AJpAp is the residue class 
field at p. Assume that 

dimJ(p) Im /„, 

is constant. 
(a) Prove that FjIm /and Im / are free, and that there is an isomorphism 

F * Im / © (F/Im /). 

[////if: Use Exercise 15.] 

(b) Prove that Ker / is free and E « (Ker /) ® (Im /). [if/m: Use that finite 
projective is free.] 

The next exercises depend on the notion of a complex, which we have not yet formally 
defined. A (finite) complex £ is a sequence of homomorphisms of modules 

/V* 

0 E° i El 4 • • • 4 En -» 0 

and homorphisms d'\ E1-* Ei+l such that di+l ° c/1 = 0 for all /. Thus Im(</') C Ker (<i, + 1). 
The homology //' of the complex is defined to be 

Hl = Ker(^ + 1)/ImW‘). 

By definition, H° = E° and Hn = F^/Im^"). You may want to look at the first section 
of Chapter XX, because all we use here is the basic notion, and the following property, 
which you can easily prove. Let £, F be two complexes. By a homomorphism/:£—>£ 
we mean a sequence of homomorphisms 

Z: E* —» F' 

making the diagram commutative for all i: 

£1 + 1 

fi+1 

£1 + 1 

Show that such a homomorphism /induces a homomorphism H(f): H(E) —> //(£) on the 
homology; that is, for each i we have an induced homomorphism 

H\E) —» //'(£). 
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The following exercises are inspired from applications to algebraic geometry, as for 
instance in Hartshorne, Algebraic Geometry, Chapter III, Theorem 12.8. See also Chapter 
XXI, §1 to see how one can construct complexes such as those considered in the next 
exercises in order to compute the homology with respect to less tractable complexes. 

Reduction of a complex mod p 

17. Let 0 -* K° Kl ->•••-► X" -> 0 be a complex of finite free modules over a local 
Noetherian ring A without nilpotent elements. For each prime p of A and module E, 
let E(p) = £p/p£p, and similarly let X(p) be the complex localized and reduced mod p. 
For a given integer j, assume that 

dim A(p)/E(X(p)) 

is constant, where H‘ is the i-th homology of the reduced complex. Show that Hl(K) 
is free and that we have a natural isomorphism 

//‘(X)(p) * HXK(p)). 

[Hint : First write d\9) for the map induced by d' on X‘(p). Write 

dimWp) Ker d[p) = dim*,,, K‘(p) - dim*(p| Im d\py 

Then show that the dimensions dimMp) Im d‘lp) and dim*,,,, Im d\p) 1 must be constant. 
Then apply Exercise 12.] 

Comparison of homology at the special point 

18. Let A be a Noetherian local ring. Let X be a finite complex, as follows: 

0 - X° -► X" -> 0, 

such that X' is finite free for all i. For some index i assume that 

H\K)(m) -> tf'(X(m)) 

is surjective. Prove: 
(a) This map is an isomorphism. 
(b) The following exact sequences split: 

0 -> Ker dl - K‘ - Im dl -> 0 

0-> Im Ki+l 

(c) Every term in these sequences is free. 

19. Let A be a Noetherian local ring. Let K be a complex as in the previous exercise. For 
some i assume that 

H\K){m) H\K{m)) 

is surjective (or equivalently is an isomorphism by the previous exercise). Prove that 
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the following conditions are equivalent: 
(a) H'~ l(K)(m) - Hl~ \K(m)) is surjective. 
(b) Hl~ l(XXm) -> Hl~ l(K(m)) is an isomorphism. 
(c) Hl(K) is free. 

[Hint: Lift bases until you are blue in the face.] 

(d) If these conditions hold, then each one of the two inclusions 

Im dl~1 c Ker d' c Kl 

splits, and each one of these modules is free. Reducing mod m yields the 
corresponding inclusions 

Im (I'”,1 c Ker d[m) <= K‘(m), 

and induce the isomorphism on cohomology as stated in (b). [Hint: Apply 
the preceding exercise.] 





CHAPTER XI 

Real Fields 

§1. ORDERED FIELDS 

Let K be a field. An ordering of K is a subset P of K having the following 
properties: 

ORD 1. Given xe K, we have either xe P, or x = 0, or —xe P, and these 
three possibilities are mutually exclusive. In other words, K is the 
disjoint union of P, {0}, and -P. 

ORD 2. If x, ye P, then x -f y and xy e P. 

We shall also say that K is ordered by P, and we call P the set of positive 
elements. 

Let us assume that K is ordered by P. Since 1 # 0 and 1 = 12 = (—l)2 
we see that 1 e P. By ORD 2, it follows that 1 + • • • + 1 e P, whence K has 
characteristic 0. If x e P, and x # 0, then xx“1 = 1 e P implies that x“1 e P. 

Let x, ye K. We define x < y (or y > x) to mean that y — xe P. Ifx<0 
we say that x is negative. This means that - x is positive. One verifies trivially 
the usual relations for inequalities, for instance: 

x < y and y < z implies x < z, 

x < y and z > 0 implies xz < yz, 

. 1 1 
x < y and x, y > 0 implies - < -. 

y x 

We define x ^ y to mean x < y or x = y. Then x ^ y and y ^ x imply x = y. 

If K is ordered and x e X, x # 0, then x2 is positive because x2 = ( — x)2 
and either x e P or — x e P. Thus a sum of squares is positive, or 0. 

Let E be a field. Then a product of sums of squares in E is a sum of squares. 

If a, be E are sums of squares and b # 0 then a/b is a sum of squares. 

449 
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The first assertion is obvious, and the second also, from the expression 

a/b = ab{b~1)2. 

If E has characteristic # 2, and -1 is a sum of squares in P, then every 
element aeE is a sum of squares, because 4a = (1 + a)2 — (1 — a)2. 

If K is a field with an ordering P, and F is a subfield, then obviously, P n F 

defines an ordering of P, which is called the induced ordering. 
We observe that our two axioms ORD 1 and ORD 2 apply to a ring. If 

A is an ordered ring, with 1 # 0, then clearly A cannot have divisors of 0, and 
one can extend the ordering of A to the quotient field in the obvious way: A 
faction is called positive if it can be written in the form a/b with a, be A and 
a, b > 0. One verifies trivially that this defines an ordering on the quotient 
field. 

Example. We define an ordering on the polynomial ring R[t] over the 
real numbers. A polynomial 

/(0 = antn + • ' * + 00 

with an # 0 is defined to be positive if an > 0. The two axioms are then trivially 
verified. We note that t > a for all aeR. Thus t is infinitely large with respect 
to R. The existence of infinitely large (or infinitely small) elements in an ordered 
field is the main aspect in which such a field differs from a subfield of the real 
numbers. 

We shall now make some comment on this behavior, i.e. the existence of 
infinitely large elements. 

Let K be an ordered field and let F be a subfield with the induced ordering. 
As usual, we put | x | = x if x > 0 and | x | = - x if x < 0. We say that an element 
a in K is infinitely large over F if | a | ^ x for all x e F. We say that it is infinitely 
small over F if 0 ^ | a | < | x | for all x e P, x # 0. We see that a is infinitely large 
if and only if a”1 is infinitely small. We say that K is archimedean over P if K 

has no elements which are infinitely large over P. An intermediate field P1? 
K D Fx D P, is maximal archimedean over P in K if it is archimedean over P, 
and no other intermediate field containing Fx is archimedean over P. If F{ is 
archimedean over P and P2 is archimedean over Fx then P2 is archimedean over 
P. Hence by Zorn’s lemma there always exists a maximal archimedean subfield 
Fx of K over P. We say that P is maximal archimedean in K if it is maximal 
archimedean over itself in K. 

Let K be an ordered field and P a subfield. Let o be the set of elements of K 

which are not infinitely large over P. Then it is clear that o is a ring, and that for 
any aeK, we have a or a-1 eo. Hence o is what is called a valuation ring, 
containing P. Let m be the ideal of all a e K which are infinitely small over P. 
Then m is the unique maximal ideal of o, because any element in o which is not 
in m has an inverse in o. We call o the valuation ring determined by the ordering 
of K/F. 
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Proposition 1.1. Let K be an ordered field and F a subfield. Let o be the 

valuation ring determined by the ordering of K/F, and let m be its maximal 

ideal. Then o/m is a real field. 

Proof. Otherwise, we could write 

-1 = X«? + a 

with a,e o and asm. Since £ af is positive and a is infinitely small, such a 
relation is clearly impossible. 

§2. REAL FIELDS 

A field K is said to be real if — 1 is not a sum of squares in K. A field K is 
said to be real closed if it is real, and if any algebraic extension of K which is real 
must be equal to K. In other words, K is maximal with respect to the property 
of reality in an algebraic closure. 

Proposition 2.1. Let K be a real field. 

(i) IfaeK, then K(^ra) or K{^J—a) is real. If a is a sum of squares in K, 

then K(\/a) is real. If K(Va) is not real, then -a is a sum of squares 

in K. 

(ii) Iff is an irreducible polynomial of odd degree n in K[X~\ and if a is a root 

of /, then K(a) is real. 

Proof. Let ae K. If a is a square in K, then K(^/a) = K and hence is real by 
assumption. Assume that a is not a square in K. If Ki^/a) is not real, then there 
exist bi9 Ci e K such that 

-1=£(6, + ci\fa)2 

= X (bf + 2Cjbis/a + cfa). 

Since yfa is of degree 2 over K9 it follows that 

-1 = Z bf + a X cf. 

If a is a sum of squares in K, this yields a contradiction. In any case, we con¬ 
clude that 

— a = 
1 +lbf 
let 

is a quotient of sums of squares, and by a previous remark, that — a is a sum of 
squares. Hence K(Va) is real, thereby proving our first assertion. 
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As to the second, suppose K(a) is not real. Then we can write 

-1 = X 9i(<x)2 

with polynomials gt in K[2T] of degree ^ n — 1. There exists a polynomial h 

in K\_X] such that 

-1 = ^Gi{X)2 + h(X)f{X). 

The sum of g^X)1 has even degree, and this degree must be > 0, otherwise - 1 
is a sum of squares in K. This degree is ^ 2n — 2. Since / has odd degree n, it 
follows that h has odd degree ^ n — 2. If is a root of h then we see that — 1 
is a sum of squares in Since deg h < deg /, our proof is finished by 
induction. 

Let K be a real field. By a real closure we shall mean a real closed field L 
which is algebraic over K. 

Theorem 2.2. Let K be a real field. Then there exists a real closure of K. 

If R is real closed, then R has a unique ordering. The positive elements are 

the squares of R. Every positive element is a square, and every polynomial of 

odd degree in R[X] has a root in R. We have Ra = /?(V—T). 

Proof By Zorn’s lemma, our field K is contained in some real closed field 
algebraic over K. Now let R be a real closed field. Let P be the set of non-zero 
elements of R which are sums of squares. Then P is closed under addition and 
multiplication. By Proposition 2.1, every element of P is a square in R, and given 
a e R, a # 0, we must have a e P or —aeP. Thus P defines an ordering. Again 
by Proposition 2.1, every polynomial of odd degree over R has a root in R. Our 
assertion follows by Example 5 of Chapter VI, §2. 

Corollary 2.3. Let K be a real field and a an element of K which is not a 

sum of squares. Then there exists an ordering of K in which a is negative. 

Proof. The field K(^/—a) is real by Proposition 1.1 and hence has an 
ordering as a subfield of a real closure. In this ordering, — a > 0 and hence a is 
negative. 

Proposition 2.4. Let Rbe a field such that R # Ra but Ra = R(N/— 1). Then 

R is real and hence real closed. 

Proof Let P be the set of elements of R which are squares and # 0. We 
contend that P is an ordering of R. Let a e R9 a # 0. Suppose that a is not a 

square in R. Let a be a root of X2 — a = 0. Then R(a) = R{^J — 1), and hence 

there exist c,deR such that a = c + d^J— 1. Then 

a2 = c2 + 2 cdy/^l — d2. 
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Since 1, yf— \ are linearly independent over R, it follows that c = 0 (because 
a $ R2\ and hence —a is a square. 

We shall now prove that a sum of squares is a square. For simplicity, write 

i = >/-T. Since K(i) is algebraically closed, given a,beR we can find c,deR 
such that (c + di)2 = a + bi. Then a = c2 — d2 and b = 2cd. Hence 

*2 + fr2 = (c2 + <*2)2, 

as was to be shown. 
If a e R, a # 0, then not both a and -a can be squares in R. Hence P is an 

ordering and our proposition is proved. 

Theorem 2.5. Let R be a real closed field, and /(X) a polynomial in K[X]. 
Let a, beR and assume that f(a) < 0 and f(b) > 0. Then there exists c 

between a and b such that f(c) = 0. 

Proof. Since R(y/~—1) is algebraically closed, it follows that / splits into a 
product of irreducible factors of degree 1 or 2. If X2 + otX + f is irreducible 
(a, /? 6 R) then it is a sum of squares, namely 

and we must have 4/? > a2 since our factor is assumed irreducible. Hence the 
change of sign of / must be due to the change of sign of a linear factor, which is 
trivially verified to be a root lying between a and b. 

Lemma 2.6. Let K be a subfield of an ordered field E. Let a e Ebe algebraic 

over K, and a root of the polynomial 

f(X) = Xn + an-1Xn~1 + ••• + a0 

with coefficients in K. Then |a| ^ 1 + \an-t \ 4- • • • -F \a0\. 

Proof If |a| ^ 1, the assertion is obvious. If |a| > 1, we express |a|" in 
terms of the terms of lower degree, divide by |a|"_1, and get a proof for our 
lemma. 

Note that the lemma implies that an element which is algebraic over an 
ordered field cannot be infinitely large with respect to that field. 

Let f(X) be a polynomial with coefficients in a real closed field R, and 
assume that / has no multiple roots. Let u < v be elements of R. By a Sturm 
sequence for / over the interval [u, v] we shall mean a sequence of polynomials 

5={/ = /0,/' = /i,...,/J 

having the following properties: 
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ST 1. The last polynomial fm is a non-zero constant. 

ST 2. There is no point x e [w, v] such that //x) = fj+ 2(x) = 0 for any 
value 0 ^ j ^ m — 1. 

ST 3. If x e [u, i?] and //x) = 0 for some j = 1,..., m - 1, then /}_ X(x) 
and /j+ j(x) have opposite signs. 

ST 4. We have ffu) ^ 0 and ffv) # 0 for all j = 0,..., m. 

For any x e [u, which is not a root of any polynomial f we denote by 
Ws(x) the number of sign changes in the sequence 

and call Ws(x) the variation of signs in the sequence. 

Theorem2.7. (Sturm’s Theorem). The number of roots of f between u and v 

is equal to Ws(u) — Ws(v) for any Sturm sequence S. 

Proof We observe that if a! < a2 < • • • < ar is the ordered sequence of 
roots of the polynomials f in [w, v] (j = 0,..., m — 1), then is constant 
on the open intervals between these roots, by Theorem 2.5. Hence it will suffice 
to prove that if there is precisely one element a such that u < a < v and a is a 
root of some /}, then Ws(u) - Ws(v) = 1 if a is a root of /, and 0 otherwise. 
Suppose that a is a root of some fj9 for 1 ^j^m— 1. Then f_ 2(a), fj+ 2(a) 
have opposite signs by ST 3, and these signs do not change when we replace a 
by u or v. Hence the variation of signs in 

fj(u), fJ+1(u)} and {/ri(»)-//»U'+iW} 

is the same, namely equal to 2. If a is not a root of /, we conclude that 

Ws(u) = Ws(v). 

If a is a root of /, then f(u) and f(v) have opposite signs, but f'(u) and f'(v) 

have the same sign, namely, the sign of /'(<*). Hence in this case, 

Ws(u) = Ws(v) + 1. 

This proves our theorem. 

It is easy to construct a Sturm sequence for a polynomial without multiple 
roots. We use the Euclidean algorithm, writing 

f = gj'-f2, 

fl — 9 2 f\ ~ f3 > 

fm - 2 9 m - 1 fm - 1 fm ’ 
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using /' = /,. Since /, /' have no common factor, the last term of this sequence 
is non-zero constant. The other properties of a Sturm sequence are trivially 
verified, because if two successive polynomials of the sequence have a com¬ 
mon zero, then they must all be 0, contradicting the fact that the last one is not. 

Corollary 2.8. Let K be an ordered field, / an irreducible polynomial of 

degree ^ 1 over K. The number of roots of f in two real closures of K inducing 

the given ordering on K is the same. 

Proof We can take v sufficiently large positive and u sufficiently large 
negative in K so that all roots of / and all roots of the polynomials in the Sturm 
sequence lie between u and v, using Lemma 2.6. Then Ws(u) — Ws(v) is the 
total number of roots of / in any real closure of K inducing the given ordering. 

Theorem 2.9. Let K be an ordered field, and let R, R’ be real closures of K, 
whose orderings induce the given ordering on K. Then there exists a unique 

isomorphism o: R -► R' over K, and this isomorphism is order-preserving. 

Proof. We first show that given a finite subextension E of R over K, there 
exists an embedding of E into R' over K. Let E = X(a), and let 

f(X) = Irr(a, K, X). 

Then /(a) = 0 and the corollary of Sturm’s Theorem (Corollary 2.8) shows that 
/ has a root /? in R'. Thus there exists an isomorphism of K(a) on X(/?) over X, 
mapping a on /?. 

Let al5..., a„ be the distinct roots of/ in R, and let (tl9..., be the distinct 
roots of / in R'. Say 

ctl < • ♦ • < otn in the ordering of X, 

Pi < • - • < Pm in the ordering of R'. 

We contend that m = n and that we can select an embedding o of K(ocl9... 9ocn) 

into R' such that era, = /?, for i = 1,..., n. Indeed, let yf be an element of X 
such that 

yf = a, + j — for i = 1,..., n — 1 

and let E{ = K(al9..., an, yl5..., y„_ j). By what we have seen, there exists 
an embedding o of E{ into R\ and then (ral + 1 — aa, is a square in R'. Hence 

< • • • < oan. 

This proves that m ^ n. By symmetry, it follows that m — n. Furthermore, 
the condition that <rat- = for i = determines the effect of cr on 
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K(oc{,..., <xn). We contend that a is order-preserving. Let y e K(ccu ..., otn) 

and 0 < y. Let y e R be such that y2 = y. There exists an embedding of 

K(otl9...,otn9yl9...9yn-l9y) 

into R' over K which must induce a on ..., <xn) and is such that ay is a 
square, hence > 0, as contended. 

Using Zorn’s lemma, it is now clear that we get an isomorphism of R onto R' 

over K. This isomorphism is order-preserving because it maps squares on 
squares, thereby proving our theorem. 

Proposition 2.10. Let K be an ordered field, K' an extension such that there is 

no relation 

-1 = 2>,a? 
i = 1 

with at e K, a{ > 0, and a, e K\ Let L be the field obtained from K' by adjoining 

the square roots of all positive elements of K. Then L is real. 

Proof If not, there exists a relation of type 

-1 = £>,a? 
i= 1 

with a( 6 X, a, > 0, and a, eL. (We can take a{ = 1.) Let r be the smallest 
integer such that we can write such a relation with a, in a subfield of L, of type 

K'C/bu...,Jbr) 

with bj e K, b} > 0. Write 

«t = xi + 

with xt, y, e K\^/b[,yjb^l7)- Then 

-1 = Z a>(x> + y^)2 

= £ai(x? + 2xiyi^[br + yfbr). 

By hypothesis, sfbr is not in K'(b„ ..., y/%~-,). Hence 

= Y,aiX? + Ysaibryh 

contradicting the minimality of r. 

Theorem 2.11. Let K be an ordered field. There exists a real closure RofK 

inducing the given ordering on K. 
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Proof. Take K' = K in Proposition 2.10. Then L is real, and is contained 
in a real closure. Our assertion is clear. 

Corollary 2.12. Let K be an ordered field, and K' an extension field. In order 

that there exist an ordering on K' inducing the given ordering of K, it is 

necessary and sufficient that there is no relation of type 

-1 = 

i = 1 

with ax € K, at > 0, and a, e K'. 

Proof. If there is no such relation, then Proposition 2.10 states that L is 
contained in a real closure, whose ordering induces an ordering on K\ and the 
given ordering on X, as desired. The converse is clear. 

Example. Let Qa be the field of algebraic numbers. One sees at once that 
Q admits only one ordering, the ordinary one. Hence any two real closures of Q 
in Qa are isomorphic, by means of a unique isomorphism. The real closures of Q 
in Qa are precisely those subfields of Qa which are of finite degree under Qa. 
Let X be a finite real extension of Q, contained in Qa. An element a of X is a 
sum of squares in X if and only if every conjugate of a in the real numbers is 
positive, or equivalently, if and only if every conjugate of a in one of the real 
closures of Q in Qa is positive. 

Note. The theory developed in this and the preceding section is due to Artin- 
Schreier. See the bibliography at the end of the chapter. 

§3. REAL ZEROS AND HOMOMORPHISMS 

Just as we developed a theory of extension of homomorphisms into an 
algebraically closed field, and Hilbert’s Nullstellensatz for zeros in an alge¬ 
braically closed field, we wish to develop the theory for values in a real closed 
field. One of the main theorems is the following: 

Theorem 3.1. Let k be a field, X = k(xl9...9xH) a finitely generated 

extension. Assume that X is ordered. Let Rk be a real closure of k inducing 

the same ordering on k as K. Then there exists a homomorphism 

(p.k[xu Rk 

over k. 
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As applications of Theorem 3.1, one gets : 

Corollary 3.2. Notation being as in the theorem, let yu ..., yme fc[x] aw/ 
assume 

y\ < yi < -" < ym 

is the given ordering of K. Then one can choose (p such that 

tpyi < * * * < (pym. 

Proof Let yteKa be such that yf = yi+1 - yt. Then K(yu...9yn-1) 

has an ordering inducing the given ordering on K. We apply the theorem to the 
ring 

fc[xi,..., > • • • * ym-yh • • • * ym— 

Corollary 3.3. (Artin). Let k be a real field admitting only one ordering. 

Let /(Xl9..., Xn) e k(X) be a rational function having the property that for 

all (a) = (al9..., an) e R{k] such that f(a) is defined, we have f(a) ^ 0. Then 

j (X) is a sum of squares in k(X). 

Proof. Assume that our conclusion is false. By Corollary 2.3, there exists 
an ordering of k(X) in which / is negative. Apply Corollary 3.2 to the ring 

kixl9...9xm9Kxy1i 

where h(X) is a polynomial denominator for f(X). We can find a homo¬ 
morphism cp of this ring into Rk (inducing the identity on k) such that (p(f) < 0. 
But 

<p(f) = f(cpXl9...9<pXn). 

contradiction. We let at = cp{Xf) to conclude the proof. 

Corollary 3.3 was a Hilbert problem. The proof which we shall describe for 
Theorem 3.1 differs from Artin’s proof of the corollary in several technical 
aspects. 

We shall first see how one can reduce Theorem 3.1 to the case when K has 
transcendence degree 1 over /c, and k is real closed. 

Lemma 3.4. Let R be a real closed field and let R0 be a subfield which is 

algebraically closed in R (i.e. such that every element of R not in R0 is tran¬ 

scendental over R0). Then R0 is real closed. 

Proof. Let f(X) be an irreducible polynomial over R0. It splits in R into 
linear and quadratic factors. Its coefficients in R are algebraic over R0, and 
hence must lie in R0. Hence/(X) is linear itself, or quadratic irreducible already 
over R0. By the intermediate value theorem, we may assume that / is positive 
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definite, i.e. f(a) > 0 for all ae R0. Without loss of generality, we may assume 
that f(X) = X2 + b2 for some beR0. Any root of this polynomial will bring 

with it and therefore the only algebraic extension of R0 is 

This proves that R0 is real closed. 

Let Rk be a real closure of K inducing the given ordering on K. Let R0 be 
the algebraic closure of k in RK. By the lemma, R0 is real closed. 

We consider the field R0(xl9..., xn). If we can prove our theorem for the 
ring R0[xl9..., x„], and find a homomorphism 

il/:R0[xi,...,xj -> R09 

then we let a: R0 -* RK be an isomorphism over k (it exists by Theorem 2.9), and 
we let cp = <t o \j/ to solve our problem over k. This reduces our theorem to the 
case when k is real closed. 

Next, let F be an intermediate field, K => F k9 such that K is of tran¬ 
scendence degree 1 over F. Again let RK be a real closure of K preserving the 
ordering, and let RF be the real closure of F contained in RK. If we know our 
theorem for extensions of dimension 1, then we can find a homomorphism 

i//:RFlxl,...,xn]-+ Rf. 

We note that the field k(ij/xl9..., il/xn) has transcendence degree ^ n — 1, 
and is real, because it is contained in RF. Thus we are reduced inductively to 
the case when K has dimension 1, and as we saw above, when k is real closed. 

One can interpret our statement geometrically as follows. We can write 
K = R(x9 y) with x transcendental over R, and (x, y) satisfying some irreducible 
polynomial f(X, Y) = 0 in R[X, T]. What we essentially want to prove is that 
there are infinitely many points on the curve f(X, Y) = 0, with coordinates 
lying in R9 i.e. infinitely many real points. 

The main idea is that we find some point (a9 b) e R{2) such that f(a9 b) = 0 
but D2f(a9 b) # 0. We can then use the intermediate value theorem. We see 
that f(a9b + h) changes sign as h changes from a small positive to a small 
negative element of R. If we take a e R close to a9 then /(a'9 b + h) also changes 
sign for small h9 and hence /(a\ Y) has a zero in R for all a' sufficiently close to a. 

In this way we get infinitely many zeros. 
To find our point, we consider the polynomial /(x, Y) as a polynomial in one 

variable Y with coefficients in R(x). Without loss of generality we may assume 
that this polynomial has leading coefficient 1. We construct a Sturm sequence 
for this polynomial, say 

{/(X, Y\f1(x, n...,/m(x, Y)Y 

Let d = deg /. If we denote by A(x) = (ad_ ^x),..., a0(x)) the coefficients of 
/(x, Y)9 then from the Euclidean alogrithm, we see that the coefficients of the 
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polynomials in the Sturm sequence can be expressed as rational functions 

{Gv(A(x))} 

in terms of ad_ j(x),..., a0(x). 

Let 

v(x) = 1 ± ad_ i(x) ± • ■ • ± a0(x) -f s, 

where s is a positive integer, and the signs are selected so that each term in this 
sum gives a positive contribution. We let u(x) = — v(x), and select s so that 
neither u nor v is a root of any polynomial in the Sturm sequence for /. Now 
we need a lemma. 

Lemma 3.5. Let R be a real closed field, and {/if(x)} a finite set of rational 

functions in one variable with coefficients in R. Suppose the rational field 

R(x) ordered in some way, so that each ht(x) has a sign attached to it. Then 

there exist infinitely many special values c of x in R such that h^c) is defined 

and has the same sign as h^xXfor all i. 

Proof. Considering the numerators and denominators of the rational 
functions, we may assume without loss of generality that the ht are polynomials. 
We then write 

hi(x) = a n (x - ^) n p(x), 

where the first product is extended over all roots A of ht in R, and the second 
product is over positive definite quadratic factors over R. For any £ e R, p(£) is 
positive. It suffices therefore to show that the signs of (x — A) can be preserved 
for all A by substituting infinitely many values a for x. We order all values of A 
and of x and obtain 

• • • < Aj < x < A2 < • • * 

where possibly Aj or A2 is omitted if x is larger or smaller than any A. Any value 
a of x in R selected between Aj and A2 will then satisfy the requirements of our 
lemma. 

To apply the lemma to the existence of our point, we let the rational functions 
{/q(x)} consist of all coefficients ad_j(x),.. . , a0(x), all rational functions 
Gv(A(x)), and all values //x, u(x)), //x, v(x)) whose variation in signs satisfied 
Sturm’s theorem. We then find infinitely many special values a of x in R which 
preserve the signs of these rational functions. Then the polynomials / (a, Y) have 
roots in R, and for all but a finite number of a, these roots have multiplicity 1. 

It is then a matter of simple technique to see that for all but a finite number of 
points on the curve, the elements xl5..., x„ lie in the local ring of the homo¬ 
morphism R[x, y]-> K mapping (x, y) on (a, b) such that f(a,b) = 0 but 
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Di f (a, b) 7* 0. (Cf. for instance the example at the end of §4, Chapter XII, and 
Exercise 18 of that chapter.) One could also give direct proofs here. In this 
way, we obtain homomorphisms 

• • • > Xn] R, 

thereby proving Theorem 3.1. 

Theorem 3.6. Let k be a real field, K = k(xu ..., xn, y) = fc(x, y) a 
finitely generated extension such that xi9...,xnare algebraically independent 
over /c, and y is algebraic over k(x). Let f (X, Y) be the irreducible polynomial 
in k\_X, T] such that /(x, y) = 0. Let R be a real closed field containing k, 
and assume that there exists (a, b)e R(n + l) such that f (a, b) = 0 but 

Dn+if(a, b) # 0. 

Then K is real. 

Proof. Let ttn be algebraically independent over R. Inductively, we 
can put an ordering on R(tu..., tn) such that each t{ is infinitely small with 
respect to R, (cf. the example in §1). Let K be a real closure of R(tu ..., tn) 
preserving the ordering. Let ut = a{ -f tt for each i = 1,..., n. Then/(u, b + h) 
changes sign for small h positive and negative in R, and hence f(u9 Y) has a 
root in R\ say v. Since / is irreducible, the isomorphism of k(x) on k(u) sending 
xt on ut extends to an embedding of /c(x, y) into R\ and hence K is real, as was to 
be shown. 

In the language of algebraic geometry, Theorems 3.1 and 3.6 state that the 
function field of a variety over a real field k is real if and only if the variety has a 
simple point in some real closure of k. 

EXERCISES 

1. Let a be algebraic over Q and assume that Q(a) is a real field. Prove that a is a sum of 
squares m Q(a) if and only if for every embedding o of Q(a) in R we have a<x > 0. 

2. Let F be a finite extension of Q. Let (p: F -* Q be a Q-linear functional such that 
(p(x2) > 0 for all x g F, x ^ 0. Let a g F, a # 0. If </>( ax2) ^ 0 for all xgF, show that a is 
a sum of squares in F, and that F is totally real, i.e. every embedding of F in the complex 
numbers is contained in the real numbers. [Hint: Use the fact that the trace gives an 
identification of F with its dual space over Q, and use the approximation theorem of 
Chapter XII, §1.] 
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3. Let a ^ t g p be a real interval, and let /(t) be a real polynomial which is positive on this 
interval. Show that f(t) can be written in the form 

<*£ 2v2 + Z (f - a)Ql + Y.(P ~ OQi) 

where Q2 denotes a square, and c ^ 0. Hint: Split the polynomial, and use the identity: 

(t - a)(fi -t) = 
« - a)2(l - 0 + (t - «)(/? - Q2 

P - « . 

Remark. The above seemingly innocuous result is a key step in developing the 
spectral theorem for bounded hermitian operators on Hilbert space. See the appendix 

of [La 72] and also [La 85]. 

4. Show that the field of real numbers has only the identity automorphism. [Hint: Show 
that an automorphism preserves the ordering.] 

Real places 

For the next exercises, cf. Krull [Kr 32] and Lang [La 53]. These exercises form a 
connected sequence, and solutions will be found in [La 53]. 

5. Let K be a field and suppose that there exists a real place of K\ that is, a place 
with values in a real field L. Show that K is real. 

6. Let K be an ordered real field and let F be a subfield which is maximal archimedean 
in K. Show that the canonical place of K with respect to F is algebraic over F (i.e. 
if o is the valuation ring of elements of K which are not infinitely large over F, and 
m is its maximal ideal, then o/m is algebraic over F). 

7. Let K be an ordered field and let F be a subfield which is maximal archimedean in 
K. Let K' be the real closure of K (preserving the ordering), and let F' be the real 
closure of F contained in K'. Let be the canonical place of K' with respect to F\ 
Show that (p(K') is F'-valued, and that the restriction of (p to K is equivalent to the 

canonical place of K over F. 

8. Define a real field K to be quadratically closed if for all a E K either Va or 
V—a lies in K. The ordering of a quadratically closed real field K is then uniquely 
determined, and so is the real closure of such a field, up to an isomorphism over K. 
Suppose that K is quadratically closed. Let F be a subfield of K and suppose that 
F is maximal archimedean in K. Let 9 be a place of K over F, with values in a 
field which is algebraic over F. Show that cp is equivalent to the canonical place of 
K over F. 

9. Let K be a quadratically closed real field. Let 9 be a real place of K, taking its values 
in a real closed field R. Let F be a maximal subfield of K such that 9 is an isomorphism 
on F, and identify F with <p(F). Show that such F exists and is maximal archimedean 
in K. Show that the image of 9 is algebraic over F, and that (p is induced by the 
canonical place of K over F. 

10. Let K be a real field and let 9 be a real place of K, taking its values in a real closed 
field R. Show that there is an extension of (p to an F-valued place of a real closure 
of K. [Hint: first extend (p to a quadratic closure of K. Then use Exercise 5.] 
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11. Let K C Kx C K2 be real closed fields. Suppose that K is maximal archimedean in 
X, and Kx is maximal archimedean in K2. Show that K is maximal archimedean in 

K2. 

12. Let K be a real closed field. Show that there exists a real closed field R containing 
K and having arbitrarily large transcendence degree over K, and such that K is maximal 
archimedean in R. 

13. Let R be a real closed field. Let ..., fr be homogeneous polynomials of odd 
degrees in n variables over R. If n > r, show that these polynomials have a non¬ 
trivial common zero in R. (Comments: If the forms are generic (in the sense of Chapter 
IX), and n = r + 1, it is a theorem of Bezout that in the algebraic closure Ra the 
forms have exactly d{ • • • dm common zeros, where d{ is the degree of f. You may 
assume this to prove the result as stated. If you want to see this worked out, see 
[La 53], Theorem 15. Compare with Exercise 3 of Chapter IX.) 
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CHAPTER XII 

Absolute Values 

§1. DEFINITIONS, DEPENDENCE, AND 
INDEPENDENCE 

Let K be a field. An absolute value v on K is a real-valued function xh-+\x\v 
on K satisfying the following three properties: 

AV 1. We have \x\v ^ 0 for all xeK, and 1x^ = 0 if and only if x = 0. 

AV 2. For all x, ye K, we have \xy\v = |x| v\y\v. 

AV 3. For all xjeX, we have |x + y\v ^ |x\v 4- |y\v. 

If instead of AV 3 the absolute value satisfies the stronger condition 

AV 4. |x + y\v ^ max(\x\V9 \y\v) 

then we shall say that it is a valuation, or that it is non-archimedean. 
The absolute value which is such that |x|y = 1 for all x # 0 is called trivial. 
We shall write | x | instead of | x \v if we deal with just one fixed absolute value. 

We also refer to v as the absolute value. 
An absolute value of K defines a metric. The distance between two elements 

x, y of K in this metric is |x — y |. Thus an absolute value defines a topology on 
K. Two absolute values are called dependent if they define the same topology. 
If they do not, they are called independent. 

We observe that 111 = 1121 = |( — l)21 = 1112 whence 

Ul = |-l| = 1- 

Also, | -x| = |x| for all xeX, and |x 11 = |x| 1 for x # 0. 

465 
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Proposition 1.1. Let | \x and | |2 be non-trivial absolute values on a field K. 

They are dependent if and only if the relation 

Mi < 1 

implies \x\2 < 1. If they are dependent, then there exists a number X > 0 

such that |x |! = | x |2 for all xe K. 

Proof If the two absolute values are dependent, then our condition is 
satisfied, because the set of xe K such that Ix^ < 1 is the same as the set such 
that lim xn = 0 for n -* oo. Conversely, assume the condition satisfied. Then 
|x|j > 1 implies |x|2 > 1 since |x_1|i < 1. By hypothesis, there exists an 
element x0e K such that |x0|i > 1. Let a = |x01j and b = |x0|2. Let 

= lQgfr 

log a' 

Let xeK,x ^ 0. Thenlx^ = \x0\\ for some number a. Ifm, n are integers such 
that m/n > a and n > 0, we have 

i*ii > i*o ir 

whence 

| x”/xq 11 < 1, 

and thus 

|x-/xS|2 < 1. 

This implies that |x|2 < |x0Hence 

M2 = I -^o 12 • 

Similarly, one proves the reverse inequality, and thus one gets 

M2 = I xo I2 

for all xe K, x ^ 0. The assertion of the proposition is now obvious, i.e. 

M2 = Mi- 
We shall give some examples of absolute values. 
Consider first the rational numbers. We have the ordinary absolute value 

such that \m\ = m for any positive integer m. 

For each prime number p, we have the p-adic absolute value vp, defined by the 
formula 

\prm/n\p = 1/p' 
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where r is an integer, and m, n are integers / 0, not divisible by p. One sees at 
once that the p-adic absolute value is non-archimedean. 

One can give a similar definition of a valuation for any field K which is the 
quotient field of a principal ring. For instance, let K = k(t) where k is a field 
and t is a variable over k. We have a valuation vp for each irreducible polynomial 
p(0 in /c[t], defined as for the rational numbers, but there is no way of normalizing 
it in a natural way. Thus we select a number c with 0 < c < 1 and for any 
rational function prf /g where /, g are polynomials not divisible by p, we define 

\prf/g\P = cr. 

The various choices of the constant c give rise to dependent valuations. 
Any subfield of the complex numbers (or real numbers) has an absolute 

value, induced by the ordinary absolute value on the complex numbers. We shall 
see later how to obtain absolute values on certain fields by embedding them into 
others which are already endowed with natural absolute values. 

Suppose that we have an absolute value on a field which is bounded on the 

prime ring (i.e. the integers Z if the characteristic is 0, or the integers mod p if 

the characteristic is p). Then the absolute value is necessarily non-archimedean. 

Proof For any elements x, y and any positive integer n, we have 

^ nC max(|x|, |y|)". 

Taking n-th roots and letting n go to infinity proves our assertion. We note that 
this is always the case in characteristic > 0 because the prime ring is finite! 

If the absolute value is archimedean, then we refer the reader to any other 
book in which there is a discussion of absolute values for a proof of the fact that 
it is dependent on the ordinary absolute value. This fact is essentially useless 
(and is never used in the sequel), because we always start with a concretely given 
set of absolute values on fields which interest us. 

In Proposition 1.1 we derived a strong condition on dependent absolute 
values. We shall now derive a condition on independent ones. 

Theorem 1.2. (Approximation Theorem). (Artin-Whaples). Let K be 

a field and | |1#..., | |s non-trivial pairwise independent absolute values on K. 

Let Xj,..., xs be elements of X, and e > 0. Then there exists xeK such that 

|x - xt\i < e 

for all i. 
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Proof. Consider first two of our absolute values, say and v2. By hypo¬ 
thesis we can find ote K such that | a 11 < 1 and | a |s ^ 1. Similarly, we can find 
feK such that \f\1 ^ 1 and |/?|s < 1. Puty = Then\y\x > 1 and |y|s < 1. 

We shall now prove that there exists z e K such that |z|j > 1 and \z\j < 1 
for j = 2,..., s. We prove this by induction, the case s = 2 having just been 
proved. Suppose we have found ze K satisfying 

\z\x > 1 and \z\j < 1 for y = 2, . ..,s — 1. 

If | z |s ^ 1 then the element zny for large n will satisfy our requirements. 
If \z\s > 1, then the sequence 

tends to 1 atv1 and us, and tends to Oat Vjfj = 2,..., s — 1). For large n, it is then 
clear that tny satisfies our requirements. 

Using the element z that we have just constructed, we see that the sequence 
z"/(l + zn) tends to 1 at vt and to 0 at for j = 2,..., s. For each i = 1,..., s 

we can therefore construct an element z, which is very close to 1 at v, and very 
close to 0 at v, (j i). The element 

X = ZjXj + ••• + zsxs 

then satisfies the requirement of the theorem. 

§2. COMPLETIONS 

Let K be a field with a non-trivial absolute value v, which will remain fixed 
throughout this section. One can then define in the usual manner the notion of a 
Cauchy sequence. It is a sequence {xn} of elements in K such that, given e > 0, 
there exists an integer N such that for all n,m > N we have 

\xn - xm\ < e. 

We say that K is complete if every Cauchy sequence converges. 

Proposition 2.1. There exists a pair (Kv, i) consisting of a field Kvi complete 

under an absolute value, and an embedding i: K -> Kv such that the absolute 

value on K is induced by that of Kv (i.e. \x\v = \ix\ for x e K), and such that iK 

is dense in Kv. If (K'v, i') is another such pair, then there exists a unique 
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isomorphism <p: Kv -> K'v preserving the absolute values, and making the 

following diagram commutative: 

K„ K’ 

K 

Proof The uniqueness is obvious. One proves the existence in the well- 
known manner, which we shall now recall briefly, leaving the details to the reader. 

The Cauchy sequences form a ring, addition and multiplication being taken 
componentwise. 

One defines a null sequence to be a sequence {x„} such that lim x„ = 0. The 
It-* 00 

null sequences form an ideal in the ring of Cauchy sequences, and in fact form a 
maximal ideal. (If a Cauchy sequence is not a null sequence, then it stays away 
from 0 for all n sufficiently large, and one can then take the inverse of almost all 
its terms. Up to a finite number of terms, one then gets again a Cauchy sequence.) 

The residue class field of Cauchy sequences modulo null sequences is the 
field Kv. We embed K in Kv “on the diagonal”, i.e. send xe K on the sequence 
(x, x, x,...). 

We extend the absolute value of K to Kv by continuity. If {x„} is a Cauchy 
sequence, representing an element £ in Kv9 we define |£| = lim|xj. It is easily 
proved that this yields an absolute value (independent of the choice of repre¬ 
sentative sequence {xn} for £), and this absolute value induces the given one on K. 

Finally, one proves that Kv is complete. Let {^n} be a- Cauchy sequence in 
Kv. For each n, we can find an element xne K such that \£„ — xn\ < 1/n. Then 
one verifies immediately that {x„} is a Cauchy sequence in K. We let £ be its 
limit in Kv. By a three-r argument, one sees that {£n} converges to ^ thus 
proving the completeness. 

A pair (Kv, i) as in Proposition 2.1 may be called a completion of K. The 
standard pair obtained by the preceding construction could be called the 
completion of X. 

Let X have a non-trivial archimedean absolute value v. If one knows that the 
restriction of v to the rationals is dependent on the ordinary absolute value, then 
the completion Kv is a complete field, containing the completion of Q as a 
closed subfield, i.e. containing the real numbers R as a closed subfield. It will be 
worthwhile to state the theorem of Gelfand-Mazur concerning the structure of 
such fields. First we define the notion of normed vector space. 

Let X be a field with a non-trivial absolute value, and let £ be a vector space 
over X. By a norm on E (compatible with the absolute value of K) we shall 
mean a function ^ -► | £ | of E into the real numbers such that: 

NO 1. |£| ^ 0 for all £ e £, and = 0 if and only if { = 0. 



470 ABSOLUTE VALUES XII, §2 

NO 2. For all x e K and £ e E we have |x£| = \x\\£\. 

NO 3. If |, |' e £ then 11 + |' | S 111 + 11’ I • 

Two norms | |, and | |2 are called equivalent if there exist numbers ClyC2 > 0 
such that for all £ e £ we have 

c,ia ^ i«i2 ^ c2ia. 
Suppose that £ is finite dimensional, and let a>l5..., u>„ be a basis of £ 

over X. If we write an element 

I = XjCUj + • • • 4- x„cu„ 

in terms of this basis, with x, e X, then we can define a norm by putting 

III = max|x,|. 
i 

The three properties defining a norm are trivially satisfied. 

Proposition 2.2. Let K be a complete field under a non-trivial absolute value, 
and /ct E be a finite-dimensional space over K. Then any two norms on E 

(compatible with the given absolute value on K) are equivalent. 

Proof. We shall first prove that the topology on E is that of a product space, 
i.e. if cou ..., con is a basis of E over K, then a sequence 

£(v) = xii)co1 + • • • + x|,v)con, x\v) e X, 

is a Cauchy sequence in E only if each one of the n sequences x-v) is a Cauchy 
sequence in K. We do this by induction on n. It is obvious for n = 1. Assume 
n ^ 2. We consider a sequence as above, and without loss of generality, we may 
assume that it converges to 0. (If necessary, consider £(v) - £(Ai) for v, p -► oo.) 
We must then show that the sequences of the coefficients converge to 0 also. 
If this is not the case, then there exists a number a > 0 such that we have for 
some 7, say 7=1, 

| jc <?> | > a 

for arbitrarily large v. Thus for a subsequence of (v), ^fx^ converges to 0, and 
we can write 

£(V) 
x<2v) , X<v) 

X1 = W)C°2 
. . _L _ 

x<v) 

We let rj(v) be the right-hand side of this equation. Then the subsequence rj(v) 

converges (according to the left-hand side of our equation). By induction, we 
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conclude that its coefficients in terms of a>2,..., a>n also converge in K, say to 
y2,. • •, y„- Taking the limit, we get 

coi = y2co2 + ••• + y„co„, 

contradicting the linear independence of the co, . 
We must finally see that two norms inducing the same topology are equivalent. 

Let | |! and | |2 be these norms. There exists a number C > 0 such that for any 
^ e E we have 

\Z\i implies |{|2 g 1. 

Let a e K be such that 0 < | a \ < 1. For every f e E there exists a unique integer 
s such that 

C\a\ < \asl;\l ^ C. 

Hence \as^\2 ^ 1 whence we get at once 

i{i2^c-ii«r1i€ii. 

The other inequality follows by symmetry, with a similar constant. 

Theorem 2.3. (Gelfand-Mazur). Let A be a commutative algebra over the 

real numbers, and assume that A contains an element j such that j2 = — 1. Let 

C = R + R j. Assume that A is normed (as a vector space over R), and that 

\xy \ ^ |*| \y\for all x, y e A. Given x0 e A, x0 =£ 0, there exists an element 

ceC such that x0 — c is not invertible in A. 

Proof. (Tornheim). Assume that x0 — z is invertible for all zeC. 
Consider the mapping /: C -► A defined by 

/(z) = (x0 - z)_1. 

It is easily verified (as usual) that taking inverses is a continuous operation. 
Hence / is continuous, and for z # 0 we have 

/(*) = 2" *(*0Z~ ' - 0" ' = - (-*-V 

From this we see that /(z) approaches 0 when z goes to infinity (in C). Hence the 
map z i—► | /(z) | is a continuous map of C into the real numbers ^ 0, is bounded, 
and is small outside some large circle. Hence it has a maximum, say M. Let D 
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be the set of elements zeC such that |/(z)| = M. Then D is not empty; D is 
bounded and closed. We shall prove that D is open, hence a contradiction. 

Let c0 be a point of D, which, after a translation, we may assume to be the 
origin. We shall see that if r is real > 0 and small, then all points on the circle of 
radius r lie in D. Indeed, consider the sum 

1 n 1 m = - E 
n x0 - (0Kr 

where co is a primitive n-th root of unity. Taking formally the logarithmic 
M 

derivative of Xn — rn = Y\ (X ~ shows that 
k = 1 

nXn~1 _ " 1 

X" - rn ~ X - coV 

and hence, dividing by n, and by Xn~ \ and substituting x0 for X, we obtain 

S(n) = x0 - r(r/x0)n~l' 

If r is small (say |r/x0| < 1), then we see that 

lim |S(n)| = = M. 

Suppose that there exists a complex number X of absolute value 1 such that 

1 

x0 — hr 
< M. 

Then there exists an interval on the unit circle near A, and there exists e > 0 such 
that for all roots of unity ( lying in this interval, we have 

1 

*o “ Cr 
< M - e. 

(This is true by continuity.) Let us take n very large. Let bn be the number of 
n-th roots of unity lying in our interval. Then bjn is approximately equal to the 
length of the interval (times 2n): We can express S(n) as a sum 

S(n) = - X, x0 - cokr + Eh 
X0 — ftrr 

1 
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the first sum being taken over those roots of unity cok lying in our interval, and 
the second sum being taken over the others. Each term in the second sum has 
norm ^ M because M is a maximum. Hence we obtain the estimate 

|S(«)l^[lZ,l + ll„|] 

g ~ (b„(M -£) + („- b„)M) 

g M - — 
n 

This contradicts the fact that the limit of | S(n) | is equal to M. 

Corollary 2.4. Let K be a field, which is an extension of R, and has an 

absolute value extending the ordinary absolute value on R. Then K = R or 

K = C. 

Proof Assume first that K contains C. Then the assumption that K is a 
field and Theorem 2.3 imply that K = C. 

If K does not contain C, in other words, does not contain a square root of 
- 1, we let L = K(j) where j2 = — 1. We define a norm on L (as an R-space) by 
putting 

\x + yj | = |x| + |y| 

for x, yeK. This clearly makes L into a normed R-space. Furthermore, if 
z = x + yj and z' = x! + y'j are in L, then 

|zz'| = |xx' - yy'\ + |xy' + x'y\ 

g |xx'| + \yy'\ + \xy’\ + |x'y| 

^ |x||x'| + |y||y'| + |x||y'| + |x'||y| 

^(|x| + |y|)(|x'| + |y'|) 

^ \z\\z’\, 

and we can therefore apply Theorem 2.3 again to conclude the proof. 

As an important application of Proposition 2.2, we have: 

Proposition 2.5. Let K be complete with respect to a nontrivial absolute 

value v. If E is any algebraic extension of K, then v has a unique extension to 

E. If E is finite over K, then E is complete. 

Proof In the archimedean case, the existence is obvious since we deal 
with the real and complex numbers. In the non-archimedean case, we postpone 
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the existence proof to a later section. It uses entirely different ideas from the 
present ones. As to uniqueness, we may assume that £ is finite over K. By 
Proposition 2.2, an extension of v to E defines the same topology as the max 
norm obtained in terms of a basis as above. Given a Cauchy sequence £(v) in £, 

£(v) = xvlcol + ■ • ■ + xvncon9 

the n sequences {xVI}(i = 1 must be Cauchy sequences in K by the 
definition of the max norm. If {xw} converges to an element zf in X, then it 
is clear that the sequence £(v) converges to z1co1 + ••• + zncon. Hence E is 
complete. Furthermore, since any two extensions of v to E are equivalent, 
we can apply Proposition 1.1, and we see that we must have X = 1, since the 
extensions induce the same absolute value v on X. This proves what we want. 

From the uniqueness we can get an explicit determination of the absolute 
value on an algebraic extension of X. Observe first that if £ is a normal extension 
of X, and a is an automorphism of E over X, then the function 

x i—► | ax | 

is an absolute value on E extending that of X. Hence we must have 

\dx\ = |x| 

for all x g E. If £ is algebraic over X, and a is an embedding of £ over X in Xa, 
then the same conclusion remains valid, as one sees immediately by embedding 
£ in a normal extension of X. In particular, if a is algebraic over X, of degree n, 
and if a j,..., an are its conjugates (counting multiplicities, equal to the degree of 
inseparability), then all the absolute values |a.| are equal. Denoting by N 

the norm from K(oc) to X, we see that 

m*)\ = l«P, 
and taking the n-th root, we get: 

Proposition 2.6. Let K be complete with respect to a non-trivial absolute 

value. Let oc be algebraic over K, and let N be the norm from K(a) to K. Let 

n = [X(a):X]. Then 

|a| = |/V(a)r. 

In the special case of the complex numbers over the real numbers, we can 
write a = a + bi with a, be R, and we see that the formula of Proposition 2.6 is 
a generalization of the formula for the absolute value of a complex number, 

a = (a2 + b2)1/2, 

since a2 + b2 is none other than the norm of a from C to R. 
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Comments and examples. The process of completion is widespread in 
mathematics. The first example occurs in getting the real numbers from the 
rational numbers, with the added property of ordering. I carry this process out 
in full in [La 90a], Chapter IX, §3. In all other examples I know, the ordering 
property does not intervene. We have seen examples of completions of fields in 
this chapter, especially with the p-adic absolute values which are far away from 
ordering the field. But the real numbers are nevertheless needed as the range of 
values of absolute values, or more generally norms. 

In analysis, one completes various spaces with various norms. Let V be a 
vector space over the complex numbers, say. For many applications, one must 
also deal with a seminorm, which satisfies the same conditions except that in 
NO 1 we require only that ||£|| ^ 0. We allow ||£|| = 0 even if £ =£ 0. 

One may then form the space of Cauchy sequences, the subspace of null 
sequences, and the factor space V. The seminorm can be extended to a seminorm 
on V by continuity, and this extension actually turns out to be a norm. It is a 
general fact that V is then complete under this extension. A Banach space is a 
complete normed vector space. 

Example. Let V be the vector space of step functions on R, a step function 
being a complex valued function which is a finite sum of characteristic functions 
of intervals (closed, open, or semiclosed, i.e. the intervals may or may not 
contain their endpoints). For/e V we define the L^seminorm by 

ll/ll i = J I/to I dx. 

R 

The completion of V with respect to this seminorm is defined to be Lx(R). One 
then wants to get a better idea of what elements of Lx{R) look like. It is a simple 
lemma that given an L1-Cauchy sequence in V, and given e > 0, there exists a 
subsequence which converges uniformly except on a set of measure less than e. 

Thus elements of Lx(R) can be identified with pointwise limits of Lx-Cauchy 
sequences in V. The reader will find details carried out in [La 85]. 

Analysts use other norms or seminorms, of course, and other spaces, such 
as the space of C00 functions on R with compact support, and norms which may 
bound the derivatives. There is no end to the possible variations. 

Theorem 2.3 and Corollary 2.4 are also used in the theory of Banach algebras, 
representing a certain type of Banach algebra as the algebra of continuous func¬ 
tions on a compact space, with the Gelfand-Mazur and Gelfand-Naimark theo¬ 
rems. Cf. [Ri 60] and [Ru 73]. 

Arithmetic example. For p-adic Banach spaces in connection with the 
number theoretic work of Dwork, see for instance Serre [Se 62], or also 

[La 90b], Chapter 15. 
In this book we limit ourselves to complete fields and their finite extensions. 
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§3. FINITE EXTENSIONS 

Throughout this section we shall deal with a field X having a non-trivial 
absolute value v. 

We wish to describe how this absolute value extends to finite extensions of X. 
If E is an extension of X and w is an absolute value on E extending v, then we shall 
write w | v. 

If we let Kv be the completion, we know that v can be extended to Kv, and 
then uniquely to its algebraic closure X*. If E is a finite extension of X, or even 
an algebraic one, then we can extend v to E by embedding E in X* by an iso¬ 
morphism over X, and taking the induced absolute value on E. We shall now 
prove that every extension of v can be obtained in this manner. 

Proposition 3.1. Let E be a finite extension of K. Let w be an absolute value 

on E extending v, and let Ew be the completion. Let Kw be the closure of K in 

Ew and identify E in Ew. Then Ew = EKW (the composite field). 

Proof. We observe that Kw is a completion of X, and that the composite 
field EKW is algebraic over Kw and therefore complete by Proposition 2.5. Since 
it contains E, it follows that E is dense in it, and hence that Ew = EKW. 

If we start with an embedding cr: E -► X* (always assumed to be over X), 
then we know again by Proposition 2.5 that oE • Kv is complete. Thus this 
construction and the construction of the proposition are essentially the same, up 
to an isomorphism. In the future, we take the embedding point of view. We 
must now determine when two embeddings give us the same absolute value on E. 

Given two embeddings <x, z: E -+ XJ, we shall say that they are conjugate 
over Kv if there exists an automorphism X of X* over Kv such that o = Xz. We 
see that actually X is determined by its effect on t£, or zE Kv. 
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Proposition 3.2. Let E be an algebraic extension of K. Two embeddings 

a, t : E -► K*v give rise to the same absolute value on E if and only if they are 

conjugate over Kv. 

Proof Suppose they are conjugate over Kv. Then the uniqueness of the 
extension of the absolute value from Kv to K*v guarantees that the induced 
absolute values on E are equal. Conversely, suppose this is the case. Let 
k: tE -> oE be an isomorphism over K. We shall prove that k extends to an 
isomorphism of tE Kv onto oEKv over Kv. Since xE is dense in tE Kv9 

an element xexE- Kv can be written 

x = lim ixn 

with xn e E. Since the absolute values induced by cr and x on E coincide, it 
follows that the sequence kxxn = oxn converges to an element of oE • Kv which 
we denote by kx. One then verifies immediately that kx is independent of the 
particular sequence tx„ used, and that the map k: xE • Kv -+ oE • Kv is an iso¬ 
morphism, which clearly leaves Kv fixed. This proves our proposition. 

In view of the previous two propositions, if w is an extension of v to a finite 
extension E of K, then we may identify Ew and a composite extension EKV of E 

and Kv. If N = [E : K] is finite, then we shall call 

Nw = [£W:KJ 

the local degree. 

Proposition 3.3. Let Ebea finite separable extension of K, of degree N. Then 

w\v 

Proof We can write E = K(oc) for a single element a. Let f(X) be its 
irreducible polynomial over K. Then over Kv, we have a decomposition 

f(X) = MX)---fr(X) 

into irreducible factors f(X). They all appear with multiplicity 1 according to 
our hypothesis of separability. The embeddings of E into K*v correspond to the 
maps of a onto the roots of the f. Two embeddings are conjugate if and only if 
they map a onto roots of the same polynomial f. On the other hand, it is clear 
that the local degree in each case is precisely the degree of/). This proves our 
proposition. 

Proposition 3.4. Let E be a finite extension of K. Then 

£[£:*]• 
w|y 
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IfE is purely inseparable over X, then there exists only one absolute value w on 

E extending v. 

Proof. Let us first prove the second statement. If E is purely inseparable 
over X, and pr is its inseparable degree, then otpr e X for every a in E. Hence v has 
a unique extension to E. Consider now the general case of a finite extension, and 
let F = EPK. Then F is separable over X and E is purely inseparable over F. 
By the preceding proposition, 

2 [FW:KV] = [F:K], 
W\V 

and for each w, we have [Ew: F J g [E: F]. From this our inequality in the 
statement of the proposition is obvious. 

Whenever v is an absolute value on K such that for any finite extension E of K 

we have [£: K~\ = X [Ew: we shall say that v is well behaved. Suppose we 
wlf 

have a tower of finite extensions, L =5 E zd X. Let w range over the absolute 
values of E extending v, and u over those of L extending v. If u\w then Lu 

contains Ew. Thus we have: 

TlLu:Kv-]= X X [LU:EJ\_EW:KV-} 
u\v w|p u|w 

w|y u|w 

^ X[£«:KJ[L:£] 
w|t; 

^ [F:K][L:F]. 

From this we immediately see that if v is well behaved, E finite over X, and w 
extends v on F, then w is well behaved (we must have an equality everywhere). 

Let E be a finite extension of K. Let pr be its inseparable degree. We recall 
that the norm of an element a e K is given by the formula 

NEK(a) = n 
a 

where a ranges over all distinct isomorphisms of E over K (into a given algebraic 
closure). 

If w is an absolute value extending v on F, then the norm from Fw to Kv will 
be called the local norm. 

Replacing the above product by a sum, we get the trace, and the local trace. 
We abbreviate the trace by Tr. 

Proposition 3.8. Let E be a finite extension of X, and assume that v is well 
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behaved. Let a e E. Then: 

NU*) = n Nftot) 
w\v 

Tr|(«) = Yj Tr£"(a) 
w|v 

Proof. Suppose first that E = K(a), and let f(X) be the irreducible poly¬ 
nomial of a over K. If we factor /(X) into irreducible terms over Kv, then 

f{X) = fx{X)-fAX) 

where each f( X) is irreducible, and the f are distinct because of our hypothesis 
that v is well behaved. The norm a) is equal to (— l)deg/ times the constant 
term of /, and similarly for each f. Since the constant term of / is equal to the 
product of the constant terms of the fy we get the first part of the proposition. 
The statement for the trace follows by looking at the penultimate coefficient of/ 
and each f. 

If E is not equal to K(a), then we simply use the transitivity of the norm and 
trace. We leave the details to the reader. 

One can also argue directly on the embeddings. Let al9..., am be the distinct 
embeddings of E into K*v over K, and let pr be the inseparable degree of E 

over K. The inseparable degree of oE • Kv over Kv for any a is at most equal 
to pr. If we separate into distinct conjugacy classes over KV9 

then from our hypothesis that v is well behaved, we conclude at once that the 
inseparable degree of aiE Kv over Kv must be equal to pr also, for each i. 

Thus the formula giving the norm as a product over conjugates with multi¬ 
plicity pr breaks up into a product of factors corresponding to the conjugacy 
classes over Kv. 

Taking into account Proposition 2.6, we have: 

Proposition 3.6. Let K have a well-behaved absolute value v. Let E be a 

finite extension of K, and a e E. Let 

NW = [EW:KV-] 

for each absolute value w on E extending v. Then 

n\«1Hr = \N*M\v. 
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§4. VALUATIONS 

In this section, we shall obtain, among other things, the existence theorem 
concerning the possibility of extending non-archimedean absolute values to 
algebraic extensions. We introduce first a generalization of the notion of non- 
archimedean absolute value. 

Let T be a multiplicative commutative group. We shall say that an ordering 
is defined in T if we are given a subset S of T closed under multiplication such 
that T is the disjoint union of S, the unit element 1, and the set S~1 consisting of 
all inverses of elements of S. 

If a, P e T we define a < /? to mean a/J“1 e S. We have a < 1 if and only if 
a e 5. One easily verifies the following properties of the relation < : 

1. For a, T we have a < /?, or a = /?, or /? < a, and these possibilities 
are mutually exclusive. 

2. a < /? implies ay < /?y for any y e T. 

3. a < and /? < y implies a < y. 

(Conversely, a relation satisfying the three properties gives rise to a subset S 

consisting of all elements < 1. However, we don’t need this fact in the sequel.) 
It is convenient to attach to an ordered group formally an extra element 0, 

such that 0a = 0, and 0 < a for all a e T. The ordered group is then analogous 
to the multiplicative group of positive reals, except that there may be non- 
archimedean ordering. 

If a e T and n is an integer # 0, such that ocn = 1, then a = 1. This follows at 
once from the assumption that S is closed under multiplication and does not 
contain 1. In particular, the map a i—► a" is injective. 

Let K be a field. By a valuation of K we shall mean a map x i—► |x | of K into 
an ordered group T, together with the extra element 0, such that: 

VAL 1. |x| = 0 if and only if x = 0. 

VAL 2. | xy | = | x 11 y \ for all x, y e K. 

VAL 3. | x -F y \ ^ max( | x |, | y \). 

We see that a valuation gives rise to a homomorphism of the multiplicative 
group K* into T. The valuation is called trivial if it maps A* on 1. If the map 
giving the valuation is not surjective, then its image is an ordered subgroup of T, 
and by taking its restriction to this image, we obtain a valuation onto an ordered 
group, called the value group. 

We shall denote valuations also by v. If vl9 v2 are two valuations of X, we 
shall say that they are equivalent if there exists an order-preserving isomorphism 
X of the image of onto the image of v2 such that 

|x|2 = X\x\t 
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for all x e K. (We agree that A(0) = 0.) 
Valuations have additional properties, like absolute values. For instance, 

111 = 1 because 111 = 1112. Furthermore, 

I ± *1 = 1*1 

forallxeK. Proof obvious. Also, if |x| < \y\then 

\x + y\ = \y\. 

To see this, note that under our hypothesis, we have 

\y\ = \y + x-x\£ max(|y + x|, |x|) = |x + y\ ^ max(|x|, \y\) = \y\. 

Finally, in a sum 

x i + • • • + x„ = 0, 

at least two elements of the sum have the same value. This is an immediate 
consequence of the preceding remark. 

Let K be a field. A subring o of K is called a valuation ring if it has the 
property that for any x e K we have xeoor x_1eo. 

We shall now see that valuation rings give rise to valuations. Let o be a 
valuation ring of K and let U be the group of units of o. We contend that o is a 
local ring. Indeed suppose that x, ye o are not units. Say x/y e o. Then 

1 + x/y = (x + y)/y e o. 

If x + y were a unit then 1 /y e o, contradicting the assumption that y is not a unit. 
Hence x + y is not a unit. One sees trivially that for zeo,zx is not a unit. Hence 
the nonunits form an ideal, which must therefore be the unique maximal ideal 
of o. 

Let m be the maximal ideal of o and let m* be the multiplicative system of 
nonzero elements of m. Then 

K* = m* u U u m* "1 

is the disjoint union of m*, (7, and m* ~\ The factor group K*/U can now be 
given an ordering. If x e X*, we denote the coset xU by |x|. We put |0| = 0. 
We define |x| < 1 (i.e. |x| e S) if and only if x e m*. Our set S is clearly closed 
under multiplication, and if we let T = K*/U then T is the disjoint union of S, 
1, S~ L In this way we obtain a valuation of X. 

We note that if x, y e X and x, y # 0, then 

Ixj < \y\o\x/y \ < 1 ox/yem*. 

Conversely, given a valuation of K into an ordered group we let o be the 
subset of K consisting of all x such that |x| < 1. It follows at once from the 
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axioms of a valuation that o is a ring. If |x| < 1 then |x“11 > 1 so that x“1 is 
not in o. If |x| = 1 then |x_11 = 1. We see that o is a valuation ring, whose 
maximal ideal consists of those elements x with | x | < 1 and whose units consist 
of those elements x with | x | = 1. The reader will immediately verify that there is 
a bijection between valuation rings of K and equivalence classes of valuations. 

The extension theorem for places and valuation rings in Chapter VII now 
gives us immediately the extension theorem for valuations. 

Theorem 4.1. Let K be a subfield of a field L. Then a valuation on K has an 

extension to a valuation on L. 

Proof Let o be the valuation ring on K corresponding to the given valua¬ 
tion. Let cp : o -► o/m be the canonical homomorphism on the residue class field, 
and extend cp to a homomorphism of a valuation ring O of L as in §3 of Chapter 
VII. Let 3ft be the maximal ideal of 0. Since 3ft fl o contains m but does not 
contain 1, it follows that 3ft D o = m. Let U' be the group of units of 0. Then 
U’ fl K = U is the group of units of o. Hence we have a canonical injection 

K*/U - L*/U' 

which is immediately verified to be order-preserving. Identifying K*/U in 
L*/U' we have obtained an extension of our valuation of K to a valuation of L. 

Of course, when we deal with absolute values, we require that the value group 
be a subgroup of the multiplicative reals. Thus we must still prove something 
about the nature of the value group L*/U\ whenever L is algebraic over K. 

Proposition 4.2. Let L be a finite extension of K, of degree n. Let w be a 

valuation of L with value group F. Let T be the value group of K. Then 

(F: T) ^ n. 

Proof Let yj, ...,yr be elements of L whose values represent distinct 
cosets of T in F. We shall prove that the y} are linearly independent over K. In 
a relation axy{ + • • • + aryr = 0 with a}e K, a, # 0 two terms must have the 
same value, say |a{yt | = |a^yf with i # j\ and hence 

ly.-l = KXllyjl- 

This contradicts the assumption that the values of y^yj (i # j) represent distinct 
cosets of T in F, and proves our proposition. 

Corollary 4.3. There exists an integer e ^ 1 such that the map y ye 

induces an injective homomorphism of F into T. 

Proof Take e to be the index (F : T). 
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Corollary 4.4. If K is a field with a valuation v whose value group is an 

ordered subgroup of the ordered group of positive real numbers, and if L is an 

algebraic extension of K, then there exists an extension of v to L whose value 

group is also an ordered subgroup of the positive reals. 

Proof We know that we can extend v to a valuation w of L with some value 
group P, and the value group T of v can be identified with a subgroup of R+. 
By Corollary 4.3, every element of P has finite period modulo P Since every 
element of R+ has a unique e-th root for every integer e ^ 1, we can find in an 
obvious way an order-preserving embedding of P into R+ which induces the 
identity on P In this way we get our extension of v to an absolute value on L. 

Corollary 4.5. If L is finite over K, and ifT is infinite cyclic, then P is also 

infinite cyclic. 

Proof. Use Corollary 4.3 and the fact that a subgroup of a cyclic group is 
cyclic. 

We shall now strengthen our preceding proposition to a slightly stronger one. 
We call (P : P) the ramification index. 

Proposition 4.6. Let Lbe a finite extension of degree nof a field K, and let O 
be a valuation ring of L. Let be its maximal ideal, let o = O n K, and let m 
be the maximal ideal of o, i.e. m = n o. Then the residue class degree 

[0/9W : o/m] is finite. If we denote it by f, and if e is the ramification index, then 

ef ^ n. 

Proof. Let yl9..., ye be representatives in L* of distinct cosets of P/T and 
let zl9..., zs be elements of O whose residue classes mod 90? are linearly inde¬ 
pendent over o/m. Consider a relation 

Z auzjy< =0 
‘,j 

with atj e K, not all au = 0. In an inner sum 

S 

X aijZj’ 

j= 1 

divide by the coefficient aiv having the biggest valuation. We obtain a linear 
combination of zu ... ,zs with coefficients in o, and at least one coefficient equal 
to a unit. Since zu ..., zs are linearly independent mod 501 over o/m, it follows 
that our linear combination is a unit. Hence 

Z aUzi 
j= i 

= \ah 
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for some index v. In the sum 

i (i-w)* =» 

viewed as a sum on i, at least two terms have the same value. This contradicts 
the independence of | yt |,..., | ye | mod T just as in the proof of Proposition 4.2. 

Remark. Our proof also shows that the elements {z^yj are linearly in¬ 
dependent over K. This will be used again later. 

If w is an extension of a valuation v, then the ramification index will be 
denoted by e(w\v) and the residue class degree will be denoted by /(w\v). 

Proposition 4.7. Let K be a field with a valuation v, and let K cz E a L be 

finite extensions of K. Let w be an extension ofvtoE and let u be an extension 

ofwtoL. Then 

e(u | w)e(w | v) = e(ujv), 

f(u\w)f(w\v) = f(u\v). 

Proof. Obvious. 

We can express the above proposition by saying that the ramification index 
and the residue class degree are multiplicative in towers. 

We conclude this section by relating valuation rings in a finite extension with 
the integral closure. 

Proposition 4.8. Let o be a valuation ring in a field K. Let L be a finite 

extension ofK. Let © be a valuation ring ofL lying above o, and 3ft its maximal 

ideal. Let B be the integral closure of o in L, and let 93 = 3ft D B. Then © is 

equal to the local ring B%. 

Proof. It is clear that Bv is contained in ©. Conversely, let x be an element 
of ©. Then x satisfies an equation with coefficients in K, not all 0, say 

anxn + • • • + a0 = 0, ate K. 

Suppose that as is the coefficient having the biggest value among the a{ for the 
valuation associated with the valuation ring o, and that it is the coefficient 
farthest to the left having this value. Let bt = ai/as. Then all bt e o and 
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Divide the equation by xs. We get 

+ -.- + ft,+ 1x+ 1) 

Let y and z be the two quantities in 
that we can write 

parentheses in the preceding equation, so 

— y = z/x and — xy = z. 

To prove our proposition it will suffice to show that y and z lie in B and that y is 
not in <p. 

We use Proposition 3.5 of Chapter VII. If a valuation ring of L above 
contains x9 then it contains y because y is a polynomial in x with coefficients in 

Hence such a valuation ring also contains z = ~xy. If on the other hand the 
valuation ring of L above contains 1/jt, then it contains z because z is a 
polynomial in l/x with coefficients in . Hence this valuation ring also contains 
y. From this we conclude by Chapter VII, Proposition 3.5, that y9 z lie in B. 

Furthermore, since xe O, and bn,...,bs+l are in 931 by construction, it 
follows that y cannot be in 9W, and hence cannot be in ^3. This concludes the 
proof. 

Corollary 4.9. Let the notation be as in the proposition. Then there is only 

a finite number of valuation rings of L lying above . 

Proof This comes from the fact that there is only a finite number of 
maximal ideals *P of B lying above the maximal ideal of o (Corollary of Pro¬ 
position 2.1, Chapter VII). 

Corollary 4.10. Let the notation be as in the proposition. Assume in addition 

that L is Galois over K. //€> and O' are two valuation rings of L lying above o, 
with maximal ideals 9Ji, 9Ji' respectively, then there exists an automorphism a 

of L over K such that <rO = O' and <j9W = 93i'. 

Proof Let ^3 = 0 n B and $' = O' n B. By Proposition 2.1 of Chapter 
VII, we know that there exists an automorphism cr of L over K such that 
cr^P = $'. From this our assertion is obvious. 

Example. Let k be a field, and let K be a finitely generated extension of 
transcendence degree 1. If ns a transcendence base of K over k, then K is finite 
algebraic over k(t). Let O be a valuation ring of K containing fc, and assume that 
O is # X. Let o = O n k(t). Then o is obviously a valuation ring of k(t) (the 
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condition about inverses is a fortiori satisfied), and the corresponding valuation 
of k(t) cannot be trivial. Either t or t~1 e o. Say t e o. Then o n k[t] cannot be 
the zero ideal, otherwise the canonical homomorphism o -> o/m of o modulo its 
maximal ideal would induce an isomorphism on /c[t] and hence an isomorphism 
on k(t\ contrary to hypothesis. Hence m n /c[t] is a prime ideal p, generated by 
an irreducible polynomial p(t). The local ring /c[t]p is obviously a valuation 
ring, which must be o because every element of k(t) has an expression of type pru 
where u is a unit in /c[t]p. Thus we have determined all valuation rings of k(t) 
containing k9 and we see that the value group is cyclic. Such valuations will be 
called discrete and are studied in greater detail below. In view of Corollary 4.5, 
it follows that the valuation ring O of K is also discrete. 

The residue class field o/m is equal to k[t]/p and is therefore a finite exten¬ 
sion of k. By Proposition 4.6, it follows that 0/HR is finite over k (if denotes 
the maximal ideal of 0). 

Finally, we observe that there is only a finite number of valuation rings O 
of K containing k such that t lies in the maximal ideal of O. Indeed, such a 
valuation ring must lie above /c[t]p where p = (t) is the prime ideal generated by 
/, and we can apply Corollary 4.9. 

§5. COMPLETIONS AND VALUATIONS 

Throughout this section, we deal with a non-archimedean absolute value 
v on a field K. This absolute value is then a valuation, whose value group VK is a 
subgroup of the positive reals. We let o be its valuation ring, m the maximal ideal. 

Let us denote by K the completion of K at v, and let 6 (resp. m) be the closure 
of o (resp. m) in K. By continuity, every element of 6 has value ^ 1, and every 
element of K which is not in 6 has value >1. If xeK then there exists an 
element ye K such that |x — y\ is very small, and hence |x| = \y \ for such an 
element y (by the non-archimedean property). Hence 6 is a valuation ring in 
K, and m is its maximal ideal. Furthermore, 

6 n K = o and m n K = m, 

and we have an isomorphism 

o/m A o/m. 

Thus the residue class field o/m does not change under completion. 
Let E be an extension of K, and let oE be a valuation ring of E lying above o. 

Let mE be its maximal ideal. We assume that the valuation corresponding to o£ 
is in fact an absolute value, so that we can form the completion E. We then have 
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a commutative diagram: 

0r/m£-♦ o£/m£ 

o/m —-—> o/m 

the vertical arrows being injections, and the horizontal ones being isomorphisms. 
Thus the residue class field extension of our valuation can be studied over the 
completions E of K. 

We have a similar remark for the ramification index. Let TV(K) and r„(X) 
denote the value groups of our valuation on K and K respectively (i.e. the image 
of the map x i-> |x| for xe K* and xe K* respectively). We saw above that 
r„(/Q = T„(K); in other words, the value group is the same under completion, 
because of the non-archimedean property. (This is of course false in the archime- 
dean case.) If E is again an extension of K and w is an absolute value of E 
extending v, then we have a commutative diagram 

r W(E) ■ 

r„(K) 

rw(£) 

rv(K) 
from which we see that the ramification index (rw(£): rv(K)) also does not 
change under completion. 

§6. DISCRETE VALUATIONS 

A valuation is called discrete if its value group is cyclic. In that case, the 
valuation is an absolute value (if we consider the value group as a subgroup of 
the positive reals). The p-adic valuation on the rational numbers is discrete for 
each prime number p. By Corollary 4.5, an extension of a discrete valuation to a 
finite extension field is also discrete. Aside from the absolute values obtained 
by embedding a field into the reals or complex numbers, discrete valuations are 
the most important ones in practice. We shall make some remarks concerning 
them. 

Let v be a discrete valuation on a field K, and let o be its valuation ring. Let 
m be the maximal ideal. There exists an element n of m which is such that its 
value | n | generates the value group. (The other generator of the value group is 
| u~11.) Such an element n is called a local parameter for v (or for m). Every 
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element x of K can be written in the form 

x = unr 

with some unit u of o, and some integer r. Indeed, we have |x| = \n\r = 17rr| 
for some re Z, whence xlnr is a unit in o. We call r the order of x at v. It is 
obviously independent of the choice of parameter selected. We also say that x 
has a zero of order r. (If r is negative, we say that x has a pole of order — r.) 

In particular, we see that m is a principal ideal, generated by n. As an exercise, 
we leave it to the reader to verify that every ideal of o is principal, and is a power 
of m. Furthermore, we observe that o is a factorial ring with exactly one prime 
element (up to units), namely n. 

If x, yeK, we shall write x~y if|x| = |jp|. Let nt (i = 1, 2,...) be a 
sequence of elements of o such that 7cf — ri. Let R be a set of representatives of 
o/m in o. This means that the canonical map o -► o/m induces a bijection of R 
onto o/m. 

Assume that K is complete under our valuation. Then every element x of o can 
he written as a convergent series 

x = a0 + + a2n2 + • • • 

with a{ E R, and the a{ are uniquely determined by x. 

This is easily proved by a recursive argument. Suppose we have written 

x = a0 + • • • + annn (mod mn+1) 

then x — (a0 + • • • + annn) = nn+ly for some yeo. By hypothesis, we can 
write y = an+1 + nz with some an + leR. From this we get 

x = a0 + ••• + an+lnn+1 (mod m" + 2), 

and it is clear that the n-th term in our series tends to 0. Therefore our series 
converges (by the non-archimedean behavior!). The fact that R contains precisely 
one representative of each residue class mod m implies that the a{ are uniquely 
determined. 

Examples. Consider first the case of the rational numbers with the /?-adic 
valuation vp. The completion is denoted by Qp. It is the field ofp-adic numbers. 
The closure of Z in Qp is the ring of p-adic integers Zp. We note that the prime 
number p is a prime element in both Z and its closure Zp. We can select our set 
of representatives R to be the set of integers (0, 11). Thus every p- 
adic integer can be written uniquely as a convergent sum X where at is an 
integer, 0 ^ at ^ p — 1. This sum is called its p-adic expansion. Such sums 
are added and multiplied in the ordinary manner for convergent series. 
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For instance, we have the usual formalism of geometric series, and if we take 
p = 3, then 

-1 =^^3 = 2(1 + 3 + 32 + •••)• 

We note that the representatives (0, 1,..., p — 1) are by no means the only 
ones which can be used. In fact, it can be shown that Zp contains the (p — l)-th 
roots of unity, and it is often more convenient to select these roots of unity as 
representatives for the non-zero elements of the residue class field. 

Next consider the case of a rational field k(t\ where k is any field and t is 
transcendental over k. We have a valuation determined by the prime element t 
in the ring k[t]. This valuation is discrete, and the completion of k[t] under this 
valuation is the power series ring fc[[t]]. In that case, we can take the elements 
of k itself as repersentatives of the residue class field, which is canonically 
isomorphic to k. The maximal ideal of /c[[t]] is the ideal generated by t. 

This situation amounts to an algebraization of the usual situation arising in 
the theory of complex variables. For instance, let z0 be a point in the complex 
plane. Let o be the ring of functions which are holomorphic in some disc around 
z0. Then o is a discrete valuation ring, whose maximal ideal consists of those 
functions having a zero at z0. Every element of o has a power series expansion 

/(z) = £ av(z - z0)v. 
v = m 

The representatives of the residue class field can be taken to be complex numbers, 
av. If am / 0, then we say that /(z) has a zero of order m. The order is the same, 
whether viewed as order with respect to the discrete valuation in the algebraic 
sense, or the order in the sense of the theory of complex variables. We can select a 
canonical uniformizing parameter namely z — z0, and 

/(z) = (z - z0)mg{z) 

where g(z) is a power series beginning with a non-zero constant. Thus g(z) is 
invertible. 

Let K be again complete under a discrete valuation, and let £ be a finite 
extension of K. Let o£, m£ be the valuation ring and maximal ideal in E lying 
above o, m in K. Let m be a prime element in E. If T£ and VK are the value 
groups of the valuations in E and K respectively, and 

e = (rE:rK) 

is the ramification index, then 

in*| = |*| 
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and the elements 

n V, 0 ^ i ^ e — IJ = 0, 1, 2,... 

have order je + i in E. 

Let a)coy be elements of E such that their residue classes mod m£ from 
a basis of o£/m£. If R is as before a set of representatives of o/m in o, then the set 
consisting of all elements 

alco1 + • • • + afcof 

with cij eR is a set of representatives of o£/m£ in o£. From this we see that every 
element of o£ admits a convergent expansion 

Z Z Z Ov.i.XWvIl1. 
i = 0 v = 1 j= 0 

Thus the elements {covn1} form a set of generators of o£ as a module over o. 
On the other hand, we have seen in the proof of Proposition 4.6 that these 
elements are linearly independent over K. Hence we obtain: 

Proposition 6.1. Let K be complete under a discrete valuation. Let E be a 

finite extension of K, and let e, / be the ramification index and residue class 

degree respectively. Then 

ef = IE:KI 

Corollary 6.2. Let a e £, a / 0. Let v be the valuation on K and w its 

extension to E. Then 

ord„ Nf(a) = f(w\v) ordw a. 

Proof. This is immediate from the formula 

\NEM\ = \0L\ef 

and the definitions. 

Corollary 6.3. Let K be any field and v a discrete valuation on K. Let Ebe a 

finite extension of K. If v is well behaved in E (for instance if E is separable 

over K\ then 

Z e(w | v)f (w | y) = [£:K], 
w|f 

If E is Galois over K, then all ew are equal to the same number e9 all /w are 
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equal to the same number /, and so 

efr = lE:Kl 

where r is the number of extensions of v to E. 

Proof‘ Our first assertion comes from our assumption, and Proposition 3.3. 
If E is Galois over K, we know from Corollary 4.10 that any two valuations of E 
lying above v are conjugate. Hence all ramification indices are equal, and 
similarly for the residue class degrees. Our relation efr = [£: k] is then 
obvious. 

§7. ZEROS OF POLYNOMIALS IN 
COMPLETE FIELDS 

Let K be complete under a non-trivial absolute value. 

Let 

f(X) = f[ (X - atr 

be a polynomial in K[X~\ having leading coefficient 1, and assume the roots a,- 
are distinct, with multiplicities r,. Let d be the degree of /. Let g be another 
polynomial with coefficients in Ka, and assume that the degree of g is also d, and 
that g has leading coefficient 1. We let | g | be the maximum of the absolute values 
of the coefficients of g. One sees easily that if \g\ is bounded, then the absolute 
values of the roots of g are also bounded. 

Suppose that g comes close to /, in the sense that \f — g\ is small. If ft is 
any root of g, then 

\m-gm = \m\ = n\*i-p\ri 

is small, and hence jS must come close to some root of /. As f comes close to 
say a = olu its distance from the other roots of / approaches the distance of olx 
from the other roots, and is therefore bounded from below. In that case, we say 
that ft belongs to cl. 

Proposition 7.1. If g is*sufficiently close to /, and flu ..., are the roots of g 
belonging to cl (counting multiplicities), then s = rx is the multiplicity of cl in f. 

Proof Assume the contrary. Then we can find a sequence gv of poly¬ 
nomials approaching / with precisely 5 roots j8\v),..., f{sv) belonging to a, but 
with 5 # r. (We can take the same multiplicity s since there is only a finite 
number of choices for such multiplicities.) Furthermore, the other roots of g also 
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belong to roots of /, and we may suppose that these roots are bunched together, 
according to which root of/ they belong to. Since lim gv = /, we conclude that a 
must have multiplicity s in /, contradiction. 

Next we investigate conditions under which a polynomial has a root in a 
complete field. 

We assume that K is complete under a discrete valuation, with valuation ring o, 
maximal ideal p. We let n be a fixed prime element of p. 

We shall deal with n-space over o. We denote a vector (al9 ...9 an) with 
a{ e o by A. If f(Xl9 ..., Xn) £ o[A"] is a polynomial in n variables, with integral 
coefficients, we shall say that A is a zero of / if /(A) = 0, and we say that A is a 
zero of / mod pm if /(A) = 0 (mod pm). 

Let C = (c09... 9 cn) be in o("+1}. Let m be an integer ^ 1. We consider the 
nature of the solutions of a congruence of type 

(*) nm(c0 + cixl + • • • + cnxn) = 0 (mod pm+1). 

This congruence is equivalent with the linear congruence 

(**) c0 + c1xl + ■ • • + cnxn = 0 (mod p). 

If some coefficient cx (i = 1,..., n) is not = 0 (mod p), then the set of solutions is 
not empty, and has the usual structure of a solution of one inhomogeneous 
linear equation over the field o/p. In particular, it has dimension n — 1. 
A congruence (*) or (**) with some ct # 0 (mod p) will be called a proper 
congruence. 

As a matter of notation, we write / for the formal partial derivative of / 
with respect to X(. We write 

grad f(X) = (DJ(X)9...9Dnf(X)). 

Proposition 7.2. Let f(X) £ o\_X~\. Let r be an integer ^ 1 and let A £ o(n) be 
such that 

f(A) = 0 (mod p2r~ l)9 

Dif(A) = 0 (modp'-1), for all i = 1.n, 

Dif(A) ^ 0 (mod pr), for some i = 1,..., n. 

Let v be an integer ^ 0 and let B £ o(n) be such that 

B = A (mod pr) and /(B) = 0 (mod p2r~1 + v)- 

A vector Y £ o(n) satisfies 

Y = B (mod pr + v) and f(Y) = 0 (mod p2r+v) 
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if and only if Y can be written in the form Y = B + nr+vC, with some C 6 o(n) 
satisfying the proper congruence 

f(B) + 7rr+v grad f(B) C = 0 (mod p2r+v). 

Proof The proof is shorter than the statement of the proposition. Write 
Y = B + nr+vC. By Taylor’s expansion, 

f(B + nr+vC) = f(B) + 7ir+v grad f(B) • C (mod p2r+2v). 

To solve this last congruence mod p2r+v, we obtain a proper congruence by 
hypothesis, because grad f(B) = grad f(A) = 0 (mod pr_ 1). 

Corollary 7.3. Assumptions being as in Proposition 7.2, t/iere exists a zero 
o/ / in oin) which is congruent to A mod pr. 

Proof We can write this zero as a convergent sum 

A + nr+1C1 4- 7tr + 2C2 + ... 

solving for Cl9 C2,... inductively as in the proposition. 

Corollary 7.4. Let f be a polynomial in one variable in o[X], and let aeo 
be such that f (a) = 0 (mod p) but f'(a) ^ 0 (mod p). Then there exists 
b g o, b = a (mod p) such that f(b) = 0. 

Proof Take n = 1 and r = 1 in the proposition, and apply Corollary 7.3. 

Corollary 7.5. Let mbe a positive integer not divisible by the characteristic 
of K. There exists an integer r such that for any aeo, a = 1 (mod pr), the 
equation Xm — a = 0 has a root in K. 

Proof Apply the proposition. 

Example. In the 2-adic field Q2, there exists a square root of —7, i.e. 

sf—1 e Q2, because —7 = 1—8. 

When the absolute value is not discrete, it is still possible to formulate a 
criterion for a polynomial to have a zero by Newton approximation. (Cf. my 
paper, “On quasi-algebraic closure,” Annals of Math. (1952) pp. 373-390. 

Proposition 7.6. Let K be a complete under a non-archimedean absolute 
value (nontrivial). Let o be the valuation ring and let f(X) e o[2T] be a poly- 
nomial in one variable. Let a0 e o be such that 

I /(ao) I < I / (ao)21 

(here f denotes the formal derivative of /). Then the sequence 

ai+i_ai /'(«,) 
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converges to a root a of f in o, and we have 

/(«o) 
|a - aol ^ < 1. 

| /'(a0)2 

Proof. Let c = |/(a0)//'(a0)21 < 1. We show inductively that: 

1. I«il ^ 1, 
2. | a( - ad S c. 

3. /(«,) 
/'(a,)2 

< c2'. 

These three conditions obviously imply our proposition. If i = 0, they are 
hypotheses. By induction, assume them for i. Then: 

1. |/(a/)//'(ai)21 ^ c2‘ gives |a4+1 - a£| ^ c2' < 1, whence |ai+ i | ^ 1. 

2. |ai+1 - a0| ^ max{|ai+1 - a,|, |a{ - a0|} = c. 

3. By Taylor’s expansion, we have 

/(«,-) ^ J/(q.)\2 
/(af+1) = /(af)-/'(aj)~^ + 

for some jS g o, and this is less than or equal to 

/(a,) 12 

//(«.) 
\/(a,)/ 

/'(a,) 

in absolute value. 

Using Taylor’s expansion on /'(a, + 0 we conclude that 

\fX*i+l)\ = \f'(0Li)\. 
From this we get 

/(<*«+j 

/'(ai+1)2 

< c 2*+ 1 

as desired. 

The technique of the proposition is also useful when dealing with rings, say a 
local ring o with maximal ideal m such that mr = 0 for some integer r > 0. 
If one has a polynomial / in o[A"] and an approximate root a0 such that 

/'(a0) # 0 mod m, 

then the Newton approximation sequence shows how to refine a0 to a root of/. 

Example in several variables. Let K be complete under a non-archimedean 

absolute value. Let f(X{, ..., Xn+l) E K[X\ be a polynomial with coefficients 

in K. Let (ah . .., an, b) e Kn+l. Assume that f(a, b) = 0. Let Dn+l be the 
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partial derivative with respect to the (n + l)-th variable, and assume that 
Dn+\f(a, b) =£ 0. Let (a) e Kn be sufficiently close to (a). Then there exists an 
element b of K close to b such that f (a, b) = 0. 

This statement is an immediate corollary of Proposition 7.6. By multiplying 
all ah b by a suitable non-zero element of K one can change them to elements 
of o. Changing the variables accordingly, one may assume without loss of gen¬ 
erality that ah be o, and the condition on the partial derivative not vanishing 
is preserved. Hence Proposition 7.6 may be applied. After perturbing (a) to 
(a), the element b becomes an approximate solution off (a, X). As (a) approaches 
(a), f(d9 b) approaches 0 and Dn+lf(a, b) approaches Dn+lf(a, b) * 0. 
Hence for (a) sufficiently close to (a), the conditions of Proposition 7.6 are 
satisfied, and one may refine b to a root of/(J, X), thus proving the assertion. 

The result was used in a key way in my paper “On Quasi Algebraic Closure”. 
It is the analogue of Theorem 3.6 of Chapter XI, for real fields. 

In the language of algebraic geometry (which we now assume), the result 
can be reformulated as follows. Let V be a variety defined over K. Let P be a 
simple point of V in K. Then there is a whole neighborhood of simple points of 
V in K. Especially, suppose that V is defined by a finite number of polynomial 
equations over a finitely generated field k over the prime field. After a suitable 
projection, one may assume that the variety is affine, and defined by one equa¬ 
tion f(X{,. . . , Xn+i) = 0 as in the above statement, and that the point is 
P = («!,..., an> b) as above. One can then select at = xt close to at but such 
that xn) are algebraically independent over k. Let y b$ the refinement 
of b such that f(x, y) = 0. Then (.x, y) is a generic point of V over k9 and the 
coordinates of (x9 y) lie in K. In geometric terms, this means that the function 
field of the variety can be embedded in K over k, just as Theorem 3.6 of Chapter 
XI gave the similar result for an embedding in a real closed field, e.g. the real 
numbers. 

EXERCISES 

1. (a) Let K be a field with a valuation. If 

f(X) = a0 + aiX + ... + anXn 

is a polynomial in X[X], define \J | to be the max on the values \at\(i = 0,..., n). 
Show that this defines an extension of the valuation to K[X], and also that the 
valuation can be extended to the rational field K(X). How is Gauss’ lemma a 
special case of the above statement ? Generalize to polynomials in several variables, 

(b) Let f be a polynomial with complex coefficients. Define | /1 to be the maximum 
of the absolute values of the coefficients. Let d be an integer ^ 1. Show that 
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there exist constants Cl9 C2 (depending only on d) such that, if /, g are polynomials 
in C[X~\ of degrees ^ d, then 

CM\\g\^\fg\^C2\f\\gi 

[Hint: Induction on the number of factors of degree 1. Note that the right 

inequality is trivial.] 

2. Let Mq be the set of absolute values consisting of the ordinary absolute value and all 
p-adic absolute values vp on the field of rational numbers Q. Show that for any rational 
number a e Q, a 0, we have 

n m„=i. 
vsMq 

If K is a finite extension of Q, and M K denotes the set of absolute values on K extending 
those of Mq, and for each w e MK we let Nw be the local degree [Kw: QJ, show that 

for a e K, a ^ 0, we have 

n i«iww = i- 
weMic 

3. Show that the p-adic numbers Qp have no automorphisms other than the identity. 
[Hint: Show that such automorphisms are continuous for the p-adic topology. Use 
Corollary 7.5 as an algebraic characterization of elements close to 1.] 

4. Let A be a principal entire ring, and let K be its quotient field. Let o be a valuation ring 
of K containing A, and assume o # K. Show that o is the local ring A{p) for some prime 
element p. [This applies both to the ring Z and to a polynomial ring k[X] over a field /c.] 

5. Let A be an entire ring, and let K be its quotient field. Assume that every finitely 
generated ideal of A is principal. Let o be a discrete valuation ring of K containing A. 

Show that o = Aip) for some element p of A, and that p is a generator of the maximal 

ideal of o. 

6. Let Qp be a p-adic field. Show that Qp contains infinitely many quadratic fields of 

type Q(>/ —m), where m is a positive integer. 

7. Show that the ring of p-adic integers Zp is compact. Show that the group of units in Zp 
is compact. 

8. If K is a field complete with respect to a discrete valuation, with finite residue class field, 
and if o is the ring of elements of K whose orders are g 0, show that o is compact. Show 
that the group of units of o is closed in o and is compact. 

9. Let K be a field complete with respect to a discrete valuation, let o be the ring of integers 
of K, and assume that o is compact. Let fu f2,... be a sequence of polynomials in n 
variables, with coefficients in o. Assume that all these polynomials have degree ^ d, 
and that they converge to a polynomial / (i.e. that | / — /1 -► 0 as i -► oo). If each / has 
a zero in o, show that / has a zero in o. If the polynomials / are homogeneous of degree 
d, and if each /, has a non-trivial zero in o, show that / has a non-trivial zero in o. [Hint: 
Use the compactness of o and of the units of o for the homogeneous case.] 

(For applications of this exercise, and also of Proposition 7.6, cf. my paper “On 
quasi-algebraic closure,” Annals of Math., 55 (1952), pp. 412-444.) 
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10. Show that if p, p' are two distinct prime numbers, then the fields Qp and Qp, are not 
isomorphic. 

11. Prove that the field Qp contains all (p — l)-th roots of unity. [Hint: Use Proposition 7.6, 
applied to the polynomial Xp~1 — 1 which splits into factors of degree 1 in the residue 
class field.] Show that two distinct (p — l)-th roots of unity cannot be congruent mod p. 

12. (a) Let/(X) be a polynomial of degree 1 in Z[X]. Show that the values f(a) for 
a E Z are divisible by infinitely many primes. 

(b) Let F be a finite extension of Q. Show that there are infinitely many primes p 

such that all conjugates of F (in an algebraic closure of Qp) actually are contained 
in Qp. [Hint : Use the irreducible polynomial of a generator for a Galois extension 

of Q containing F.] 

13. Let K be a field of characteristic 0, complete with respect to a non-archimedean absolute 

value. Show that the series 

x x 
exp(x) = l+ x+ — + — + ••• 

x2 x3 
l0g(l +X) = X- y + y- 

converge in some neighborhood of 0. (The main problem arises when the characteristic 
of the residue class field is p > 0, so that p divides the denominators nl and n. Get an 
expression which determines the power of p occurring in n!.) Prove that the exp and 
log give mappings inverse to each other, from a neighborhood of 0 to a neighborhood 
of 1. 

14. Let K be as in the preceding exercise, of characteristic 0, complete with respect to a non- 
archimedean absolute value. For every integer n > 0, show that the usual binomial 
expansion for (1 + x)1/n converges in some neighborhood of 0. Do this first assuming 
that the characteristic of the residue class field does not divide n, in which case the asser¬ 

tion is much simpler to prove. 

15. Let F be a complete field with respect to a discrete valuation, let o be the valuation ring, 
7i a prime element, and assume that o/(n) = k. Prove that if a, be o and a = b (mod nr) 
with r > 0 then ap" = bpn (mod 7cr+") for all integers n ^ 0. 

16. Let F be as above. Show that there exists a system of representatives R for o/(n) in o 
such that Rp = R and that this system is unique (Teichmtiller). [Hint: Let a be a residue 
class in k. For each v ^ 0 let av be a representative in o of ap and show that the 
sequence apv converges for v -> oo, and in fact converges to a representative a of a, 
independent of the choices of <2V.] Show that the system of representatives R thus 
obtained is closed under multiplication, and that if F has characteristic p, then R is 
closed under addition, and is isomorphic to k. 

17. (a) (Witt vectors again). Let k be a perfect field of characteristic p. We use the 
Witt vectors as described in the exercises of Chapter VI. One can define an 

absolute value on W(k), namely \x\ = p~r if xr is the first non-zero component 
of x. Show that this is an absolute value, obviously discrete, defined on the ring, 
and which can be extended at once to the quotient field. Show that this quotient 
field is complete, and note that W(k) is the valuation ring. The maximal ideal 
consists of those x such that x0 = 0, i.e. is equal to pW(k). 



498 ABSOLUTE VALUES XII, Ex 

(b) Assume that F has characteristic 0. Map each vector x e W(k) on the element 

Iff'V 

where is a representative of x, in the special system of Exercise 15. Show that 
this map is an embedding of W(k) into o. 

18. (Local uniformization). Let k be a field, K a finitely generated extension of transcendence 

degree 1, and o a discrete valuation ring of K over k, with maximal ideal m. Assume that 
o/m = k. Let x be a generator of m, and assume that K is separable over k(x). Show that 
there exists an element y e o such that K = k(x, y), and also having the following 
property. Let <p be the place on K determined by o. Let a = <p(x), b = <p(y) (of course 
a = 0). Let f{X, Y) be the irreducible polynomial in k[X, T] such that /(x, y) = 0. 
Then D2 / (a, b) ^ 0. [Hint: Write first K = /c(x, z) where z is integral over /c[x]. Let 
z = Zj,..., z„(n ^ 2) be the conjugates of z over /c(x), and extend o to a valuation 
ring O of /c(x, z,,..., z„). Let 

z = a0 + fljx + ••• + arxr + ••• 

be the power series expansion of z with a{ e k, and let Pr(x) = a0 4- • • • 4- arxr. For 
i = let 

- PM 

Taking r large enough, show that y{ has no pole at O but y2> • • •» yn have poles at O. 
The elements ylt..., yn are conjugate over k(x). Let f(X, T) be the irreducible poly¬ 
nomial of (x, y) over k. Then /(x, y) = ipn(x)Yn + • • • + i^0(x) with iA,(x)/c[x]. We 
may also assume ^,(0) / 0 (since / is irreducible). Write /(x, Y) in the form 

/(x, Y) = u*)y2 - yn(y- ydiyi1 y - l) • • • 1 y - l). 

Show that ip„(x)y2 • yn = u does not have a pole at €5. If w e O, let w denote its residue 
class modulo the maximal ideal of O. Then 

0#/(x, y) = (-ir1u(y-y1). 

Let y = yuy = b. We find that D2f(a, b) = (—1)"" ^ 0.] 

19. Prove the converse of Exercise 17, i.e. if K = /c(x, y), f(X, T) is the irreducible poly¬ 
nomial of (x, y) over /c, and if a,bek are such that /(a, b) = 0, but D2f(a, b) ^ 0, 

then there exists a unique valuation ring o of K with maximal ideal m such that x = a 
and y = b (mod m). Furthermore, o/m = k, and x — a is a generator of m. [Hint : 
If g(x, y) e /c[x, y] is such that g(a, 6) = 0, show that #(x, y) = (x — a)A(x, y)/B(x, y) 
where 4, B are polynomials such that £(a, b) ^ 0. If 4(a, b) = 0 repeat the process. 
Show that the process cannot be repeated indefinitely, and leads to a proof of the desired 
assertion.] 

20. (Iss’sa-Hironaka Ann. of Math 83 (1966), pp. 34-46). This exercise requires a good 
working knowledge of complex variables. Let K be the field of meromorphic functions 
on the complex plane C. Let O be a discrete valuation ring of K (containing the 
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constants C). Show that the function z is in O. [Hint: Let ax, u2, ... be a discrete 
sequence of complex numbers tending to infinity, for instance the positive integers. 
Let vl9 v2, . •., be a sequence of integers, 0 ^ ^ p - 1, for some prime number 

p, such that 2 viPl is not the p-adic expansion of a rational number. Let /be an entire 
function having a zero of order yfp' at a, for each i and no other zero. If z is not in 
o, consider the quotient 

fl (2 - ai)v,p‘ 
i = 1 

From the Weierstrass factorization of an entire function, show that g(z) = /i(z)p" for 
some entire function h(z). Now analyze the zero of g at the discrete valuation of o in 

terms of that of / and f] (z — 0i)Vip'to get a contradiction.] 
If U is a non-compact Riemann surface, and L is the field of meromorphic functions 

on U, and if o is a discrete valuation ring of L containing the constants, show that every 
holomorphic function cponU lies in o. \_Hint: Map cp : U -* C, and get a discrete valua¬ 

tion of K by composing cp with meromorphic functions on C. Apply the first part of the 
exercise.] Show that the valuation ring is the one associated with a complex number. 

[JFurther hint: If you don’t know about Riemann surfaces, do it for the complex plane. 
For each zeU, let fz be a function holomorphic on U and having only a zero of order 1 
at z. If for some z0 the function fZQ has order ^ 1 at o, then show that o is the valuation 
ring associated with z0. Otherwise, every function fz has order 0 at o. Conclude that the 
valuation of o is trivial on any holomorphic function by a limit trick analogous to that 
of the first part of the exercise.] 





Part Three 

LINEAR ALGEBRA 
and 

REPRESENTATIONS 

We shall be concerned with modules and vector spaces, going into their 
structure under various points of view. The main theme here is to study a pair, 
consisting of a module, and an endomorphism, or a ring of endomorphisms, 
and try to decompose this pair into a direct sum of components whose structure 
can then be described explicitly. The direct sum theme recurs in every chapter. 
Sometimes, we use a duality to obtain our direct sum decomposition relative 
to a pairing, and sometimes we get our decomposition directly. If a module 
refuses to decompose into a direct sum of simple components, then there is no 
choice but to apply the Grothendieck construction and see what can be ob¬ 
tained from it. 

The extension theme occurs only once, in Witt’s theorem, in a brief counter¬ 
point to the decomposition theme. 
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CHAPTER XIII 
Matrices and Linear Maps 

Presumably readers of this chapter will have had some basic acquaintance 
with linear algebra in elementary courses. We go beyond such courses by pointing 
out that a lot of results hold for free modules over a commutative ring. This is 
useful when one wants to deal with families of linear maps, and reduction modulo 
an ideal. 

Note that §8 and §9 give examples of group theory in the context of linear 
groups. 

Throughout this chapter, we let R be a commutative ring, and we let 
E, F be /^-modules. We suppress the prefix R in front of linear maps and 
modules. 

§1. MATRICES 

By an m x n matrix in R one means a doubly indexed family of elements 
of R9 (i = 1,..., m and j = 1,..., n), usually written in the form 

(flu 

am\ 

We call the elements the coefficients or components of the matrix. A 
1 x n matrix is called a row vector (of dimension, or size, n) and a m x 1 matrix 
is called a column vector (of dimension, or size, m). In general, we say that 
(m, n) is the size of the matrix, or also m x n. 

We define addition for matrices of the same size by components. If A = (a^) 
and B = (b0) are matrices of the same size, we define A + B to be the matrix 
whose (/-component is atj + b^. Addition is obviously associative. We define 
the multiplication of a matrix A by an element c e R to be the matrix (ca^). 
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whose (/-component is ca^. Then the set of m x n matrices in R is a module 
(i.e. an £-module). 

We define the product AB of two matrices only under certain conditions. 
Namely, when A has size (m, n) and B has size (n, r), i.e. only when the size of 
the rows of A is the same as the size of the columns of B. If that is the case, let 
A = (dij) and let B = (bjk). We define AB to be the m x r matrix whose ik- 
component is 

j= i 

If A, B, C are matrices such that AB is defined and BC is defined, then so is 
(AB)C and A(BC) and we have 

(AB)C = A(BC). 

This is trivial to prove. If C = (ck/), then the reader will see at once that the 
//-component of either of the above products is equal to 

Z Z aijbjkCkl- 
j k 

An m x n matrix is said to be a square matrix if m = n. For example, a 
1 x 1 matrix is a square matrix, and will sometimes be identified with the 
element of R occurring as its single component. 

For a given integer n ^ 1 the set of square n x n matrices forms a ring. 

This is again trivially verified and will be left to the reader. 
The unit element of the ring of n x n matrices is the matrix 

whose components are equal to 0 except on the diagonal, in which case they 
are equal to 1. We sometimes write / instead of /„. 

If A — (dij) is a square matrix, we define in general its diagonal components 
to be the elements afi. 

We have a natural ring-homomorphism of R into the ring of n x n matrices, 
given by 

c cl „. 

Thus cln is the square n x n matrix having all its components equal to 0 except 
the diagonal components, which are equal to c. Let us denote the ring ofn x n 
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matrices in R by Mat„(K). Then Matn(R) is an algebra over R (with respect to 
the above homomorphism). 

Let A = (a^) be an m x n matrix. We define its transpose 'A to be the matrix 
(aji) (j = 1and i = 1,. .. , m). Then 'A is an n x m matrix. The reader 
will verify at once that if A, B are of the same size, then 

\A + B) = rA + '£. 

If c g R then r(cA) = c A. If A, B can be multiplied, then lB %A is defined and we 
have 

\AB) = tBtA. 

We note the operations on matrices commute with homomorphisms. More 
precisely, let cp: R -* R' be a ring-homomorphism. If A, B are matrices in R, 
we define cpA to be the matrix obtained by applying cp to all the components of 
A. Then 

(p(A + B) = q>A + (pB, cp(AB) = (<joA){q>B\ (p(cA) = (p(c)cpA, 

<A) = V(A). 

A similar remark will hold throughout our discussion of matrices (for 
instance in the next section). 

Let A = (ciij) be a square n x n matrix in a commutative ring R. We define 
the trace of A to be 

tr(^) = X aii; 
i= 1 

in other words, the trace is the sum of the diagonal elements. 

If A, B dre n x n mdtrices, then 

tr (AB) = tr (BA). 

Indeed, if A — (al7) and B = (fo0) then 

tr(AB) = XI a,-A, = tr(BA). 
i v 

/4s an application, we observe that if B is an invertible n x n matrix, then 

tr(B~ '/IB) = tr(/4). 

Indeed, tr(B_1>4B) = tr(/4BB-1) = tr(/4). 
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§2. THE RANK OF A MATRIX 

Let k be a field and let A be an m x n matrix in k. By the row rank of A we 
shall mean the maximum number of linearly independent rows of A, and by the 
column rank of A we shall mean the maximum number of linearly independent 
columns of A. Thus these ranks are the dimensions of the vector spaces gen¬ 
erated respectively by the rows of A and the columns of A. We contend that 
these ranks are equal to the same number, and we define the rank of A to be 
that number. 

Let A1,..., An be the columns of A, and let Au ..., Am be the rows of A. 
Let lX = (xl9..., xm) have components x{ e k. We have a linear map 

X i—► xxAx + • • • + xmAm 

of k(m) onto the space generated by the row vectors. Let W be its kernel. Then 
W is a subspace of k{m) and 

dim W + row rank = m. 

If Y is a column vector of dimension m, then the map 

(X, Y)^'XY = X Y 

is a bilinear map into k, if we view the 1 x 1 matrix lXY as an element of k. 
We observe that W is the orthogonal space to the column vectors A1,An, 
i.e. it is the space of all X such that X ■ AJ = 0 for ally = 1,..., n. By the duality 
theorem of Chapter III, we know that k{m) is its own dual under the pairing 

(X, • Y 

and that k(m)/W is dual to the space generated by A \ ..., An. Hence 

dim k(m)/W = column rank, 

or 

dim W + column rank = m. 

From this we conclude that 

column rank = row rank, 

as desired. 

We note that W may be viewed as the space of solutions of the system of n 
linear equations 

x\Ai + • • • + xmAm = 0, 
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in m unknowns x!,..., xm. Indeed, if we write out the preceding vector equation 
in terms of all the coordinates, we get the usual system of n linear equations. 
We let the reader do this if he or she wishes. 

§3. MATRICES AND LINEAR MAPS 

Let E be a module, and assume that there exists a basis (B = {£u..., {„} 
for E over R. This means that every element of E has a unique expression as a 
linear combination 

x "L * * * 4“ xn 

with xt g R. We call (xl9..., xn) the components of x with respect to the basis. 
We may view this n-tuple as a row vector. We shall denote by X the transpose 
of the row vector (xl9..., x„). We call X the column vector of x with respect to 
the basis. 

We observe that if {£\,..., £'m} ls another basis of E over R9 then m = n. 
Indeed, let p be a maximal ideal of R. Then E/pE is a vector space over the 
field R/pR, and it is immediately clear that if we denote by the residue class 
of ^ mod pE, then {<f l5 is a basis for E/pE over R/pR. Hence n is also 
the dimension of this vector space, and we know the invariance of the cardinality 
for bases of vector spaces over fields. Thus m = n. We shall call n the dimension 
of the module E over R. 

We shall view R(n) as the module of column vectors of size n. It is a free 
module of dimension n over R. It has a basis consisting of the unit vectors 
e1,..., en such that 

tei = (0,..., 0, 1,0, ...,0) 

has components 0 except for its i-th component, which is equal to 1. 
An m x n matrix A gives rise to a linear map 

La : Rin) - Rim) 

by the rule 

X^AX. 

Namely, we have A(X + Y) = AX -f AY and A(cX) = cAX for column 

vectors X, Y and c e R. 
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The above considerations can be extended to a slightly more general 
context, which can be very useful. Let £ be an abelian group and assume that 
R is a commutative subring of 

Endz(£) = Homz(£, £). 

Then E is an ^-module. Furthermore, if A is an m x n matrix in £, then we get 
a linear map 

L 4: £(n) -► £(m) 

defined by a rule similar to the above, namely X i—► AX. However, this has to 
be interpreted in the obvious way. If A = (au) and X is a column vector of 
elements of E, then 

AX = 

n 

where yt = £ auXj. 

j=i 

If 4, B are matrices in £ whose product is defined, then for any c e R we 
have 

^ab — LaLb and LCv4 — cLA. 

Thus we have associativity, namely 

A(BX) = 

An arbitrary commutative ring R may be viewed as a module over itself. 
In this way we recover the special case of our map from R(n) into R{m). Further¬ 
more, if £ is a module over R, then R may be viewed as a ring of endomorphisms 
of £. 

Proposition 3.1. Let E be a free module over £, and let {xu ..., x„} be a 
basis. Let yu ..., yn be elements of E. Let A be the matrix in R such that 

Then {yl9..., yn} is a basis of E if and only if A is invertible. 

Proof. Let X, Y be the column vectors of our elements. Then AX = Y. 
Suppose Y is a basis. Then there exists a matrix C in R such that CY = X. 
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Then CAX = X, whence CA = l and A is invertible. Conversely, assume that 
A is invertible. Then X = A~lY and hence xu . ..,x„ are in the module 
generated by yl9..., yn. Suppose that we have a relation 

b1y1 + ••• + bnyn = 0 

with bt e R. Let B be the row vector (bt,..., bn). Then 

BY = 0 

and hence BAX = 0. But {xl9..., x„} is a basis. Hence BA = 0, and hence 
BAA~1 = B = 0. This proves that the components of 7 are linearly indepen¬ 
dent over R, and proves our proposition. 

We return to our situation of modules over an arbitrary commutative 
ring R. 

Let E, F be modules. We shall see how we can associate a matrix with a 
linear map whenever bases of E and F are given. We assume that E, F are free. 
We let (B £„}and <B' = {fi,..., } be bases of E andFrespectively. 
Let 

f'E^F 

be a linear map. There exist unique elements a£ R such that 

J (^n) == *2 in £ i 4“ • • • nmM £m, 

or in other words, 

m = z 
i= 1 

(Observe that the sum is over the index.) We define 

= (fly)L 

If x = + • • • + x„is expressed in terms of the basis, let us denote the 
column vector X of components of x by M(b(x). We see that 

MAf(x)) = MUfWmW- 

In other words, if X' is the column vector off (x), and M is the matrix associated 
with/ then X' = MX. Thus the operation of the linear map is reflected by the 
matrix multiplication, and we have / = LM. 
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Proposition 3.2. Let E, F, D be modules, and let ®, ®', ®" be/imte bases 
of F, F, D, respectively. Let 

£4 £ 4 D 

be linear maps. Then 

mUq o /) = MUg)Ml(f). 

Proof. Let /I and B be the matrices associated with the maps /, g respec¬ 
tively, with respect to our given bases. If X is the column vector associated with 
x e E, the vector associated with g(f(x)) is B(AX) = (BA)X. Hence BA is the 
matrix associated with g ° f. This proves what we wanted. 

Corollary 3.3. Let E = F. Then 

(id)AC(id) = M«:(id) - /. 

Each matrix (id) is invertible (i.e. is a unit in the ring of matrices). 

Proof. Obvious. 

Corollary 3.4. Let N = M%{id). Then 

Ml{f) = Ml (id)M®(/)M2'(id) = NM%(f)N-\ 

Proof. Obvious 

Corollary 3.5. Let E be a free module of dimension n over R. Let (Si be a 
basis of E over R. The map 

f I—► M®(/) 

is a ring-isomorphism of the ring of endomorphisms of E onto the ring ofnxn 
matrices in R. In fact, the isomorphism is one of algebras over R. 

We shall call the matrix M®(/) the matrix associated with/with respect to 
the basis ®. 

Let E be a free module of dimension n over R. By GL(E) or Aut*(F) one 
means the group of linear automorphisms of E. It is the group of units in 
Endr(E). By GLn(R) one means the group of invertible n x n matrices in R. 
Once a basis is selected for E over R, we have a group-isomorphism 

GL(E)<-+GLn(R) 

with respect to this basis. 
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Let E be as above. If 

/:£-►£ 

is a linear map, we select a basis ® and let M be the matrix associated with / 
relative to ®. We define the trace of / to be the trace of Af, thus 

tr (/) = tr(M). 

If M' is the matrix of / with respect to another basis, then there exists an in¬ 
vertible matrix N such that M' = N~ lMN, and hence the trace is independent 
of the choice of basis. 

§4. DETERMINANTS 

Let Ej, F be modules. A map 

f:El x ••• x En-+F 

is said to be F-multilinear (or simply multilinear) if it is linear in each variable, 
i.e. if for every index i and elements xu ..., x,-_ 1? xf+l5..., x„, Xj e Ej, the map 

x*->f(xi,..., xf_ j, x, xl + j, ..., xn) 

is a linear map of E{ into F. 
A multilinear map defined on an n-fold product is also called n-multilinear. 

If = • •. = En = E, we also say that / is a multilinear map on F, instead of 
saying that it is multilinear on E{n\ 

Let / be an n-multilinear map. If we take two indices i, j and i # j then 
fixing all the variables except the i-th and j-th variable, we can view / as a 
bilinear map on E( x Ej. 

Assume that Ex = ••=£„ = £. We say that the multilinear map / is 
alternating iff(xi9..., x„) = 0 whenever there exists an index i, 1 ^ i ^ n — 1, 
such that Xf = xi+1 (in other words, when two adjacent elements are equal). 

Proposition 4.1. Let f be an n-multilinear alternating map on E. Let 
x1,...,xwe£. Then 

. . , X,-, X,-+ j, . . .) = “/*(• • • > ^i+ l, X,*, . . .). 

In other words, w/ien we interchange two adjacent arguments of f, the value 
of f changes by a sign. If x, = x;/or i # j then f(xu ..., xn) = 0. 
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Proof Restricting our attention to the factors in the i-th and j-th place, with 
j = i + 1, we may assume /is bilinear for the first statement. Then for all x, 
y b E we have 

o = f{x + y, x + y) = fix, y) + f{y, x). 

This proves what we want, namely /(y, x) = — /(x, y). For the second asser¬ 
tion, we can interchange successively adjacent arguments of/ until we obtain 
an n-tuple of elements of E having two equal adjacent arguments. This shows 
that when xf = xj9 i # j, then f(xu ..., x„) = 0. 

Corollary 4.2. Let f be an n-multilinear alternating map on E. Let 
Xj,..., x„ e E. Let i / j and let ae R. Then the value of f on (x^..., x„) 
does not change if we replace x, by x{ + axj and leave all other components 
fixed. 

Proof. Obvious. 

A multilinear alternating map taking its value in R is called a multilinear 
alternating form. 

On repeated occasions we shall evaluate multilinear alternating maps on 
linear combinations of elements of E. Let 

Wj = allv1 + ••• + alnvn, 

= anlvt + ••• + annvn. 

Let f be n-multilinear alternating on E. Then 

/(Wi,W„) = /(aui)1 + ••• + alnvn,...,anivl + ••• + annv„). 

We expand this by multilinearity, and get a sum of terms of type 

al,<r(l) * * * an,<r(n)f(V<T( 1)> • • • » V<r{n)\ 

where <x ranges over arbitrary maps of {1,..., n} into itself. If o is not a bijection 
(i.e. a permutation), then two arguments va{i) and vaU) are equal for i ^ f and 
the term is equal to 0. Hence we may restrict our sum to permutations o. 
Shuffling back the elements (i^d),..., va{n^) to their standard ordering and using 
Proposition 4.1, we see that we have obtained the following expansion: 

Lemma 4.3. // wu ..., w„ are as above, then 

f(wu ■ ■ ■, W„) = £ e(o)a1>ff(1) • • • a^^fiv^ ...,vn) 

a 

where the sum is taken over all permutations a of {1,..., n} and e{a) is the 
sign of the permutation. 
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For determinants, I shall follow Artin’s treatment in Galois Theory. 
By an n x n determinant we shall mean a mapping 

det: Matn(R) R 

also written 

D: Mat„(R) - R 

which, when viewed as a function of the column vectors A1,..., An of a matrix 
A, is multilinear alternating, and such that D(I) = 1. In this chapter, we use 
mostly the letter D to denote determinants. 

We shall prove later that determinants exist. For the moment, we derive 
properties. 

Theorem 4.4. (Cramer’s Rule). Let A1,... 9 A" be column vectors of dimen¬ 
sion n. Let xl9 ..., xn e R be such that 

xxAl + • • • + xnAn = B 

for some column vector B. Then for each i we have 

where B in this last line occurs in the i-th place. 

Proof. Say i = I. We expand 

D(B, A\...,An)= £ XjD(Aj, A2,..., A"), 
j= 1 

and use Proposition 4.1 to get what we want (all terms on the right are equal 
to 0 except the one having x{ in it). 

Corollary 4.5. Assume that R is a field. Then A1,...9An are linearly 
dependent if and only if D(Al,..., An) = 0. 

Proof. Assume we have a relation 

x^A' + ••• + xnAn = 0 

with xf e R. Then xtD(A) = 0 for all i. If some xf # 0 then £>(-4) = 0. Con- 
versely, assume that A1,..., An are linearly independent. Then we can express 
the unit vectors e1,..., en as linear combinations 

e1 = bnA1 + ••• + bi„An9 

en = bnlAl + • • • + bnnAn 
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with bij e R. But 

1 = D(e\...,en). 

Using a previous lemma, we know that this can be expanded into a sum of 
terms involving D(A1,..., An\ and hence D(A) cannot be 0. 

Proposition 4.6. If determinants exist, they are unique. If A1,..., An are 
the column vectors of dimension n, of the matrix A = (a0), then 

D(A\A") = Y, d,i • • • a.(n)>n. 
<x 

where the sum is taken over all permutations a of {1,..., n}, and e(o) is the 
sign of the permutation. 

Proof. Let e1,..., en be the unit vectors as usual. We can write 

A1 = anel 4- • • • 4- anien, 

An = ainen + ••• + annen. 

Therefore 

D(A\..., A") = X t(^K(i),i • • • a„(„hn 
a 

by the lemma. This proves that the value of the determinant is uniquely deter¬ 
mined and is given by the expected formula. 

Corollary 4.7. Let cp : R -► R' be a ring-homomorphism into a commutative 
ring. If A is a square matrix in R, define cpA to be the matrix obtained by 
applying cp to each component of A. Then 

cp(D(A)) = D((pA). 

Proof. Apply cp to the expression of Proposition 4.6. 

Proposition 4.8. If A is a square matrix in R then 

D(A) = D('A). 

Proof. In a product 

ao{l),l ' * * a<r(n),n 

each integer k from 1 to n occurs precisely once among the integers (j(l),..., o(n). 
Hence we can rewrite this product in the form 

^1,<t_1(1) * ’ ' a - i(n). 
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Since e(a) = e(o '), we can rewrite the sum in Proposition 4.6 in the form 

X l)al,o Hl) -' ’ On,* <(»)• 
a 

In this sum, each term corresponds to a permutation <7. However, as <7 ranges 
over all permutations, so does o~*. Hence our sum is equal to 

X/ <r(n) > 
a 

which is none other than D(lA\ as was to be shown. 

Corollary 4.9. The determinant is multilinear and alternating with respect 
to the rows of a matrix. 

We shall now prove existence, and prove simultaneously one additional 
important property of determinants. 

When n = 1, we define D(a) = a for any a e R. 
Assume that we have proved the existence of determinants for all integers 

< n (n ^ 2). Let A be an n x n matrix in R, A = (a0). We let A{j be the 
(n - 1) x (n — 1) matrix obtained from A by deleting the i-th row and j-th 
column. Let i be a fixed integer, 1 ^ i ^ n. We define inductively 

D(A) = (-1 )i+lanD(An) + ... + (-1 )i+nainD(Ain). 

(This is known as the expansion of D according to the i-th row.) We shall prove 
that D satisfies the definition of a determinant. 

Consider D as a function of the k-th column, and consider any term 

( — l)i+jaijD(Aij). 

If/ # k then a{j does not depend on the /c-th column, and D(Aij) depends linearly 
on the k-th column. If j = k, then ai} depends linearly on the k-th column, and 
D(Aij) does not depend on the k-th column. In any case our term depends 
linearly on the k-th column. Since D(A) is a sum of such terms, it depends linearly 
on the k-th column, and thus D is multilinear. 

Next, suppose that two adjacent columns of A are equal, say Ak = Ak+1. 
Let j be an index ^ k and # k + 1. Then the matrix Ai} has two adjacent equal 
columns, and hence its determinant is equal to 0. Thus the term corresponding 
to an index j # k or k + 1 gives a zero contribution to D(A). The other two 
terms can be written 

(-1 )i+kaikD(Aik) + (-1 )i+k+\k+,D(Aitk+l). 

The two matrices Aik and Ai k+1 are equal because of our assumption that the 
k-th column of A is equal to the (k + l)-th column. Similarly, aik = aitk+1. 
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Hence these two terms cancel since they occur with opposite signs. This proves 
that our form is alternating, and gives: 

Proposition 4.10. Determinants exist and satisfy the rule of expansion 
according to rows and columns. 

(For columns, we use the fact that D(A) = D(*A).) 

Example. We mention explicity one of the most important determinants. 
Let jcj, . . ., xn be elements of a commutative ring. The Vandermonde deter¬ 
minant V = V(x\9..., xn) of these elements is defined to be 

1 1 ••• 1 

*i *2 * * * xn 
V= : : . , 

v«- i v/i- i ... v«— i •*i x2 xn 

whose value can be determined explicitly to be 

V=U (xj - x,). 
i<j 

If the ring is entire and xt ± xy for i =£ j, it follows that V =£ 0. The proof for 
the stated value is done by multiplying the next to the last row by xx and subtracting 
from the last row. Then repeat this step going up the rows, thus making the 
elements of the first column equal to 0, except for 1 in the upper left-hand corner. 
One can then expand according to the first column, and use the homogeneity 
property and induction to conclude the proof of the evaluation of V. 

Theorem 4.11. Let E be a module over R, and let vl9..., vn be elements of E. 
Let A = (aij) be a matrix in R, and let 

Let A be an n-multilinear alternating map on E. Then 

A(wj,..., w„) = D(A) A(vu..., vn). 

Proof We expand 

A(allvl + ••• + alnvn,...9anlvl + ••• + annvn\ 

and find precisely what we want, taking into account D(A) = D(*A). 
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Let £, F be modules, and let L”(£, F) denote the set of n-multilinear alter¬ 
nating maps of E into F. If F = R, we also write L”(£, R) = L£(£). It is clear 
that L£(£, F) is a module over R, i.e. is closed under addition and multiplication 
by elements of R. 

Corollary 4.12. Let Ebea free module over £, and let {vu ...9vn}bea basis. 
Let F be any module, and let weF. There exists a unique n-multilinear 
alternating map 

AW:E x ••• x E-> F 

such that Aw(i?l5..., vn) = w. 

Proof. Without loss of generality, we may assume that E = R(n\ and then, 
if A \..., An are column vectors, we define 

A w(A\...,An) = D(A)w. 

Then Aw obviously has the required properties. 

Corollary 4.13. IfE is free over R, and has a basis consisting of n elements, 
then Lna{E) is free over R, and has a basis consisting of 1 element. 

Proof We let be the multilinear alternating map taking the value 1 on a 
basis {vu...9 vn}. Any element cp e Lna(E) can then be written in a unique way 
as cAj, with some ce R, namely c = cp(vli..., vn). This proves what we wanted. 

Any two bases of L£(£) in the preceding corollary differ by a unit in R. In 
other words, if A is a basis of L"(£), then A = cAx = Ac for some ceR, and c 
must be a unit. Our At depends of course on the choice of a basis for E. When 
we consider R{n\ our determinant D is precisely Al5 relative to the standard 
basis consisting of the unit vectors e1,..., en. 

It is sometimes convenient terminology to say that any basis of L”(£) is a 
determinant on E. In that case, the corollary to Cramer’s rule can be stated as 
follows. 

Corollary 4.14. Let R be a field. Let E be a vector space of dimension n. 
Let A be any determinant on E. Let vl9...9vneE. In order that {vl9...fvn} 
be a basis of E it is necessary and sufficient that 

A(vu...,vn) # 0. 

Proposition 4.15. Let A, B be n x n matrices in R. Then 

D(AB) = D(A)D(B). 
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Proof. This is actually a corollary of Theorem 4.11. We take v!,..., vn 
to be the unit vectors e1,..., en, and consider 

We obtain 

D(Wl,..., wn) = D{AB)D(e\.... <?"). 

On the other hand, by associativity, applying Theorem 4.11 twice, 

D(wu..., w„) = D{A)D{B)D(e\e"). 

Since Die1,..., e") = 1, our proposition follows. 

Let A = (a.j) be an n x n matrix in R. We let 

A = (bu) 

be the matrix such that 

(Note the reversal of indices!) 

Proposition 4.16. Let d = D(A). Then A A = A A = dl. The determinant 
D(A) is invertible in R if and only if A is invertible, and then 

Proof For any pair of indices i9 k the ik-component of AA is 

anblk + ai2b2k + ■■■ + ainb„k = ani~l)k+lD(Akl) + ■■■ + ain(-l)k+nD(Ak„). 

If i = /c, then this sum is simply the expansion of the determinant according 
to the i-th row, and hence this sum is equal to d. If i # fc, let A be the matrix 
obtained from A by replacing the k-th row by the i-th row, and leaving all other 
rows unchanged. If we delete the /c-th row and the j-th column from A, we obtain 
the same matrix as by deleting the k-th row and j-th column from A. Thus 

Akj == Akj9 

and hence our sum above can be written 

a,i(- 1)*+ xD{Akl) + • • • + ain(—l)k+nD(Akn). 
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This is the expansion of the determinant of A according to the z-th row. Hence 
D(A) = 0, and our sum is 0. We have therefore proved that the ik-component 
of AA is equal to d if i = k (i.e. if it is a diagonal component), and is equal to 0 
otherwise. This proves that A A = dl. On the other hand, we see at once from 
the definitions that 54 = 54. Then 

\AA) = 54 54 = 5454 = dly 

and consequently, A A = dl also, since \dl) = dl. When d is a unit in R, then A 
is invertible, its inverse being d~l A. Conversely, if A is invertible, and AA~1 = /, 
then D(A)D(A~l) = 1, and hence D(A) is invertible, as was to be shown. 

Corollary 4.17. Let F be any R-module, and let wlf..., wn be elements of 
F. Let A - (iatj) be an n x n matrix in R. Let 

anw{ + •• • + alnwn = vx 

an\w\ + * * ‘ + “nnWn = 

Then one can solve explicitly 

lD{A)wx\ lw'\ fal\ 

\ = D(A) : = A 
. 

\D(A)w„J \wnj w 
In particular, if = 0 for all iy then D(A)wi = 0 for all i. Ifvt = 0 for all i 
and F is generated by wx, ..., wn, then D(A)F = 0. 

Proof. This is immediate from the relation A A = D(A)l, using the remarks 
in §3 about applying matrices to column vectors whose components lie in the 
module. 

Proposition 4.18. Let £, F be free modules of dimension n over R. Let 
f :E F be a linear map. Let (B, ®' be bases of £, F respectively over R. 
Then f is an isomorphism if and only if the determinant of its associated 
matrix M%{f) is a unit in R. 

Proof. Let A = M| (/). By definition, / is an isomorphism if and only 
if there exists a linear map g : F -> E such that g of = id and f ° g = id. If / is 
an isomorphism, and B = M^XgfthtnAB = BA = /. Taking the determinant 
of the product, we conclude that D(A) is invertible in R. Conversely, if D(A) 
is a unit, then we can define A~l by Proposition 4.16. This A~l is the associated 
matrix of a linear map g:F —> E which is an inverse for/, as desired. 

Finally, we shall define the determinant of an endomorphism. 
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Let E be a free module over R, and let ® be a basis. Let /:£-►£ be an 
endomorphism of E. Let 

M = AfS(A 

If ®' is another basis of E, and M' = M®'(/), then there exists an invertible 
matrix iV such that 

M' = NMN~\ 

Taking the determinant, we see that D(M') = D(M). Hence the determinant 
does not depend on the choice of basis, and will be called the determinant of the 
linear map/. We shall give below a characterization of this determinant which 
does not depend on the choice of a basis. 

Let E be any module. Then we can view Lna(E) as a functor in the variable E 
(contravariant). In fact, we can view L”(£, F) as a functor of two variables, 
contravariant in the first, and covariant in the second. Indeed, suppose that 

E 4 E 

is a linear map. To each multilinear map q> : E{n) -► F we can associate the 
composite map q> ° f(n\ 

E' x • •. x E' fin)> E x • • • x E ^ F 

where f{n) is the product of / with itself n times. The map 

Lna(f) : ME, F) -> Lna(E\ F) 

given by 

(py-Kpo /<">, 

is obviously a linear map, which defines our functor. We shall sometimes write 
/* instead of ££(/). 

In particular, consider the case when E = E and F = R. We get an induced 
map 

/* : Lna(E) -► L;(£). 

Proposition 4.19. Let E be a free module over R, of dimensions Let {A} be a 
basis of Lna(E). Let f:E^Ebean endomorphism of E. Then 

f* A = £(/)A. 

Proo/. This is an immediate consequence of Theorem 4.11. Namely, we 
let {vi,..., yw} be a basis of £, and then take >1 (or *A) to be a matrix of / relative 
to this basis. By definition, 

'9V„) = A(f(v1),..., f(vn)). 
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and by Theorem 4.11, this is equal to 

D(A) A(vv„). 

By Corollary 4.12, we conclude that /* A = D(A)A since both of these forms take 
on the same value on (vu..., vn). 

The above considerations have dealt with the determinant as a function on 
all endomorphisms of a free module. One can also view it multiplicatively, as 
a homomorphism. 

det: GLn(R) -> R* 

from the group of invertible n x n matrices over R into the group of units of R. 
The kernel of this homomorphism, consisting of those matrices with deter¬ 
minant 1, is called the special linear group, and is denoted by SLn(R). 

We now give an application of determinants to the situation of a free module 
and a submodule considered in Chapter III, Theorem 7.8. 

Proposition 4.20. Let R be a principal entire ring. Let F be a free module 

over R and let M be a finitely generated submodule. Let {ex, ..., em, ... } be 

a basis of F such that there exist non-zero elements ah ..., am e R such that: 

(i) The elements a{ex, . . ., amemforrn a basis of M over R. 

(ii) We have at | ai+xfor i = 1,..., m - 1. 

Let Lsa be the set of all s-multilinear alternating forms on F. Let Js be the ideal 

generated by all elements f(y\,---,ys)> with f G Lsa andyx, ..., ys e M. Then 

Js (^1 )• 

Proof. We first show that Js a (ax •• • as). Indeed, an element yeM can be 
written in the form 

y = c1a1e1 + • • • + crarer. 

Hence if yl9 ..., ys e M, and/is multilinear alternating on F, then f(yj,. . . , ys) 

is equal to a sum in terms of type 

^ * * * cisah • • • aiaf(eil9..., eis). 

This is non-zero only when eil9..., eis are distinct, in which case the product 
at • • • as divides this term, and hence Js is contained in the stated ideal. 

Conversely, we show that there exists an s-multilinear alternating form which 
gives precisely this product. We deduce this from determinants. We can write 
F as a direct sum 

F = (el9..., er) © F, 
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with some submodule Fr. Let /, (i = 1,..., r) be the linear map F -» R such 
that/(ej) = dij, and such that/j has value 0 on Fr. For vu ..., vs e F we define 

f(vi, ...,vs) = det(f(vj)). 

Then / is multilinear alternating and takes on the value 

f(e2, ■ ■ .,es) — 1, 

as well as the value 

f (a u..., ases) = a, ■■■as. 

This proves the proposition. 

The uniqueness of Chapter III, Theorem 7.8 is now obvious, since first (aj) 
is unique, then (axa2) is unique and the quotient (a2) is unique, and so forth by 
induction. 

Remark. Compare the above theorem with Theorem 2.9 of Chapter XIX, 
in the theory of Fitting ideals, which gives a fancier context for the result. 

§5. DUALITY 

Let R be a commutative ring, and let E, F be modules over R. An R- 
bilinear form on E x F is a map 

f:E x F-+ R 

having the following properties: For each xg£, the map 

y^f(x,y) 

is R-linear, and for each yeF, the map 

xh/(x, y) 

is F-linear. We shall omit the prefix R- in the rest of this section, and write 
<x, y}f or <x, y> instead of /(x, y). If xeF, we write x ly if <x, y> = 0. 
Similarly, if S is a subset of F, we define x _L 5 if x 1 y for all y e S. We then say 
that x is perpendicular to S. We let S± consist of all elements of E which are 
perpendicular to S. It is obviously a submodule of E. We define perpendicu¬ 
larity on the other side in the same way. We define the kernel of/ on the left 
to be F1 and the kernel on the right to be E1. We say that /is non-degenerate 
on the left if its kernel on the left is 0. We say that /is non-degenerate on the 
right if its kernel on the right is 0. If E0 is the kernel of / on the left, then we 
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get an induced bilinear map 

E/E0 x F -> R 

which is non-degenerate on the left, as one verifies trivially from the definitions. 
Similarly, if F0 is the kernel of / on the right, we get an induced bilinear map 

E/E0 x F/F0 -> R 

which is non-degenerate on either side. This map arises from the fact that the 
value <x, y> depends only on the coset of x modulo E0 and the coset of y 

modulo F0. 
We shall denote by L2(E, F; R) the set of all bilinear maps of £ x F into R. 

It is clear that this set is a module (i.e. an R-module), addition of maps being the 
usual one, and also multiplication of maps by elements of R. 

The form / gives rise to a homomorphism 

cpf:E HornR(F9 R) 

such that 

(Pf(x)(y) = f(x, y) = <x, y), 

for all x g E and y e F. We shall call HornR(F, R) the dual module of F, and denote 
it by Fv. We have an isomorphism 

L\E, F;R) <-+ Horn*(£, Hom*(F, R)) 

given by f ^(pf, its inverse being defined in the obvious way: If 

q> :E-> HornR(F9 R) 

is a homomorphism, we let / be such that 

/(x, y) = <p(x)(y). 

We shall say that /is non-singular on the left if cpf is an isomorphism, in 
other words if our form can be used to identify E with the dual module of F. 
We define non-singular on the right in a similar way, and say that / is non¬ 
singular if it is non-singular on the left and on the right. 

Warning: Non-degeneracy does not necessarily imply non-singularity. 

We shall now obtain an isomorphism 

End r(E)^L2(E9F;R) 

depending on a fixed non-singular bilinear map f:E x F -> R. 
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Let A e EndK(F) be a linear map of F into itself. Then the map 

(x, y) H+ (Ax, y} = (Ax, y}f 

is bilinear, and in this way, we associate linearly with each A £ Endj^F) a bilinear 
map in L2(F, F; R). 

Conversely, let h : E x F R be bilinear. Given x £ F, the map hx : F -> R 

such that hx(y) = h(x9 y) is linear, and is in the dual space Fv. By assumption, 
there exists a unique element x' £ E such that for all y e F we have 

/t(x, y) = <x\ y>. 

It is clear that the association x i—► x' is a linear map of E into itself. Thus with 
each bilinear map F x F -► F we have associated a linear map E -► F. 

It is immediate that the mappings described in the last two paragraphs are 
inverse isomorphisms between EndR(E) and L2(F, F; R). We emphasize of 
course that they depend on our form f 

Of course, we could also have worked on the right, and thus we have a 
similar isomorphism 

L2(F,F;F)<-End*(F) 

depending also on our fixed non-singular form fi 

As an application, let A : E —> F be linear, and let (x, y) i-» (Ax, y) be its 
associated bilinear map. There exists a unique linear map 

rA : F - F 

such that 

<Ax, y> = <x, 'Ay> 

for all x £ F and y £ F. We call 'A the transpose of A with respect to /. 
It is immediately clear that if, A, B are linear maps of F into itself, then for 

ce R, 

\cA) = c'A, '(A + B) = ‘A + 'B, and f(AB) = fBfA. 

More generally, let F, F be modules with non-singular bilinear forms denoted 
by ( , )E and ( , )F respectively. Let A: F —> F be a linear map. Then by the 
non-singularity of ( , )E there exists a unique linear map lA \ F —> E such that 

(Ax, y)F - (x, tAy)E for all x e F and y e F. 

We also call 'A the transpose with respect to these forms. 

Examples. For a nice classical example of a transpose, see Exercise 33. 
For the systematic study when a linear map is equal to its transpose, see the 
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spectral theorems of Chapter XV. Next I give another example of a transpose 
from analysis as follows. Let £ be the (infinite dimensional) vector space of 
Cx functions on R, having compact support, i.e. equal to 0 outside some finite 
interval. We define the scalar product 

00 

</. g) = J f(x)g(x)dx. 

— oc 

Let D.E —> E be the derivative. Then one has the formula 

(Df, g) = -</, Dg). 

Thus one says that lD = -D, even though the scalar product is not “non-singular”, 
but much of the formalism of non-singular forms goes over. Also in analysis, 
one puts various norms on the spaces and one extends the bilinear form by 
continuity to the completions, thus leaving the domain of algebra to enter the 
domain of estimates (analysis). Then the spectral theorems become more com¬ 
plicated in such analytic contexts. 

Let us assume that E = F. Let f:Ex E R be bilinear. By an auto¬ 
morphism of the pair (£,/), or simply off we shall mean a linear automorphism 
A : E -► E such that 

(Ax, Ay) = <x, y) 

for all x, yeE. The group of automorphisms of / is denoted by Aut(/). 

Proposition 5.1. Let f:Ex E -► R be a non-singular bilinear form. Let 

A : E -► E be a linear map. Then A is an automorphism of f if and only if 

lAA = id, and A is invertible. 

Proof. From the equality 

<x, y) = <Ax, Ay) = <x, lAAy) 

holding for all x, ye £, we conclude that lAA = id if A is an automorphism of f. 
The converse is equally clear. 

Note. If E is free and finite dimensional, then the condition lAA = id 
implies that A is invertible. 

Let f.ExE^R be a bilinear form. We say that / is symmetric if 
f (x, y) = f(y, x) for all x, y e E. The set of symmetric bilinear forms on E will 
be denoted by Ls2(£). Let us take a fixed symmetric non-singular bilinear form 
f on £, denoted by (x, y) <x, y). An endomorphism A : E -> E will be said 
to be symmetric with respect to / if 1A — A. It is clear that the set of sym¬ 
metric endomorphisms of £ is a module, which we shall denote by Sym(£). 
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Depending on our fixed symmetric non-singular fi we have an isomorphism 

Ls2(£)~Sym(£) 

which we describe as follows. If g is symmetric bilinear on E, then there exists 
a unique linear map A such that 

9(x, y) = (Ax, y) 

for all x, y e E. Using the fact that both f, g are symmetric, we obtain 

(Ax, y} = (Ay, x> = (y,'Ax> = <Ux, y>. 

Hence /l = lA. The association g i—► A gives us a homomorphism from L2(£) 
into Sym(£). Conversely, given a symmetric endomorphism A of E, we can 
define a symmetric form by the rule (x, y) i—► (Ax, y>, and the association of 
this form to A clearly gives a homomorphism of Sym(£) into L2(£) which is 
inverse to the preceding homomorphism. Hence Sym(£) and L2(£) are iso¬ 
morphic. 

We recall that a bilinear form g: E x E -> R is said to be alternating if 
g(x, x) = 0 for all x e E, and consequently g(x, y) = ~g(y, x) for all x, y e E. 

The set of bilinear alternating forms on £ is a module, denoted by L2(E). 
Let / be a fixed symmetric non-singular bilinear form on E. An endo¬ 

morphism A : E -► E will be said to be skew-symmetric or alternating with 
respect to / if lA = — A, and also (Ax, x) = 0 for all x e E. If for all a e R, 

2a = 0 implies a = 0, then this second condition (Ax, x> = 0 is redundant, 
because (Ax, x) = — (Ax, x) implies (Ax, x) = 0. It is clear that the set of 
alternating endomorphisms of £ is a module, denoted by Alt(£). Depending 

on our fixed symmetric non-singular form f, we have an isomorphism 

Z2(£)~Alt(£) 

described as usual. If g is an alternating bilinear form on E, its corresponding 
linear map A is the one such that 

g(x, y) = (Ax, y> 

for all x,yeE. One verifies trivially in a manner similar to the one used in the 
symmetric case that the correspondence g <-> A gives us our desired iso¬ 
morphism. 

Examples. Let k be a field and let E be a finite-dimensional vector space 
over k. Let /:£x£—»£bea bilinear map, denoted by (x, y) i-» xy. To each 
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x e E, we associate the linear map Xx: £ i—»E such that 

4(y) = xy- 

Then the map obtained by taking the trace, namely 

(x, y) t-+ tr(Axv) 

is a bilinear form on E. If xy = yx, then this bilinear form is symmetric. 

Next, let E be the space of continuous functions on the interval [0, 1], Let 
K(s, t) be a continuous function of two real variables defined on the square 
0 ^ s ^ 1 and 0 ^ t ^ 1. For (p, \p e E we define 

<<P, <A> = JJ<P(s)K(s, t)<p(t) ds dt, 

the double integral being taken on the square. Then we obtain a bilinear form 
on E. If K(s9 t) = K(t9 s), then the bilinear form is symmetric. When we discuss 
matrices and bilinear forms in the next section, the reader will note the similarity 
between the preceding formula and the bilinear form defined by a matrix. 

Thirdly, let U be an open subset of a real Banach space E (or a finite-dimen¬ 
sional Euclidean space, if the reader insists), and let /: U -► R be a map which 
is twice continuously differentiable. For each x e U9 the derivative 
Df(x) : E -► R is a continuous linear map, and the second derivative D2f(x) 
can be viewed as a continuous symmetric bilinear map of E x E into R. 

§6. MATRICES AND BILINEAR FORMS 

We shall investigate the relation between the concepts introduced above and 
matrices. Let f:E x F -> R be bilinear. Assume that £, F are free over R. Let 
(B = {vl9..., vm} be a basis for E over R9 and let = {wl9..., vv„} be a basis 
for F over R. Let gu = (vi9 w^). If 

X = xxvx + + xmvm 

and 

y = y 1*1 + ••• + ynwn 

are elements of E and F respectively, with coordinates xi9 e R9 then 

m n 

<x,y>= X Itfo-x.J'r 
i=l J= 1 
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Let X, Y be the column vectors of coordinates for x, y respectively, with respect 
to our bases. Then 

<x, y> = 'XGY 

where G is the matrix We could write G = We call G the matrix 
associated with the form /relative to the bases ffi, ©'. 

Conversely, given a matrix G (of size m x n\ we get a bilinear form from 

the map 

(X, Y)h-'XGY. 

In this way, we get a correspondence from bilinear forms to matrices and back, 
and it is clear that this correspondence induces an isomorphism (of /^-modules) 

L\E,F- R)~Matmxn(R) 

given by 

f^Mun 
The two maps between these two modules which we described above are clearly 
inverse to each other. 

If we have bases © = {vu ..., vn} and ©'= {w1?..., wn} such that 
<vi9 Wj) = Sij, then we say that these bases are dual to each other. In that case, 
if X is the coordinate vector of an element of £, and Y the coordinate vector of 
an element of F, then the bilinear map on X, Y has the value 

X Y= xxyx + ••• + xnyn 

given by the usual dot product. 
It is easy to derive in general how the matrix G changes when we change 

bases in E and F. However, we shall write down the explicit formula only when 
E = F and © = ©'. Thus we have a bilinear form /: E x E -► R. Let (B be 
another basis of E and write X^ and Xe for the column vectors belonging to 
an element x of F, relative to the two bases. Let C be the invertible matrix 

id), so that 

x* = cxe. 
Then our form is given by 

We see that 

(1) 

<x, y} = tXQtCGCY(B. 

M%{f) = 'CM|(/)C. 

In other words, the matrix of the bilinear form changes by the transpose. 
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If F is free over R, with a basis {r]u..., r]n}, then Hom^F, R) is also free, 
and we have a dual basis {17},... , 17'} such that 

Vi(Vj) = 8^ 

This has already been mentioned in Chapter III, Theorem 6.1. 

Proposition 6.1. Let F, F be free modules of dimension n over R and let 

f:ExF-*Rbea bilinear form. Then the following conditions are equiv¬ 

alent: 

f is non-singular on the left, 

f is non-singular on the right, 

f is non-singular. 

The determinant of the matrix of f relative to any bases is invertible in R. 

Proof Assume that / is non-singular on the left. Fix bases of E and F 
relative to which we write elements of these modules as column vectors, and 
giving rise to the matrix G for f. Then our form is given by 

(X, Y)^tXGY 

where X, Y are column vectors with coefficients in R. By assumption the map 

X^lXG 

gives an isomorphism between the module of column vectors, and the module 
of row vectors of length n over R. Hence G is invertible, and hence its deter¬ 
minant is a unit in R. The converse is equally clear, and if det(G) is a unit, we 
see that the map 

y- GT 

must also be an isomorphism between the module of column vectors and itself. 
This proves our assertion. 

We shall now investigate how the transpose behaves in terms of matrices. 
Let F, F be free over F, of dimension n. 

Let/: F x F -► R be a non-singular bilinear form, and assume given a basis 
CB of F and ®' of F. Let G be the matrix of / relative to these bases. Let 
A : E -► F be a linear map. If x e F, y e F, let X, Y be their column vectors 
relative to ®, ®'. Let M be the matrix of A relative to ®. Then for x £ F and 
yeF we have 

(Ax, y} = \MX)GY = tXtMGY. 

Let N be the matrix of lA relative to the basis ®'. Then NT is the column vector 
of 1 Ay relative to ®'. Hence 

<x, fAy} = fXGNY. 
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From this we conclude that XMG = GN, and since G is invertible, we can solve 
for N in terms of M. We get: 

Proposition 6.2. Let E, F be free over R, of dimension n. Let f:E x F -> R 

be a non-singular bilinear form. Let ®, ®' be bases of E and F respectively 

over R, and let G be the matrix off relative to these bases. Let A: E -► Ebe a 

linear map, and let M be its matrix relative to ®. Then the matrix of lA 

relative to ®' is 

(iG~lyMG. 

Corollary 6.3. If G is the unit matrix, then the matrix of the transpose is 

equal to the transpose of the matrix. 

In terms of matrices and bases, we obtain the following characterization 
for a matrix to induce an automorphism of the form. 

Corollary 6.4. Let the notation be as in Proposition 6.2, and let E = F, 

® = ®'. An n x n matrix M is the matrix of an automorphism of the form 

f (relative to our basis) if and only if 

lMGM = G. 

If this condition is satisfied, then in particular, M is invertible. 

Proof. We use the definitions, together with the formula given in 
Proposition 6.2. We note that M is invertible, for instance because its deter¬ 
minant is a unit in R. 

A matrix M is said to be symmetric (resp. alternating) if lM = M (resp. 
lM = — M and the diagonal elements of M are 0). 

Let f:ExE->R be a bilinear form. We say that / is symmetric if 
/(x, y) = f(y, x) for all x, y e E. We say that / is alternating if/(x, x) = 0 for 
all x e E. 

Proposition 6.5. Let E be a free module of dimension n over R, and let ® 
be a fixed basis. The map 

induces an isomorphism between the module of symmetric bilinear forms on 

E x E (resp. the module of alternating forms on E x E) and the module of 

symmetric n x n matrices over R (resp. the module of alternating n x n 

matrices over R). 
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Proof. Consider first the symmetric case. Assume that / is symmetric. In 
terms of coordinates, let G = Our form is given by tXGY which must 
be equal to xYGX by symmetry. However, XXGY may be viewed as a 1 x 1 
matrix, and is equal to its transpose, namely tYtGX. Thus 

XYGX = tYtGX 

for all vectors X, Y. It follows that G = rG. Conversely, it is clear that any 
symmetric matrix defines a symmetric form. 

As for the alternating case, replacing x by x + y in the relation <x, x> = 0 
we obtain 

<*,y> = 0;,*> = 0. 

In terms of the coordinate vectors X, Y and the matrix G, this yields 

xXGY+xYGX = 0. 

Taking the transpose of, say, the second of the 1 x 1 matrices entering in this 
relation, yields (for all X9 Y): 

lXGY + tXtGY=0. 

Hence G + rG = 0. Furthermore, letting X be any one of the unit vectors 

'(0, 1,0, ...,0) 

and using the relation XXGX = 0, we see that the diagonal elements of G 
must be equal to 0. Conversely, if G is an n x n matrix such that XG + G = 0, 
and such that gu = 0 for i = 1,..., n then one verifies immediately that the 
map 

(X, Y)^xXGY 

defines an alternating form. This proves our proposition. 

Of course, if as is usually the case, 2 is invertible in R, then our condition 
XM = — M implies that the diagonal elements of M must be 0. Thus in that 
case, showing that G + XG = 0 implies that G is alternating. 

§7. SESQUILINEAR DUALITY 

There exist forms which are not quite bilinear, and for which the results 
described above hold almost without change, but which must be handled 
separately for the sake of clarity in the notation involved. 
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Let R have an automorphism of period 2. We write this automorphism as 
ci i—► u (and think of complex conjugation). 

Following Bourbaki, we say that a map 

/:£ x E->* 

is a sesquilinear form if it is Z-bilinear, and if for x e £, y e E, and a e R we 
have 

f(ax,y) = af(x, y) 

and 

/(*> ay) = af(x, y). 

(Sesquilinear means 1^ times linear, so the terminology is rather good.) 
Let £, E' be modules. A map <p: E -► E' is said to be anti-linear (or semi- 

linear) if it is Z-linear, and (p(ax) = acp(x) for all xe E. Thus we may say that 
a sesquilinear form is linear in its first variable, and anti-linear in its second 
variable. We let HornR(E, E') denote the module of anti-linear maps of E 
into E'. 

We shall now go systematically through the same remarks that we made 
previously for bilinear forms. 

We define perpendicularity as before, and also the kernel on the right and 
on the left for any sesquilinear form /. These kernels are submodules, say E0 
and E0, and we get an induced sesquilinear form 

E/E0 x E/E0 - R, 

which is non-degenerate on either side. 
Let E be an R-module. We define its anti-module F to be the module whose 

additive group is the same as E, and such that the operation E x E -► E is 
given by 

(a, y) ay. 

Then F is a module. We have a natural isomorphism 

Horn^(E, R) <-> Hom*(E, E), 

as E-modules. 
The sesquilinear form /: E x E -► R induces a linear map 

cpf:E^> HornR(F, R). 

We say that /is non-singular on the left if cpf is an isomorphism. Similarly, we 
have a corresponding linear map 

cp'f:F^> Hom*(E, R) 
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from F into the dual space of F, and we say that / is non-singular on the right 
if cp'f is an isomorphism. We say that / is non-singular if it is non-singular on 
the left and on the right. 

We observe that our sesquilinear form/can be viewed as a bilinear form 

f:E x F^R, 

and that our notions of non-singularity are then compatible with those defined 
previously for bilinear forms. 

If we have a fixed non-singular sesquilinear form on E x F, then depending 
on this form, we obtain an isomorphism between the module of sesquilinear 
forms on F x F and the module of endomorphisms of F. We also obtain an 
anti-isomorphism between these modules and the module of endomorphisms 
of F. In particular, we can define the analogue of the transpose, which in the 
present case we shall call the adjoint. Thus, let/: F x F -* R be a non-singular 
sesquilinear form. Let A : F -► F be a linear map. There exists a unique linear 
map 

>4*: F -> F 

such that 

(Ax,y) = <x, A*y> 

for all x e E and y e F. Note that A* is linear, not anti-linear. We call A* the 
adjoint of A with respect to our form f. We have the rules 

(<cA)* = cA*, (A -f B)* = A* + B*, (AB)* = B*A* 

for all linear maps A, B of F into itself, and ce R. 

Let us assume that F = F. Let / :F x F-> R be sesquilinear. By an 
automorphism of/we shall mean a linear automorphism A : E -► F such that 

(Ax, Ay> = <x, y> 

just as we did for bilinear forms. 

Proposition 7.1. Let f:E x F-► F be a non-singular sesquilinear form. 

Let A : F -► F be a linear map. Then A is an automorphism off if and only 

if A*A = id, and A is invertible. 

The proof, and also the proofs of subsequent propositions, which are 
completely similar to those of the bilinear case, will be omitted. 

A sesquilinear form g: E x F -► R is said to be hermitian if 

g(x, y) = g(y, x) 

for all x, y e E. The set of hermitian forms on E will be denoted by L2h(E). Let 
R0 be the subring of R consisting of all elements fixed under our automorphism 
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a -> a (i.e. consisting of all elements a e R such that a = a). Then L2h(E) is an 
R0-module. 

Let us take a fixed hermitian non-singular form / on E, denoted by 
(x, y)\-><x, y>. An endomorphism A : E-+ E will be said to be hermitian 
with respect to/if A* = A. It is clear that the set of hermitian endomorphisms 
is an R0-module, which we shall denote by Herm(£). Depending on our fixed 

hermitian non-singular form f, we have an R0-isomorphism 

L2h(E) <-* Herm(£) 

described in the usual way. A hermitian form g corresponds to a hermitian 
map A if and only if 

g(x, y) = <Ax, y> 

for all x, y e E. 

We can now describe the relation between our concepts and matrices, just 
as we did with bilinear forms. 

We start with a sesquilinear form /: E x F -► R. 

If £, F are free, and we have selected bases as before, then we can again 
associate a matrix G with the form, and in terms of coordinate vectors X, Y 

our sesquilinear form is given by 

(X, y)h-'XGF, 

where Y is obtained from Y by applying the automorphism to each component 
of y. 

If E = F and we use the same basis on the right and on the left, then with 
the same notation as that used in formula (1), if /is sesquilinear, the formula 
now reads 

(IS) M%{f) = 'CM%{f)C. 

The automorphism appears. 

Proposition 7.2. Let E, F be free modules of dimension n over R, and let 

f:E x F-*R be a sesquilinear form. Then the following conditions are 

equivalent. 

f is non-singular on the left, 

f is non-singular on the right, 

f is non-singular. 

The determinant of the matrix of f relative to any bases is invertible in R. 
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Proposition 7.3. Let E, F be free over R, of dimension n. Letf: E x F —► R 

be a non-singular sesquilinearform. Let ®, ®' be bases ofE and F respectively 

over R, anti let G be the matrix of f relative to these bases. Let A.E^Ebe 

a linear map, and let M be its matrix relative to ®. Then the matrix of A* 

relative to ®' is 

(G~ l)*MG. 

Corollary 7.4. If G is the unit matrix, then the matrix of A* is equal to lM. 

Corollary 7.5. Let the notation be as in the proposition, and let ® = ®' 
be a basis of E. An n x n matrix M is the matrix of an automorphism of f 

(relative to our basis) if and only if 

lMGM = G. 

A matrix M is said to be hermitian if 'M = M. 
Let R0 be as before the subring of R consisting of all elements fixed under 

our automorphism a i—► a (i.e. consisting of all elements ae R such that a = a). 

Proposition 7.6. Let E be a free module of dimension n over R, and let ® 
be a basis. The map 

f\~* M|(/) 

induces an R^isomorphism between the R0-module of hermitian forms on E 

and the R0-module of n x n hermitian matrices in R. 

Remark. If we had assumed at the beginning that our automorphism 
a i-> a has period 2 or 1 (i.e. if we allow it to be the identity), then the results 
on bilinear and symmetric forms become special cases of the results of this 
section. However, the notational differences are sufficiently disturbing to warrant 
a repetition of the results as we have done. 

Terminology 

For some confusing reason, the group of automorphisms of a symmetric 
(resp. alternating, resp. hermitian) form on a vector space is called the orthogonal 
(resp. symplectic, resp. unitary) group of the form. The word orthogonal is 
especially unfortunate, because an orthogonal map preserves more than 
orthogonality: It also preserves the scalar product, i.e. length. Furthermore, 
the word symplectic is also unfortunate. It turns out that one can carry out a 
discussion of hermitian forms over certain division rings (having automorphisms 
of order 2), and their group of automorphisms have also been called symplectic, 
thereby creating genuine confusion with the use of the word relative to alter¬ 
nating forms. 
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In order to unify and improve the terminology, I have discussed the matter 
with several persons, and it seems that one could adopt the following con¬ 
ventions. 

As said in the text, the group of automorphisms of any form /is denoted by 
Aut (/). 

On the other hand, there is a standard form, described over the real numbers 
in terms of coordinates by 

f(x, x) = x\ + • • • + xn2, 

over the complex numbers by 

/(X, X) = XjXj + ••• + x„x„, 

and over the quaternions by the same formula as in the complex case. The 
group of automorphisms of this form would be called the unitary group, and 
be denoted by Un. The points of this group in the reals (resp. complex, resp. 
quaternions) would be denoted by 

UJL R), U „(C), ujt K), 

and these three groups would be called the real unitary group (resp. complex 
unitary group, resp. quaternion unitary group). Similarly, the group of points 
of Un in any subfield or subring k of the quaternions would be denoted by Un(k). 

Finally, if / is the standard alternating form, whose matrix is 

one would denote its group of automorphisms by A 2rn and call it the alternating 
form group, or simply the alternating group, if there is no danger of confusion 
with the permutation group. The group of points of the alternating form 
group in a field k would then be denoted by A2n(k). 

As usual, the subgroup of Aut(/) consisting of those elements whose 
determinant is 1 would be denoted by adding the letter S in front, and would 
still be called the special group. In the four standard cases, this yields 

SUn( R), SUn( C), SUn( K), SA2n(k). 

§8. THE SIMPLICITY OF SL2(F)/± 1 

Let F be a field. Let n be a positive integer. By GLn(F) we mean the group 
ofn x n invertible matrices over F. By SLn(F) we mean the subgroup of those 

matrices whose determinant is equal to 1. By PGLn{F) we mean the factor 
group of GLn(F) by the subgroup of scalar matrices (which are in the center). 
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Similarly for PSL„(F). In this section, we are interested in giving an application 
of matrices to the group theoretic structure of SL2. The analogous statements 
for SLn with n ^ 3 will be proved in the next section. 

The standard Borel subgroup B of GL2 is the group of all matrices 

a b 

0 d 

with a, b, d e F and ad # 0. For the Borel subgroup of SL2, we require in 
addition that ad = 1. By a Borel subgroup we mean a subgroup which is 
conjugate to the standard Borel subgroup (whether in GL2 or SL2). We let 
U be the group of matrices 

/I b\ 
u(b) =1 V with b e F. 

We let A be the group of diagonal matrices 

For the rest of this section, we let 

G = GL2(F) or SL2(F). 

Lemma 8.1. The matrices 

- (‘ *) ana V(c) - (‘ 1) 
generate SL2(F). 

Proof. Multiplying an arbitrary element of SL2(F) by matrices of the 
above type on the right and on the left corresponds to elementary row and 
column operations, that is adding a scalar multiple of a row to the other, etc. 
Thus a given matrix can always be brought into a form 
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by such multiplications. We want to express this matrix with a =£ 1 in the form 

c x x x:) 
Matrix multiplication will show that we can solve this equation, by selecting x 
arbitrarily =£ 0, then solving for b, c, and d successively so that 

1 + bx = a, c — 
—x 

d = 
1 + bx ’ " 1 + be’ 

Then one finds 1 4- be = (1 4 xb)~l and the two symmetric conditions 

b 4 bed + d = 0 

c 4 bex 4 * = 0, 

so we get what we want, and thereby prove the lemma. 

Let U be the group of lower matrices 

n 
Then we see that 

wUw~ 

Also note the commutation relation 

= U. 

'a 0\ 

0 dj 

d 0 

0 a)' 

so w normalizes A. Similarly, 

wBw 1 = B 

is the group of lower triangular matrices. 
We note that 

B = AU = UA, 

and also that A normalizes U. 
There is a decomposition of G into disjoint subsets 

G = B u BwB. 

Indeed, view G as operating on the left of column vectors. The isotropy group of 

is obviously U. The orbit Be1 consists of all column vectors whose second 
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component is 0. On the other hand, 

and therefore the orbit Bwe1 consists of all vectors whose second component 
is # 0, and whose first component is arbitrary. Since these two orbits of B and 
BwB cover the orbit Ge1, it follows that the union of B and BwB is equal to G 
(because the isotropy group U is contained in B), and they are obviously 
disjoint. This decomposition is called the Bruhat decomposition. 

Proposition 8.2. The Bor el subgroup B is a maximal proper subgroup. 

Proof. By the Bruhat decomposition, any element not in B lies in BwB, 
so the assertion follows since B, BwB cover G. 

Theorem 8.3. IfF has at least four elements, then SL2(F) is equal to its own 
commutator group. 

Proof. We have the commutator relation (by matrix multiplication) 

s(a)u(b)s(a)~ lu(b)~1 = u(ba2 — b) = u(b(a2 - 1)). 

Let G = SL2(F) for this proof. We let G' be the commutator subgroup, and 
similarly let B' be the commutator subgroup of B. We prove the first assertion 
that G = G\ From the hypothesis that F has at least four elements, we can 
find an element a / 0 in F such that a2 / 1, whence the commutator relation 
shows that B' — U. It follows that G' => U, and since G' is normal, we get 

G' =) wGw'1. 

From Lemma 8.1, we conclude that G' = G. 

Let Z denote the center of G. It consists of ±7, that is ± the identity 2x2 
matrix if G = SL2(F); and Z is the subgroup of scalar matrices if G = GL2(F). 

Theorem 8.4. IfF has at least four elements, then SL2(F)/Z is simple. 

The proof will result from two lemmas. 

Lemma 8.5. The intersection of all conjugates of B in G is equal to Z. 

Proof. We leave this to the reader, as a simple fact using conjugation 
with w. 

Lemma 8.6. Let G = SL2(F). If H is normal in G, then either H a Z or 
H ZD G'. 

Proof. By the maximality of B we must have 

HB = B or HB = G. 
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If HB = B then 77 a B. Since 77 is normal, we conclude that 77 is contained in 
every conjugate of B, whence in the center by Lemma 8.5. On the other hand, 
suppose that HB = G. Write 

w = hb 

with he H and b e B. Then 

wUw~ 1 = V = hbUb~ lh~l = hUh'1 c HU 

because H is normal. Since U a HU and 17, U generate SL2(F\ it follows that 
HU = G. Hence 

G/H = HU/H % 17/(1/ n 77) 

is abelian, whence 77 z> G', as was to be shown. 

The simplicity of Theorem 8.4 is an immediate consequence of Lemma 8.6. 

§9. THE GROUP SLn(F). n ^ 3. 

In this section we look at the case with n ^ 3, and follow parts of Artin’s 
Geometric Algebra, Chapter IV. (Artin even treats the case of a non-commuta- 
tive division algebra as the group ring, but we omit this for simplicity.) 

For ij = 1,..., n and i / j and c e F, we let 

be the matrix which differs from the unit matrix by having c in the ij-component 
instead of 0. We call such Ft/c) an elementary matrix. Note that 

det E^c) = 1. 

If A is any n x n matrix, then multiplication E^A on the left adds c times the 
7*-th row to the i-th row of A. Multiplication AE^jc) on the right adds c times 
the i-th column to the j-th column. We shall mostly multiply on the left. 

For fixed i # j the map 

C ^ Eij(c) 
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is a homomorphism of F into the multiplicative group of n x n matrices 
GLn(F). 

Proposition 9.1. The group SLn(F) is generated by the elementary matrices. 
If A e GLn(F), then A can be written in the form 

A = SD, 

where S e SLn(F) and D is a diagonal matrix of the form 

so D has 1 on the diagonal except on the lower right corner, where the com¬ 
ponent is d = det(/l). 

Proof. Let A e GLn(F). Since A is non-singular, the first component of 
some row is not zero, and by an elementary row operation, we can make 
an / 0. Adding a suitable multiple of the first row to the second row, we make 
a21 / 0, and then adding a suitable multiple of the second row to the first we 
make an = 1. Then we subtract multiples of the first row from the others to 
make an = 0 for i / 1. 

We now repeat the procedure with the second row and column, to make 
a22 — 1 and 0;2 = 0 if i > 2. But then we can also make a12 — 0 by sub¬ 
tracting a suitable multiple of the second row from the first, so we can get 
ai2 = 0 for i / 2. 

We repeat this procedure until we are stopped at ann = d / 0, and anj = 0 
for j # n. Subtracting a suitable multiple of the last row from the preceding 
ones yields a matrix D of the form indicated in the statement of the theorem, 
and concludes the proof. 

Theorem 9.2. For n ^ 3, SLn(F) is equal to its own commutator group. 

Proof. It suffices to prove that £,/c) is a commutator. Using n ^ 3, let 
k # ij. Then by direct computation, 

expresses £,/c) as a commutator. This proves the theorem. 

We note that if a matrix M commutes with every element of 5L„(F), then 
it must be a scalar matrix. Indeed, just the commutation with the elementary 
matrices 

£,;(!) = ' + * ij 
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shows that M commutes with all matrices 1 u (having 1 in the (/-component, 
0 otherwise), so M commutes with all matrices, and is a scalar matrix. Taking 
the determinant shows that the center consists of p,„(E)/, where is the 
group of /2-th roots of unity in F. 

We let Z be the center of SLn(F), so we have just seen that Z is the group 
of scalar matrices such that the scalar is an n-th root of unity. Then we define 

PSLn(F) = SLn(F)/Z. 

Theorem 9.3. For n ^ 3, PSLn(F) is simple. 

The rest of this section is devoted to the proof. We view GLn(F) as operating 
on the vector space E = Fn. If A is a non-zero functional on £, we let 

Hx = Ker A, 

and call Hx (or simply H) the hyperplane associated with A. Then dim H = n — 1, 
and conversely, if H is a subspace of codimension 1, then E/H has dimension 
1, and is the kernel of a functional. 

An element T e GLn(F) is called a transvection if it keeps every element of 
some hyperplane H fixed, and for all x e £, we have 

Tx = x + h for some he H. 

Given any element u e Hx we define a transvection Tu by 

Tux = x + A(x)w. 

Every transvection is of this type. If u9 v e Hx, it is immediate that 

Tu+V = Tu o Tv. 

If T is a transvection and A e GLn(F), then the conjugate ATA~l is ob¬ 
viously a transvection. 

The elementary matrices £,/c) are transvections, and it will be useful to 
use them with this geometric interpretations, rather than formally as we did 
before. Indeed, let el9..., en be the standard unit vectors which form a basis 
of F{n). Then Ei}(c) leaves ek fixed if k # j, and the remaining vector e} is moved 
by a multiple of et. We let H be the hyperplane generated by ek with k # j, 
and thus see that £f/c) is a transvection. 

Lemma 9.4. For n ^ 3, the transvections # / form a single conjugacy class 
in SLn(F). 

Proof. First, by picking a basis of a hyperplane H = Hk and using one 
more element to form a basis of F(n\ one sees from the matrix of a transvection 
T that det T = 1, i.e. transvections are in SLn(F). 
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Let T be another transvection relative to a hyperplane H'. Say 

Tx = x + A(x)u and Tx = x + A'(x)m' 

with us H and n' e H'. Let z and z' be vectors such that A(z) = 1 and A'(z') = 1. 
Since a basis for H together with z is a basis for F(n\ and similarly a basis for 
H' together with z' is a basis for F(M), there exists an element A e GLn(F) such 
that 

Au = u', ,4// = H\ Az = z'. 

It is then immediately verified that 

at a-1 = r, 

so T, V are conjugate in GLn(F). But in fact, using n ^ 3, the hyperplanes JF/, 
//' contain vectors which are independent. We can change the image of a basis 
vector in H' which is independent of u! by some factor in F so as to make 
det A = 1, so A e SL„(F). This proves the lemma. 

We now want to show that certain subgroups of GLn(F) are either con¬ 
tained in the center, or contain SLn(F). Let G be a subgroup of GLn(F). We 
say that G is 5Ln-invariant if 

AGA~1 <= G for all A e SLn(F). 

Lemma 9.5. Let n ^ 3. Let G be SLn-invariant, and suppose that G contains 
a transvection T / /. Then SLn(F) a G. 

Proof. By Lemma 9.4, all transvections are conjugate, and the set of 
transvections contains the elementary matrices which generate SL„(F) by 
Proposition 9.1, so the lemma follows. 

Theorem 9.6. Let n ^ 3. IfG is a subgroup of GLn(F) which is SL„-invariant 
and which is not contained in the center of GLn(F), then SLn(F) c: G. 

Proof. By the preceding lemma, it suffices to prove that G contains a 
transvection, and this is the key step in the proof of Theorem 9.3. 

We start with an element A e G which moves some line. This is possible 
since G is not contained in the center. So there exists a vector u # 0 such that 
Au is not a scalar multiple of u, say Au = v. Then u, v are contained in some 
hyperplane H = Ker A. Let T = Tu and let 

B = AT A~lT~1. 

Then 

ATA~l # T and B = ATA~lT~l^L 
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This is easily seen by applying say B to an arbitrary vector x, and using the 
definition of Tu. In each case, for some x the left-hand side cannot equal the 
right-hand side. 

For any vector x e F{n) we have 

Bx — X £ (u, v\ 

where (w, v) is the plane generated by u, v. It follows that BH a H, so 

BH = H and Bx — x e H. 

We now distinguish two cases to conclude the proof. First assume that B 
commutes with all transvections with respect to H. Let w e H. Then from the 
definitions, we find for any vector x: 

BTwx = Bx + A(x)£w 

TwBx = Bx + A(£x)w = Bx -b A(x)w. 

Since we are in the case BT„ = Tw£, it follows that Bw = w. Therefore B 
leaves every vector of H fixed. Since we have seen that Bx — x e H for all x, 
it follows that B is a transvection and is in G, thus proving the theorem in this 
case. 

Second, suppose there is a transvection Tw with w e H such that B does not 
commute with Tw. Let 

C = BTwB~lT~l. 

Then C / / and C e G. Furthermore C is a product of T^1 and BTwB~l 
whose hyperplanes are H and BH, which is also H by what we have already 
proved. Therefore C is a transvection, since it is a product of transvections 
with the same hyperplane. And C e G. This concludes the proof in the second 
case, and also concludes the proof of Theorem 9.6. 

We now return to the main theorem, that PSLn(F) is simple. Let G be a 
normal subgroup of PSLn(F\ and let G be its inverse image in SLn(F). Then G 
is SL„-invariant, and if G # 1, then G is not equal to the center of SLn(F). 
Therefore G contains SLn(F) by Theorem 9.6, and therefore G = PSLn(F), thus 
proving that PSLn(F) is simple. 

Example. By Exercise 41 of Chapter I, or whatever other means, one sees 
that PSL2(F5) » A5 (where F5 is the finite field with 5 elements). While you are 
in the mood, show also that 

PGL2{F3) « S4 but SL2{F3) i* S4; PSL2(F3) » A4. 
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EXERCISES 

1. Interpret the rank of a matrix A in terms of the dimensions of the image and kernel 

of the linear map LA. 

2. (a) Let A be an invertible matrix in a commutative ring R. Show that ('A)"1 = '(A-1), 
(b) Let / be a non-singular bilinear form on the module E over R. Let A be an 

/^-automorphism of E. Show that ('A)_1 = '(A-1). Prove the same thing in the 
hermitian case, i.e. (A*)-1 = (A-1)*. 

3. Let V, W be finite dimensional vector spaces over a field k. Suppose given 
non-degenerate bilinear forms on V and W respectively, denoted both by ( , ). 
Let L: V —> W be a surjective linear map and let lL be its transpose; that is, 
(Lv, w) = (v, lLw) for v e V and w E W. 

(a) Show that lL is injective. 
(b) Assume in addition that if v E V, v =£ 0 then (v, v) =£ 0. Show that 

V = KerL® Im'L, 

and that the two summands are orthogonal. (Cf. Exercise 33 for an example.) 

4. Let A, ..., Ar be row vectors of dimension n, over a field k. Let X = (x1?..., x„). Let 
bl9...9brek. By a system of linear equations in k one means a system of type 

Aj X = bl9...9A,-X = br. 

If b{ = • • = br = 0, one says the system is homogeneous. We call n the number of 
variables, and r the number of equations. A solution X of the homogeneous system 
is called trivial if jc, = 0, / = 1 

(a) Show that a homogeneous system of r linear equations in* n unknowns with 

n > r always has a non-trivial solution. 
(b) Let L be a system of homogeneous linear equations over a field k. Let k be a 

subfield of k\ If L has a non-trivial solution in k\ show that it has a non-trivial 

solution in k. 

5. Let M be an n x n matrix over a field k. Assume that tri^ALY) = 0 for all n x n matrices 

X in k. Show that M = 0. 

6. Let S be a set of n x n matrices over a field k. Show that there exists a column vector 
X^Oof dimension n in /c, such that MX = X for all M e S if and only if there exists 
such a vector in some extension field k' of k. 

, 7. Let H be the division ring over the reals generated by elements /, j9 k such that 

i2 = j2 = k2 = — 1, and 

ij = - ji = k, jk = - kj = i, ki = - ik = j. 

Then H has an automorphism of order 2, given by 

a0 + axi + a2j A- a3k\—>a0 - a{i - a2j - a3k. 

Denote this automorphism by a h-► a. What is aa? Show that the theory of hermitian 
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forms can be carried out over H, which is called the division ring of quaternions (or by 

abuse of language, the non-commutative field of quaternions). 

8. Let N be a strictly upper triangular n x n matrix, that is N = (atJ) and au = 0 if i ^ j. 
Show that Nn = 0. 

9. Let £ be a vector space over /c, of dimension n. Let T: E -+ E be a linear map such 
that T is nilpotent, that is Tm = 0 for some positive integer m. Show that there exists 
a basis of E over k such that the matrix of T with respect to this basis is strictly 
upper triangular. 

10. If N is a nilpotent n x n matrix, show that / + N is invertible. 

11. Let R be the set of all upper triangular n x n matrices (au) with in some field /c, so 
ciij = 0 if i > j. Let J be the set of all strictly upper triangular matrices. Show that J 
is a two-sided ideal in R. How would you describe the factor ring R/Jl 

12. Let G be the group of upper triangular matrices with non-zero diagonal elements. 
Let H be the subgroup consisting of those matrices whose diagonal element is 1. 
(Actually prove that H is a subgroup). How would you describe the factor group G/Hl 

13. Let R be the ring of n x n matrices over a field k. Let L be the subset of matrices 
which are 0 except on the first column. 

(a) Show that L is a left ideal. 
(b) Show that L is a minimal left ideal; that is, if L' C L is a left ideal and 

L' 0, then L' = L. (For more on this situation, see Chapter VII, §5.) 

14. Let F be any field. Let D be the subgroup of diagonal matrices in GL„(F). Let N be 
the normalizer of D in GLn(F). Show that N/D is isomorphic to the symmetric group 
on n elements. 

15. Let F be a finite field with q elements. Show that the order of GLn(F) is 

(<?" - 1X9* - <7) •••(<?" - <T ') = qnin- 1)12 fl (<?'■ - 1). 
i= 1 

lHint: Let x1?..., x„ be a basis of Fn. Any element of GLn(F) is uniquely determined 
by its effect on this basis, and thus the order of GLn(F) is equal to the number of all 
possible bases. If A e GLn(F), let /lx, = yf. For y{ we can select any of the qn - 1 
non-zero vectors in Fn. Suppose inductively that we have already chosen y,,..., yr 
with r < n. These vectors span a subspace of dimension r which contains qr elements. 
For yl+1 we can select any of the qn — qr elements outside of this subspace. The 
formula drops out.] 

16. Again let F be a finite field with q elements. Show that the order of SL„(F) is 

n 

CJn(n- l)/2 Y[ (qi - ]); 

i = 2 

and that the order of PSLn(F) is 

V"-i,/2 nV -1), 
a i = 2 

where d is the greatest common divisor of n and q — 1. 
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17. Let F be a finite field with q elements. Show that the group of all upper triangular 
matrices with 1 on the diagonal is a Sylow subgroup of GLn(F) and of SLn(F). 

18. The reduction map Z —► Z/NZ, where N is a positive integer defines a homomorphism 

SL2(Z) - SL2(Z/NZ). 

Show that this homomorphism is surjective. [Hint : Use elementary divisors, i.e. the 
structure of submodules of rank 2 over the principal ring Z.] 

19. Show that the order of SL2(Z/NZ) is equal to 

where the product is taken over all primes dividing N. 

20. Show that one has an exact sequence 

1 -► SL2(Z/NZ) - GL2(Z/NZ) ^ (Z/NZ)* - 1. 

In fact, show that 

GL2(Z/NZ) = SL2(Z/NZ)Gn, 

where GN is the group of matrices 

with de(Z/NZ)*. 

21. Show that SL2(Z) is generated by the matrices 

c i) - c ■:)■ 
22. Let p be a prime ^ 5. Let G be a subgroup of SL2(Z/pnZ) with n ^ 1. Assume that 

the image of G in SL2(Z/pZ) under the natural homomorphism is all of SL2(Z/pZ). 
Prove that G = SL2(Z/pnZ). 

Note. Exercise 22 is a generalization by Serre of a result of Shimura; see Serre’s Abelian 
t-adic Representations and elliptic curves, Benjamin, 1968, IV, §3, Lemma 3. See also 
my exposition in Elliptic Functions, Springer Verlag, reprinted from Addison-Wesley, 
1973, Chapter 17, §4. 

23. Let k be a field in which every quadratic polynomial has a root. Let B be the Borel 
subgroup of GL2(k). Show that G is the union of all the conjugates of B. (This cannot 
happen for finite groups!) 

24. Let A, B be square matrices of the same size over a field k. Assume that B is non¬ 
singular. If t is a variable, show that det(/l 4- tB) is a polynomial in r, whose leading 
coefficient is det(B), and whose constant term is det(4). 

25. Let au,... ,aln be elements from a principal ideal ring, and assume that they generate 
the unit ideal. Suppose n > 1. Show that there exists a matrix (a#) with this given 
first row, and whose determinant is equal to 1. 

C 
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26. Let A be a commutative ring, and / = (x1?..., xr) an ideal. Let cu e A and let 

r 

yi= I cUxr 
j= 1 

Let If = (yl5 ..., yr). Let D = det(c(j). Show that DI c= /'. 

27. Let L be a free module over Z with basis e,,..., Let M be a free submodule of the 
same rank, with basis ui9..., u„. Let w, = ]T ctJe7. Show that the index (L: M) is 
given by the determinant: 

(L: M) = |det(c0)|. 

28. (The Dedekind determinant). Let G be a finite commutative group and let F be the 
vector space of functions of G into C. Show that the characters of G (homomorphisms 
of G into the roots of unity) form a basis for this space. If /: G —> C is a function, 
show that for a, b E G. 

det(/(afr1)) = f] I y.(a)f(a), 
X aeG 

where the product is taken over all characters. [Hint: Use both the characters and 
the characteristic functions of elements of G as bases for F, and consider the linear map 

r = X/(a)r„, 

where Ta is translation by a.] Also show that 

det(/(afc- *)) = ( £ /(a)) det(/(a<T') - J(b~')), 
\a 6 G / 

where the determinant on the left is taken for all a, b eG, and the determinant on 
the right is taken only for a, b =t= 1. 

29. Let g be a module over the commutative ring R. A bilinear map g x g -► g, written 
(x, y) [x, y], is said to make g a Lie algebra if [x, x] = 0 and 

[[*> XL 2] + [[y, z], x] 4- [[z, x], y] = 0 

for all x, y, z e g. 

(a) Let Mn(R) be the ring of matrices over R. If x, ye Mn(R\ show that the 
product 

(x, y) h-> [x, y] = xy - yx 

makes M„(R) into a Lie algebra. 
(b) Let g be a Lie algebra. Let x e g, and let Lx, L(x) or Lie x be the linear map 

given by Lx(y) = [x,y]. Show that Lx is a derivation of g into itself (i.e. 
satisfies the rule D([y,z]) = [Dy,z] + [y, Z)z]). 

(c) Show that the map x i-> Lx is a Lie homomorphism of g into the module of 
derivations of g into itself. 

30. Given a set of polynomials {Pv(2f0)} in the polynomial ring (1 ^ ij ^ n), a 
zero of this set in R is a matrix x = (x0) such that xu e R and Pv(x0) = 0 for all v. 

We use vector notation, and write (2Q = (Af,v). We let G(R) denote the set of zeros 
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of our set of polynomials {Pv}. Thus G(R) c= M„(R), and if R' is any commutative 
associative R-algebra we have G(R) c= Mn(R'). We say that the set {Pv} defines an 
algebraic group over R if G(R') is a subgroup of the group GLn(R') for all R' (where 
GLn(R') is the multiplicative group of invertible matrices in /?'). 

As an example, the group of matrices satisfying the equation fXX = /„ is an alge¬ 
braic group. 

Let R' be the R-algebra which is free, with a basis {1, t} such that t2 = 0. Thus 

R' = R[t~\. Let g be the set of matrices x e Mn(R) such that /„ + rx e G(R[t]). Show 
that g is a Lie algebra. [Hint: Note that 

PMn + = 0(0 + grad Pv(In)tX. 

Use the algebra R[r, w] where t2 = u2 = 0 to show that if In + txe G(R[t~\) and 
In + uye G(R[u]) then [x, y] e g.] 

(I have taken the above from the first four pages of [Se 65]. For more information 
on Lie algebras and Lie Groups, see [Bo 82] and [Ja 79]. 

[Bo 82] N. Bourbaki, Lie Algebras and Lie Groups, Masson, 1982 

[Ja 79] N. Jacobson, Lie Algebras, Dover, 1979 (reprinted from Interscience, 
1962) 

[Se 65] J. P. Serre, Lie Algebras and Lie Groups, Benjamin, 1965. Reprinted 
Springer Lecture Notes 1500. Springer/Verlag 1992 

Non-commutative cocycles 

Let K be a finite Galois extension of a field k. Let T = GLn(K\ and G = Gal(/C//c). 
Then G operates on T. By a cocycle of G in T we mean a family of elements {/4(d)} 
satisfying the relation 

= ^(di). 

We say that the cocycle splits if there exists B e T such that 

A(o) = B~ loB for all d e G. 

In this non-commutative case, cocycles do not form a group, but one could define an 
equivalence relation to define cohomology classes. For our purposes here, we care 
only whether a cocycle splits or not. When every cocycle splits, we also say that 
H\G, 0 = 0 (or 1). 

31. Prove that H\G, GLn(K)) = 1. [Hint: Let {e{,..., eN) be a basis of Matn(k) over /c, 

say the matrices with 1 in some component and 0 elsewhere. Let 

N 

X = X Xiei 

i- 1 

with variables Xj. There exists a polynomial P(X) such that x is invertible if and only 
if /^(x!,..., xN) ^ 0. Instead of P{xu ..., xN) we also write P(x). Let {A{a)} be a 
cocycle. Let {ta} be algebraically independent variables over k. Then 
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because the polynomial does not vanish when one ty is replaced by 1 and the others 
are replaced by 0. By the algebraic independence of automorphisms from Galois 
theory, there exists an element y e K such that if we put 

B = £ (yy)A(y) 

32. 

then P(B) # 0, so B is invertible. It is then immediately verified that A(o) = BoB l. 
But when k is finite, cf. my Algebraic Groups over Finite Fields, Am. J. Vol 78 No. 

3, 1956.] 

Invariant bases. (Kolchin-Lang, Proc. AMS Vol 11 No. 1, 1960). Let K be a finite 

Galois extension of k, G = Gal(A7/c) as in the preceding exercise. Let V be a 
finite-dimensional vector space over K, and suppose G operates on V in such a 
way that cr(av) = cr(a)cr(v) for a E K and v E V. Prove that there exists a basis 
{wj,. . ., wn} such that ow; = w, for all / = 1,.. ., n and all a E G (an invariant 
basis). Hint: Let {v^ .. ., vn} be any basis, and let 

where A(o) is a matrix in GLn(K). Solve for B in the equation (oB)A((r) = B, and let 

The next exercises on harmonic polynomials have their source in Whittaker, Math. 
Ann. 1902; see also Whittaker and Watson, Modern Analysis, Chapter XIII. 

33. Harmonic polynomials. Let Pol(n, d) denote the vector space of homogeneous poly¬ 
nomials of degree d in n variables Xl9, Xn over a field k of characteristic 0. 

For an n-tuple of integers (vx,. 
monomial 

vn) with v{ ^ 0 we denote by M(v) as usual the 

MUX) = XV • • • Xvn\ 

Prove: 

(a) 
In — 1 + d\ 

The number of monomials of degree d is I 1, so this number is 
\ n - 1 / 

the dimension of Pol(n, d). 
(b) Let (D) = (Dj,..., Dn) where D, is the partial derivative with respect to the 

/-th variable. Then we can define P(D) as usual. For P, Q e Pol(«, d), define 

<P, Q) = P(D)Q(0). 

Prove that this defines a symmetric non-degenerate scalar product on 
Pol(«, d). If k is not real, it may happen that P =£ 0 but (P, P) = 0. However, 
if the ground field is real, then (P, P) > 0 for P =£ 0. Show also that the 
monomials of degree d form an orthogonal basis. What is (M{v), M(l0)? 

(c) The map P i-» P(D) is an isomorphism of Pol(n, d) onto its dual. 
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(d) Let A = Dj + • • • + D2. Note that A: Pol(n, d) —> Pol(n, d - 2) is a linear 
map. Prove that A is surjective. 

(e) Define Har(n, d) = KerA = vector space of harmonic homogeneous poly¬ 
nomials of degree d. Prove that 

dim Har(n, d) = (n 4- d - 3)!(n + 2d - 2)/{n - 2)\d\. 

In particular, if n = 3, then dim Har(3, d) = 2d 4- 1. 

(f) Let r2 — X2 4- • • • 4- X2. Let S denote multiplication by r2. Show that 

<AP, Q) = <P, SQ) for P E Pol(w, d) and Q e Pol(w, d - 2), 

so 'A = S. More generally, for R E Pol(n, m) and Q e Pol(n, d - m) we 
have 

(P(D)P, (2) = (P, P<2>. 

(g) Show that [A, S] = 4J 4- 2« on Pol(n, J). Here [A, S] = A °5 - 5° A. 
Actually, [A, 5] = 4£ 4- 2w, where P is the Euler operator E = 

which is, however, the degree operator on homogeneous polynomials. 
(h) Prove that Pol(w, d) = Har(«, d) ® r2Pol(«, d — 2) and that the two summands 

are orthogonal. This is a classical theorem used in the theory of the Laplace 
operator. 

(i) Let (cj,. . . , cn) E kn be such that 'Z.c} = 0. Let 

Hdc(X) = {cxXx + • • • + cnXn)d. 

Show that Hdc is harmonic, i.e. lies in Har(«, d). 
(j) For any Q E Pol(n, d), and a positive integer m, show that 

Q(D)H?(X) = m(m - 1) • • • (m - d + \)Q(c)H^~d(X). 

34. (Continuation of Exercise 33). Prove: 

Theorem. Le/ & algebraically closed of characteristic 0. Let n ^ 3. 
Har(«, d) as a vector space over k is generated by all polynomials Hd with (c) E kn 
such that 2 c2 = 0. 

IHint: Let Q E Har(«, cf) be orthogonal to all polynomials Hd with (c) E kn. By 
Exercise 33(h), it suffices to prove that r2|Q. But if 2 c2 = 0, then by Exercise 
33(j) we conclude that Q(c) = 0. By the Hilbert Nullstellensatz, it follows that there 
exists a polynomial F(X) such that 

Q(X)S = r2(X)F(X) for some positive integer s. 

But n ^ 3 implies that r2(X) is irreducible, so r2(X) divides Q(X).] 

35. (Continuation of Exercise 34). Prove that the representation of 0(n) — C/W(R) on 
Har(«, d) is irreducible. 
Readers will find a proof in the following: 

S. Helgason, Topics in Harmonic Analysis on Homogeneous Spaces, Birkhauser, 1981 
(see especially §3, Theorem 3.1 (ii)) 

N. Vilenkin, Special Functions and the Theory of Group Representations, AMS Trans¬ 
lations of mathematical monographs Vol. 22, 1968 (Russian original, 1965), Chapter 
IX, §2. 
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R. Howe and E. C. Tan, Non-Abelian Harmonic Analysis, Universitext, Springer Verlag, 

New York, 1992. 

The Howe-Tan proof runs as follows. We now use the hermitian product 

(P, Q) = J P(x) Q(x) da(x), 
Sn~i 

where a is the rotation invariant measure on the (n-l)-sphere S”-1. Let 

e\,...,en be the unit vectors in R\ We can identify 0(n - 1) as the subgroup of 
0(n) leaving en fixed. Observe that O(n) operates on Har(n,d), say on the right by 
composition P i-> P o A, A e 0(n), and this operation commutes with A. Let 

h Har(n, d) -+ C 

be the functional such that X(P) = P{en). Then X is 0(n - l)-invariant, and since the 
hermitian product is non-degenerate, there exists a harmonic polynomial Qn such 

that 

X(P) = (P,Qny for all P e Har(w, d). 

Let M c= Har(n,d) be an 0(«)-submodule. Then the restriction Am of A to M is 
nontrivial because 0(n) acts transitively on S"_1. Let Qjf be the orthogonal pro¬ 
jection of Qn on M. Then Q„ is 0(n - l)-invariant, and so is a linear combination 

Qn(x) = 2 Cj x{ rf_x. 
j+2k=d 

Furthermore Q„ is harmonic. From this you can show that is uniquely determined, 
by showing the existence of recursive relations among the coefficients Cj. Thus the 
submodule M is uniquely determined, and must be all of Har(n, d). 

Irreducibility of sl|,(/r). 

36. Let F be a field of characteristic 0. Let g = sin(F) be the vector space of matrices 
with trace 0, with its Lie algebra structure \X, Y] = XY - YX. Let £,y be the matrix 
having (/,y)-component 1 and all other components 0. Let G = SL„(F). Let A be 
the multiplicative group of diagonal matrices over F. 

(a) Let Hi = Eu — Ei+\ti+\ for /= 1,1. Show that the elements Ey 
(i #y), Hn-1 form a basis of g over F. 

(b) For g g G let c(g) be the conjugation action on g, that is c(g)X = gXg~l. 
Show that each Ey is an eigenvector for this action restricted to the group A. 

(c) Show that the conjugation representation of G on g is irreducible, that is, if 
V ^ 0 is a subspace of g which is c(G)-stable, then V = g. Hint: Look up 
the sketch of the proof in [JoL 01], Chapter VII, Theorem 1.5, and put in all 
the details. Note that for i # j the matrix Ei} is mlpotent, so for variable /, 
the exponential series exp(tEy) is actually a polynomial. The derivative with 
respect to t can be taken in the formal power series F[[t]}, not using limits. If 
X is a matrix, and x(t) = exp(rY), show that 

= XY - YX — [X, Y}. 
t=o 

j[X(t)Yx(,)-' 



CHAPTER XIV 
Representation of One 
Endomorphism 

We deal here with one endomorphism of a module, actually a free module, 
and especially a finite dimensional vector space over a field k. We obtain the 
Jordan canonical form for a representing matrix, which has a particularly simple 
shape when k is algebraically closed. This leads to a discussion of eigenvalues 
and the characteristic polynomial. The main theorem can be viewed as giving 
an example for the general structure theorem of modules over a principal ring. 
In the present case, the principal ring is the polynomial ring k[X] in one variable. 

§1. REPRESENTATIONS 

Let k be a commutative ring and £ a module over k. As usual, we denote by 
Endk(£) the ring of /c-endomorphisms of E, i.e. the ring of fc-linear maps of E into 
itself. 

Let R be a k-algebra (given by a ring-homomorphism k -► R which allows 
us to consider R as a fc-module). By a representation of R in E one means a k- 
algebra homomorphism R -> Endk(£), that is a ring-homomorphism 

p: R -► Endk(£) 

which makes the following diagram commutative: 

R-»Endk(£) 

k 
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[As usual, we view Endk(E) as a /c-algebra; if / denotes the identity map of £, 
we have the homomorphism of k into Endk(E) given by a t—► al. We shall also 
use / to denote the unit matrix if bases have been chosen. The context will 
always make our meaning clear.] 

We shall meet several examples of representations in the sequel, with various 
types of rings (both commutative and non-commutative). In this chapter, the 
rings will be commutative. 

We observe that E may be viewed as an Endk(E) module. Hence E may be 
viewed as an K-module, defining the operation of R on E by letting 

(x, v) i ► p(x)v 

for xe R and ve E. We usually write xv instead of p(x)v. 

A subgroup F of E such that RF c= F will be said to be an invariant sub- 
module of E. (It is both /^-invariant and ^-invariant.) We also say that it is 
invariant under the representation. 

We say that the representation is irreducible, or simple, if E / 0, and if the 
only invariant submodules are 0 and E itself. 

The purpose of representation theories is to determine the structure of all 
representations of various interesting rings, and to classify their irreducible 
representations. In most cases, we take k to be a field, which may or may not 
be algebraically closed. The difficulties in proving theorems about representa¬ 
tions may therefore lie in the complication of the ring R, or the complication of 
the field /c, or the complication of the module £, or all three. 

A representation p as above is said to be completely reducible or semi-simple 
if E is an R-direct sum of /^-submodules Ei9 

E = Ex ® • • • ® Em 

such that each is irreducible. We also say that E is completely reducible. 
It is not true that all representations are completely reducible, and in fact those 
considered in this chapter will not be in general. Certain types of completely 
reducible representations will be studied later. 

There is a special type of representation which will occur very frequently. 
Let ve E and assume that E = Rv. We shall also write E = (v). We then say 
that E is principal (over R\ and that the representation is principal. If that is 
the case, the set of elements xe R such that xv = 0 is a left ideal a of R (obvious). 
The map of R onto E given by 

xi—>xv 

induces an isomorphism of R-modules, 

R/a -► E 

(viewing R as a left module over itself, and R/a as the factor module). In this 
map, the unit element 1 of R corresponds to the generator v of E. 
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As a matter of notation, if vu ..., vn e £, we let (vu ..., vn) denote the sub- 
module of E generated by vu ..., vn. 

Assume that E has a decomposition into a direct sum of R-submodules 

E = Ex © • • • © Es. 

Assume that each Et is free and of dimension ^ 1 over k. Let CBj,... , ®s be 
bases for Ex,.. ., Es respectively over k. Then { ® {,... , ® J is a basis for E. 
Let <p e R, and let <pt be the endomorphism induced by <p on Er Let Aff be the 
matrix of (pt with respect to the basis (B,-. Then the matrix M of cp with respect 
to {® . . . , ®5} looks like 

A matrix of this type is said to be decomposed into blocks, Mu ... Ms. When 
we have such a decomposition, the study of cp or its matrix is completely reduced 
(so to speak) to the study of the blocks. 

It does not always happen that we have such a reduction, but frequently 
something almost as good happens. Let E' be a submodule of E, invariant 
under R. Assume that there exists a basis of E' over k, say {vu ..., vm}, and that 
this basis can be completed to a basis of £, 

(l?l, . . . , Vm9 Vm+ l) • • • ) 

This is always the case if k is a field. 
Let q> 6 R. Then the matrix of (p with respect to this basis has the form 

Indeed, since E' is mapped into itself by cp, it is clear that we get Af' in the upper 
left, and a zero matrix below it. Furthermore, for each j = m + 1,..., n we can 
write 

CpV Cj\V\ "b . • • T- CjmVm T" Cjm + i Vm +1 ~b • • . "b CjnVrr 

The transpose of the matrix (cJt) then becomes the matrix 

♦ 

M" 

occurring on the right in the matrix representing cp. 
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Furthermore, consider an exact sequence 

0 - F 0. 

Let vm+ j,..., vn be the images ofvm+l9...9vn under the canonical map E -► E". 
We can define a linear map 

(/?" : E" -> E" 

in a natural way so that (cpi) = cp"{v) for all veE. Then it is clear that the 
matrix of <p" with respect to the basis {vl9 ..., vn} is M". 

§2. DECOMPOSITION OVER ONE 
ENDOMORPHISM 

Let k be a field and E a finite-dimensional vector space over k, E # 0. Let 
>1 e End*(£) be a linear map of E into itself. Let t be transcendental over k. We 
shall define a representation of the polynomial ring fc[r] in E. Namely, we have 
a homomorphism 

k[t] -► fc[/l] c= Endk(E) 

which is obtained by substituting A for t in polynomials. The ring k[A] is the 
subring of End*(£) generated by A, and is commutative because powers of A 
commute with each other. Thus iff(t) is a polynomial and v e E, then 

f(t)v =f(A)v. 

The kernel of the homomorphism f(t)*-+f(A) is a principal ideal of k[t]9 
which is 7* 0 because k[A~\ is finite dimensional over k. It is generated by a 
unique polynomial of degree > 0, having leading coefficient 1. This polynomial 
will be called the minimal polynomial of A over k, and will be denoted by qA(t). 
It is of course not necessarily irreducible. 

Assume that there exists an element ve E such that E = k[t]v = k[A]v. 
This means that E is generated over k by the elements 

v, Av9 A2v,.... 

We called such a module principal, and if R = k[t] we may write E = Rv = (v). 
If <7,4(0 = td + jt*"1 + • • • -F a0 then the elements 

v9 Av,..., lv 

constitute a basis for E over k. This is proved in the same way as the analogous 
statement for finite field extensions. First we note that they are linearly inde 
pendent, because any relation of linear dependence over k would yield a poly- 
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nomial g(t) of degree less than deg qA and such that g{A) = 0. Second, they 
generate E because any polynomial/(t) can be written f(t) = g(t)qA(t) + r(t) 
with deg r < deg qA. Hence f(A) = r(/l). 

With respect to this basis, it is clear that the matrix of A is of the following 
type: 

/° 0 0 ... 0 — a0 

f i 0 0 ... 0 
-<*i 

0 1 0 ... 0 ~a 2 

0 0 0 ... 0 ~~ad- 2 
0 

l 
0 0 ... 1 

~ad~ 7 

If E = (v) is principal, then E is isomorphic to k[t]l(qA(t)) under the map 
f(t)y-+f(A)v. The polynomial qA is uniquely determined by A, and does not 
depend on the choice of generator v for E. This is essentially obvious, because 

iffufi are two polynomials with leading coefficient 1, then k[t]/(fi(t)) is iso¬ 
morphic to k[t]l(f2(t)) if and only iffx =f2. (Decompose each polynomial into 
prime powers and apply the structure theorem for modules over principal rings.) 

If E is principal then we shall call the polynomial qA above the polynomial 
invariant of £, with respect to A, or simply its invariant. 

Theorem 2.1. Let E be a non-zero finite-dimensional space over the field /c, 
and let A e End*(£). Then E admits a direct sum decomposition 

E = Et © • • • © £r, 

where each Et is a principal k\_A~]-submodule, with invariant q{ / 0 such that 

«ll<hl •••kr- 

The sequence (ql9 ..., qr) is uniquely determined by E and A, and qr is the 
minimal polynomial of A. 

Proof. The first statement is simply a rephrasing in the present language 
for the structure theorem for modules over principal rings. Furthermore, it is 
clear that qr(A) = 0 since q(\qr for each i. No polynomial of lower degree than 
qr can annihilate £, because in particular, such a polynomial does not annihilate 
Er. Thus qr is the minimal polynomial. 

We shall call (ql9..., qr) the invariants of the pair (£, A). Let E = k{n\ and 
let A be an n x n matrix, which we view as a linear map of E into itself. The 
invariants (qu ..., qr) will be called the invariants of A (over k). 

Corollary 2.2. Let k' be an extension field of k and let Abe an n x n matrix 
in k. The invariants of A over k are the same as its invariants over k'. 
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Proof. Let {vl9...9vn} be a basis of k{n) over k. Then we may view it also 
as a basis of k'(n) over k'. (The unit vectors are in the k-space generated by 

vl9..., vn; hence vl9..., vn generate the n-dimensional space k,(n) over k'.) Let 
E = k(n). Let La be the linear map of E determined by A. Let L'A be the linear 
map of k'(n) determined by A. The matrix of LA with respect to our given basis is 
the same as the matrix of L'A. We can select the basis corresponding to the 
decomposition 

E = Ei ©•••(?) Er 

determined by the invariants ql9 ..., qr. It follows that the invariants don’t 
change when we lift the basis to one of k'(n). 

Corollary 2.3. Let A, B be n x n matrices over a field k and let k! be an 
extension field ofk. Assume that there is an invertible matrix C in k' such that 
B = CAC~l. Then there is an invertible matrix C ink such that B = CAC~l. 

Proof Exercise. 

The structure theorem for modules over principal rings gives us two kinds 
of decompositions. One is according to the invariants of the preceding theorem. 
The other is according to prime powers. 

Let £ / 0 be a finite dimensional space over the field k, and let A : E -► E 
beinEndk(£). Letg = qA be its minimal polynomial. Then q has a factorization, 

q = pV - pf* (e, ^l) 

into prime powers (distinct). Hence £ is a direct sum of submodules 

£ = E(pi)@ •••© £(ps), 

such that each £(pt) is annihilated by pf‘. Furthermore, each such submodule 
can be expressed as a direct sum of submodules isomorphic to k[f]/{pe) for 
some irreducible polynomial p and some integer e ^ 1. 

Theorem 2.4. Let qA(t) = (t — ct)e for some ae/c, e ^ 1. Assume that E 
is isomorphic to k[t~\l(q). Then E has a basis over k such that the matrix of A 
relative to this basis is of type 
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Proof. Since E is isomorphic to k[f]/(q), there exists an element veE 
such that k[t]v = E. This element corresponds to the unit element of k[t] in the 
isomorphism 

k W/(4) - E. 

We contend that the elements 

v9(t - ot)v,...9(t - ot)e lv, 

or equivalently, 

v, (A — ol)v9..., (A — cc)e~ lv, 

form a basis for E over k. They are linearly independent over k because any 
relation of linear dependence would yield a relation of linear dependence between 

v, Av,..., Ae~ 

and hence would yield a polynomial g(t) of degree less than deg q such that 
g(A) = 0. Since dim E = e, it follows that our elements form a basis for E 
over k. But (A - ct)e = 0. It is then clear from the definitions that the matrix of 
A with respect to this basis has the shape stated in our theorem. 

Corollary 2.5. Let k be algebraically closed, and let Ebea finite-dimensional 
non-zero vector space over k. Let A e Endfc(£). Then there exists a basis of 
E over k such that the matrix of A with respect to this basis consists of blocks, 
and each block is of the type described in the theorem. 

A matrix having the form described in the preceding corollary is said to be in 
Jordan canonical form. 

Remark 1. A matrix (or an endomorphism) N is said to be nilpotent if 
there exists an integer d > 0 such that Nd = 0. We see that in the decomposition 
of Theorem 2.4 or Corollary 2.5, the matrix M is written in the form 

M = B + N 

where N is nilpotent. In fact, N is a triangular matrix (i.e. it has zero coefficients 
on and above the diagonal), and B is a diagonal matrix, whose diagonal elements 
are the roots of the minimal polynomial. Such a decomposition can always be 
achieved whenever the field k is such that all the roots of the minimal polynomial 
lie in k. We observe also that the only case when the matrix N is 0 is when all 
the roots of the minimal polynomial have multiplicity 1. In this case, if 
n = dim E, then the matrix M is a diagonal matrix, with n distinct elements on 
the diagonal. 
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Remark 2. The main theorem of this section can also be viewed as falling 
under the general pattern of decomposing a module into a direct sum as far as 
possible, and also giving normalized bases for vector spaces with respect to 
various structures, so that one can tell in a simple way the effect of an endo¬ 
morphism. More formally, consider the category of pairs (E,A), consisting 
of a finite dimensional vector space E over a field k, and an endomorphism 
A : E E. By a morphism of such pairs 

/: (£, A) -> (£', A) 

we mean a ^-homomorphism /: E —> E' such that the following diagram is 
commutative: 

It is then immediate that such pairs form a category, so we have the notion of 
isomorphism. One can reformulate Theorem 2.1 by stating: 

Theorem 2.6. Two pairs (E, A) and (.F, B) are isomorphic if and only if they 
have the same invariants. 

You can prove this as Exercise 19. The Jordan basis gives a normalized form 
for the matrix associated with such a pair and an appropriate basis. 

In the next chapter, we shall find conditions under which a normalized matrix 
is actually diagonal, for hermitian, symmetric, and unitary operators over the 
complex numbers. 

As an example and application of Theorem 2.6, we prove: 

Corollary 2.7. Let k be a field and let K be a finite separable extension of 
degree n. Let V be a finite dimensional vector space of dimension n over k, and 
let p, p': —> End*(V) be two representations of K on V; that is, embeddings 
of K in End*(V). Then p, pf are conjugate; that is, there exists B e Aut*(V) 
such that 

PU) = BpU)B~l for all£eK. 

Proof By the primitive element theorem of field theory, there exists an 
element a e K such that K = k[a]. Let p(t) be the irreducible polynomial of a 
over k. Then (V, p(a)) and (V, p'(a)) have the same invariant, namely p(t). 
Hence these pairs are isomorphic by Theorem 2.6, which means that there exists 
B e Aut*(V) such that 

p'(a) = Bp(a)B~l. 

But all elements of K are linear combinations of powers of a with coefficients 
in k, so it follows immediately that p'(£) = Bp(£)B~l for all £ e K, as desired. 



XIV, §3 THE CHARACTERISTIC POLYNOMIAL 561 

To get a representation of K as in corollary 2.7, one may of course select a 
basis of K, and represent multiplication of elements of K on K by matrices with 
respect to this basis. In some sense, Corollary 2.7 tells us that this is the only 
way to get such representations. We shall return to this point of view when 
considering Cartan subgroups of GLn in Chapter XVIII, §12. 

§3. THE CHARACTERISTIC POLYNOMIAL 

Let k be a commutative ring and E a free module of dimension n over k. 
We consider the polynomial ring k[t]9 and a linear map A\E -► E. We have a 
homomorphism 

k[t] - k\_A] 

as before, mapping a polynomial f(t) on f(A), and E becomes a module over 
the ring R = k[t]. Let M be any n x n matrix in k (for instance the matrix of A 
relative to a basis of E). We define the characteristic polynomial PM(t) to be the 
determinant 

det(t/„ - M) 

where /„ is the unit n x n matrix. It is an element of k[t]. Furthermore, if N 
is an invertible matrix in R, then 

det(t/„ - N~ lMN) = det(N-\tIn - M)N) = det(r/„ - Af). 

Hence the characteristic polynomial of N~lMN is the same as that of M. We 
may therefore define the characteristic polynomial of A, and denote by PA, the 
characteristic polynomial of any matrix M associated with A with respect to 
some basis. (If E = 0, we define the characteristic polynomial to be 1.) 

If cp : k -► k' is a homomorphism of commutative rings, and M is an n x n 
matrix in fc, then it is clear that 

P (pm(0 = <pp m( 0 

where (pPM is obtained from PM by applying cp to the coefficients of PM. 

Theorem 3.1. (Cayley-Hamilton). We have Pa(A) = 0. 

Proof. Let {vl9...9vn} be a basis of E over k. Then 

n 

tVj = X aijVi 
i = 1 

where (ai;) = M is the matrix of A with respect to the basis. Let B(t) be the 
matrix with coefficients in fc[r], defined in Chapter XIII, such that 

B(t)B(t) = PA(t)In. 
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Then 

because 

(Vl\ 

Hence PA(t)E = 0, and therefore Pa(A)E = 0. This means that Pa(A) = 0, 
as was to be shown. 

Assume now that k is a field. Let E be a finite-dimensional vector space over 
/c, and let A e Endk(E). By an eigenvector w of A in E one means an element 
w g £, such that there exists an element A £ k for which Aw = Aw. If w / 0, then 
A is determined uniquely, and is called an eigenvalue of A. Of course, distinct 
eigenvectors may have the same eigenvalue. 

Theorem 3.2. The eigenvalues of A are precisely the roots of the character¬ 
istic polynomial of A. 

Proof Let A be an eigenvalue. Then A — XI is not invertible in Endk(E\ 
and hence det(,4 — A/) = 0. Hence A is a root of PA. The arguments are re¬ 
versible, so we also get the converse. 

For simplicity of notation, we often write A — A instead of A — XL 

Theorem 3.3. Let wu ..., wm he non-zero eigenvectors of A, having distinct 
eigenvalues. Then they are linearly independent. 

Proof Suppose that we have 

axwx + ••• + amwm = 0 

with at e /c, and let this be a shortest relation with not all a, = 0 (assuming such 
exists). Then ax # 0 for all i. Let AAm be the eigenvalues of our vectors. 
Apply A — Xl to the above relation. We get 

a2(A2 - Xx)w2 + ■ ■ ■ + am(Am - = 0, 

which shortens our relation, contradiction. 

Corollary 3.4. If A has n distinct eigenvalues A1?..., X„ belonging to eigen¬ 
vectors vi9..., vn9and dim E = n, then {vl9..., vn} is a basis for E. The matrix 
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of A with respect to this basis is the diagonal matrix: 

Warning. It is not always true that there exists a basis of £ consisting of 
eigenvectors! 

Remark. Let k be a subfield of k'. If M is a matrix in k, we can define its 
characteristic polynomial with respect to /c, and also with respect to k'. It is 
clear that the characteristic polynomials thus obtained are equal. If £ is a vector 
space over k, we shall see later how to extend it to a vector space over k'. A 
linear map A extends to a linear map of the extended space, and the character¬ 
istic polynomial of the linear map does not change either. Actually, if we select 
a basis for E over k, then E % k(n\ and k{n) c= k (n) in a natural way. Thus selecting 
a basis allows us to extend the vector space, but this seems to depend on the 
choice of basis. We shall give an invariant definition later. 

Let E = Ex ® • • • ® Er be an expression of £ as a direct sum of vector 
spaces over k. Let A e Endk(£), and assume that AEt c= £f for all i = 1,..., r. 
Then A induces a linear map on £,. We can select a basis for £ consisting of 
bases for £l5..., £r, and then the matrix for A consists of blocks. Hence we see 
that 

pA(t) = iW>. 
i = 1 

Thus the characteristic polynomial is multiplicative on direct sums. 
Our condition above that AE{ c= £i can also be formulated by saying that 

£ is expressed as a k[,4]-direct sum of k[/l]-submodules, or also a k[t~\-direct 
sum of k[t]-submodules. We shall apply this to the decomposition of £ given 

in Theorem 2.1. 

Theorem 3.5. Let E be a finite-dimensional vector space over a field k, let 
A 6 Endk(£), and let ql9..., qr be the invariants of (£, A). Then 

Pa( 0 = 4l(0**<Zr(0- 

Proof We assume that £ = k{n) and that A is represented by a matrix M. 
We have seen that the invariants do not change when we extend k to a larger 
field, and neither does the characteristic polynomial. Hence we may assume that 
k is algebraically closed. In view of Theorem 2.1 we may assume that M has a 
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single invariant q. Write 

q(t) = (t- arf' • • • (t - ccs)e* 

with distinct otl9..., as. We view M as a linear map, and split out vector space 
further into a direct sum of submodules (over /c[r]) having invariants 

(t - aLx)e\ ..., (t - ccs)es 

respectively (this is the prime power decomposition). For each one of these 
submodules, we can select a basis so that the matrix of the induced linear map has 
the shape described in Theorem 2.4. From this it is immediately clear that the 
characteristic polynomial of the map having invariant (t — a)e is precisely 
(t — a)*, and our theorem is proved. 

Corollary 3.6. The minimal polynomial of A and its characteristic poly¬ 
nomial have the same irreducible factors. 

Proof Because qr is the minimal polynomial, by Theorem 2.1. 

We shall generalize our remark concerning the multiplicativity of the 
characteristic polynomial over direct sums. 

Theorem 3.7. Let k be a commutative ring, and in the following diagram, 

0 

0 

E 

c 

E' 

0 

0 

let the rows be exact sequences of free modules over k, of finite dimension, and 
let the vertical maps be k-linear maps making the diagram commutative. Then 

PA(t) = PAOPAt). 

Proof We may assume that E' is a submodule of E. We select a basis 
{vu ..., vm} for E\ Let {vm+19..., v} be a basis for E", and let vm+l9 ..., vn 
be elements of E mapping on vm+19..., vn respectively. Then 

{vu...,vm,vm + Vn} 

is a basis for E (same proof as Theorem 5.2 of Chapter III), and we are in the 
situation discussed in §1. The matrix for A has the shape 
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where M' is the matrix for A and Af" is the matrix for A". Taking the character¬ 
istic polynomial with respect to this matrix obviously yields our multiplicative 
property. 

Theorem 3.8. Let kbe a commutative ring, and E a free module of dimension 
n over k. Let A e Endk(E). Let 

PA(t) = tn + + ... + c0. 

Then 

tr(A)=-cn.1 and det(/l) = (-l)"c0. 

Proof For the determinant, we observe that PA(0) = c0. Substituting 
t = 0 in the definition of the characteristic polynomial by the determinant shows 

that c0 = (-l)"detC4). 
For the trace, let M be the matrix representing A with respect to some basis, 

M = (aij). We consider the determinant det(tln - ay). In its expansion as a sum 
over permutations, it will contain a diagonal term 

(t - an)---(t - ann\ 

which will give a contribution to the coefficient of tn~1 equal to 

— (flu + • • • + ann). 

No other term in this expansion will give a contribution to the coefficient of 
tn~l, because the power of t occurring in another term will be at most tn~2. 
This proves our assertion concerning the trace. 

Corollary 3.9. Let the notation be as in Theorem 3.7. Then 

tr(y4) = tr(y4') + tr(A") and det(/l) = det(>4') det(^"). 

Proof Clear. 

We shall now interpret our results in the Euler-Grothendieck group. 
Let k be a commutative ring. We consider the category whose objects are 

pairs (£, A), where E is a /c-module, and A e End*(£). We define a morphism 

(F, A) - (£, A) 

to be a k-linear map E ^ E making the following diagram commutative: 
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Then we can define the kernel of such a morphism to be again a pair. Indeed, 
let £'0 be the kernel of/: £' -> E. Then A maps E'0 into itself because 

fAE'0 = AfE'0 = 0. 

We let A'0 be the restriction of A on E'0. The pair (£'0, A'0) is defined to be the 
kernel of our morphism. 

We shall denote by/again the morphism of the pair (£', A) -> (£, A). We 
can speak of an exact sequence 

(E\ A) - (£, A) - (£", A"\ 

meaning that the induced sequence 

£'-►£-► £" 

is exact. We also write 0 instead of (0, 0), according to our universal convention 
to use the symbol 0 for all things which behave like a zero element. 

We observe that our pairs now behave formally like modules, and they in 
fact form an abelian category. 

Assume that k is a field. Let d consist of all pairs (£, A) where £ is finite 
dimensional over k. 

Then Theorem 3.7 asserts that the characteristic polynomial is an Euler- 

Poincare map defined for each object in our category (2, with values into the 

multiplicative monoid of polynomials with leading coefficient 1. 

Since the values of the map are in a monoid, this generalizes slightly the notion 
of Chapter III, §8, when we took the values in a group. Of course when k is a 
field, which is the most frequent application, we can view the values of our map 
to be in the multiplicative group of non-zero rational functions, so our previous 
situation applies. 

A similar remark holds now for the trace and the determinant. If k is a 

field, the trace is an Euler map into the additive group of the field, and the deter¬ 

minant is an Euler map into the multiplicative group of the field. We note also that 
all these maps (like all Euler maps) are defined on the isomorphism classes of 
pairs, and are defined on the Euler-Grothendieck group. 

Theorem 3.10. Let k be a commutative ring, M an n x n matrix in k, andf 

a polynomial in k[f]. Assume that PM(t) has a factorization, 

PM(t) = fl (t - Of) 
i = 1 

into linear factors over k. Then the characteristic polynomial of f(M) is 

given by 

= fl(£ -/(«,)), 
i= 1 
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and 

tr{fM) = Z /(«,). det(/(M» = f] /(«,)• 
i= 1 i= 1 

Proof. Assume first that k is a field. Then using the canonical decomposi¬ 
tion in terms of matrices given in Theorem 2.4, we find that our assertion is 
immediately obvious. When k is a ring, we use a substitution argument. It is 
however necessary to know that if X = (*/y) is a matrix with algebraically 
independent coefficients over Z, then Px(t) has n distinct roots yu ..., yn [in 
an algebraic closure of Q(X)] and that we have a homomorphism 

Z[xl7,yyj -► k 

mapping X on M and y l,..., yn on ax,..., a„. This is obvious to the reader who 
read the chapter on integral ring extensions, and the reader who has not can 
forget about this part of the theorem. 

EXERCISES 

1. Let T be an upper triangular square matrix over a commutative ring (i.e. all the ele¬ 
ments below and on the diagonal are 0). Show that T is nilpotent. 

2. Carry out explicitly the proof that the determinant of a matrix 

where each M, is a square matrix, is equal to the product of the determinants of the 
matrices Mu , Ms. 

3. Let k be a commutative ring, and let M, M' be square n x n matrices in k. Show that 
the characteristic polynomials of MM' and M M are equal. 

4. Show that the eigenvalues of the matrix 

(0 1 0 0\ 
0 0 1 Ol 

0 0 0 1 I 
1 0 0 0/ 

in the complex numbers are ± 1, ± i. 
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5. Let M, M' be square matrices over a field k. Let q, q' be their respective minimal 

polynomials. Show that the minimal polynomial of 

/M 0 \ 

\0 M'J 

is the least common multiple of q, q'. 

6. Let A be a nilpotent endomorphism of a finite dimensional vector space £ over the field 

k. Show that tr(^4) = 0. 

7. Let R be a principal entire ring. Let E be a free module over/?, and let£v = Hom^f/s, R) 
be its dual module. Then £v is free of dimension n. Let F be a submodule of E. 
Show that £v/F1 can be viewed as a submodule of £v, and that its invariants are 

the same as the invariants of F in E. 

8. Let £ be a finite-dimensional vector space over a field k. Let A e Aut*(£). Show that 

the following conditions are equivalent: 
(a) A = I + N, with N nilpotent. 
(b) There exists a basis of £ such that the matrix of A with respect to this basis has 

all its diagonal elements equal to 1 and all elements above the diagonal equal 

to 0. 
(c) All roots of the characteristic polynomial of A (in the algebraic closure of k) 

are equal to 1. 

9. Let k be a field of characteristic 0, and let M be an n x n matrix in k. Show that M is 

nilpotent if and only if tr(Mv) = 0 for 1 ^ v ^ n. 

10. Generalize Theorem 3.10 to rational functions (instead of polynomials), assuming 

that k is a field. 

11. Let £ be a finite-dimensional space over the field k. Let a e k. Let £a be the subspace 
of £ generated by all eigenvectors of a given endomorphism A of £, having a as an 
eigenvalue. Show that every non-zero element of Ea is an eigenvector of A having a as 

an eigenvalue. 

12. Let £ be finite dimensional over the field k. Let A e Endk(E). Let v be an eigenvector 
for A. Let B e Endfc(£) be such that AB — BA. Show that Bv is also an eigenvector 

for A (if Bv ^ 0), with the same eigenvalue. 

Diagonalizable endomorphisms 

Let £ be a finite-dimensional vector space over a field k, and let S e Endk(E). We say 
that S is diagonalizable if there exists a basis of £ consisting of eigenvectors of S. The 
matrix of S with respect to this basis is then a diagonal matrix. 

13. (a) If S is diagonalizable, then its minimal polynomial over k is of type 

m = n o - 
i = 1 

where ..., Xm are distinct elements of k. 
(b) Conversely, if the minimal polynomial of S is of the preceding type, then S is 

diagonalizable. [Hint : The space can be decomposed as a direct sum of the 
subspaces Eki annihilated by S — A, .] 
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(c) If S is diagonalizable, and if F is a subspace of F such that SF c= F, show that S 
is diagonalizable as an endomorphism of F, i.e. that F has a basis consisting of 
eigenvectors of S. 

(d) Let 5, T be endomorphisms of F, and assume that S, T commute. Assume that 
both 5, T are diagonalizable. Show that they are simultaneously diagonalizable, 
i.e. there exists a basis of E consisting of eigenvectors for both S and T. [Hint: 
If A is an eigenvalue of S, and Ex is the subspace of E consisting of all vectors v 
such that Sv = Xv, then TEX a Ex.~\ 

14. Let E be a finite-dimensional vector space over an algebraically closed field k. Let 
A e Endfc(F). Show that A can be written in a unique way as a sum 

A = S + N 

where S is diagonalizable, N is mlpotent, and SN = NS. Show that S, N can be ex¬ 
pressed as polynomials in A. [Hint: Let P^r) = n (* — be the factorization 
of PA(t) with distinct Af. Let F, be the kernel of (A — X{)mi. Then F is the direct sum of 
the F,. Define S on F so that on F,, St? = X(v for all v e Ff. Let N = /I - S. Show 
that S, Af satisfy our requirements. To get S as a polynomial in A, let <7 be a polynomial 
such that #(r) = A, mod (t - A,)m* for all i, and 0(r) = 0 mod t. Then S = g(A) 
and N = A - g(A).~\ 

15. After you have read the section on the tensor product of vector spaces, you can easily 
do the following exercise. Let F, F be finite-dimensional vector spaces over an alge¬ 
braically closed field /c, and let A : F -► F and B:F F be k-endomorphisms of F, F, 
respectively. Let 

= n ^d pB(o=n (t - up 

be the factorizations of their respectively characteristic polynomials, into distinct 
linear factors. Then 

Pauo = n 0 - 
ij 

[Hint : Decompose F into the direct sum of subspaces F, , where F, is the subspace of 
F annihilated by some power of A — a, . Do the same for F, getting a decomposition 
into a direct sum of subspaces Fj. Then show that some power of A ® B — otipj 
annihilates Et <g) F}. Use the fact that F (x) F is the direct sum of the subspaces F, ® F,-, 
and that dim*(F, ® Fj) = nimj.'] 

16. Let T be a free abelian group of dimension n ^ 1. Let F be a subgroup of dimension n 
also. Let {vl9..., vn} be a basis of T, and let {wj,..., w„} be a basis of F. Write 

W, = 

Show that the index (T: F) is equal to the absolute value of the determinant of the 
matrix 

17. Prove the normal basis theorem for finite extensions of a finite field. 

18. Let A = (ciij) be a square n x n matrix over a commutative ring k. Let Ai}^be the matrix 
obtained by deleting the i-th row and ;'-th column from A. Let = ( - \)l+J det(Aji), 
and let B be the matrix (b^). Show that det(P) = det(/4)""1, by reducing the problem to 
the case when A is a matrix with variable coefficients over the integers. Use this same 
method to give an alternative proof of the Cayley-Hamilton theorem, that Pa(A) = 0. 
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19. Let (£, A) and (£', A') be pairs consisting of a finite-dimensional vector space over a 
field k, and a /c-endomorphism. Show that these pairs are isomorphic if and only if 
their invariants are equal. 

20. (a) How many non-conjugate elements of GL2(C) are there with characteristic poly¬ 
nomial t3(t -I- 1 )2{t — 1)? 
(b) How many with characteristic polynomial t3 — 1001 /? 

21. Let V be a finite dimensional vector space over Q and let A: V —> V be a Q-linear 
map such that A5 = Id. Assume that if v E V is such that Av = v, then v = 0. Prove 
that dim V is divisible by 4. 

22. Let V be a finite dimensional vector space over R, and let A: V —» V be an R-linear 
map such that A2 = -Id. Show that dim V is even, and that V is a direct sum of 2- 
dimensional A-invariant subspaces. 

23. Let £ be a finite-dimensional vector space over an algebraically closed field k. Let 
A, B be /c-endomorphisms of £ which commute, i.e. AB = BA. Show that A and B have 
a common eigenvector. [Hint : Consider a subspace consisting of all vectors having 
a fixed element of k as eigenvalue.] 

24. Let V be a finite dimensional vector space over a field k. Let A be an endomorphism 
of V. Let Tr(Aw) be the trace of Am as an endomorphism of V. Show that the following 
power series in the variable t are equal: 

exp( X ~Tr(Am)—) = det(/ - tA) or log det(7 - /A) = X Tr(Am)tm. 
\m= 1 m/ at 1 

Compare with Exercise 23 of Chapter XVIII. 

25. Let V, W be finite dimensional vector spaces over k, of dimension n. Let (i>, w) l-> 
(v, w) be a non-singular bilinear form on V x IV. Let c G &, and let A: V —> V and 
V: W —> W be endomorphisms such that 

Show that 

and 

(Av, Bw) = c(v, w) for all u G V and w e W. 

det(A)det(/7 — B) — (-l)"det(c7 - tA) 

det(A)det(£) = cn. 

For an application of Exercises 24 and 25 to a context of topology or algebraic 
geometry, see Hartshorne’s Algebraic Geometry, Appendix C, §4. 
26. Let G = SLn(C) and let K be the complex unitary group. Let A be the group of di¬ 

agonal matrices with positive real components on the diagonal. 
(a) Show that if g e Nor^(A) (normalizer of A in G), then c(g) (conjugation by 

g) permutes the diagonal components of A, thus giving rise to a homo¬ 
morphism Norc(A) —> W to the group W of permutations of the diagonal 
coordinates. 

By definition, the kernel of the above homomorphism is the centralizer Ceng(A). 
(b) Show that actually all permutations of the coordinates can be achieved by 

elements of K, so we get an isomorphism 

W w NorG(A)/CenG(A) « Nor*(A)/Cen*(A). 

In fact, the K on the right can be taken to be the real unitary group, because 
permutation matrices can be taken to have real components (0 or ±1). 



CHAPTER XV 
Structure of Bilinear Forms 

There are three major types of bilinear forms: hermitian (or symmetric), 
unitary, and alternating (skew-symmetric). In this chapter, we give structure 
theorems giving normalized expressions for these forms with respect to suitable 
bases. The chapter also follows the standard pattern of decomposing an object 
into a direct sum of simple objects, insofar as possible. 

§1. PRELIMINARIES, ORTHOGONAL SUMS 

The purpose of this chapter is to go somewhat deeper into the structure 
theory for our three types of forms. To do this we shall assume most of the time 
that our ground ring is a field, and in fact a field of characteristic # 2 in the 
symmetric case. 

We recall our three definitions. Let E be a module over a commutative 
ring R. Let g : E x E -► R be a map. If g is bilinear, we call g asymmetric form 
if g(x, y) = g(y\ x) for all x, y e E. We call g alternating if g(x, x) = 0, and hence 
g(x, y) = — g(y,x) for all x, ye£. If R has an automorphism of order 2, 
written a »-> a, we say that g is a hermitian form if it is linear in its first variable, 
antilinear in its second, and 

Q(x, y) = g(y, x). 

We shall write g(x, y) = <x, y> if the reference to g is clear. We also oc¬ 
casionally write g(x, y) = x • y or g(x, x) = x2. We sometimes call g a scalar 
product. 

571 
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If i?j,..., vm e £, we denote by (t?l5..., vm) the submodule of E generated by 
vu...,vm. 

Let <7 be symmetric, alternating, or hermitian. Then it is clear that the left 
kernel of g is equal to its right kernel, and it will simply be called the kernel of g. 

In any one of these cases, we say that g is non-degenerate if its kernel is 0. 
Assume that E is finite dimensional over the field k. The form is non-degenerate 
if and only if it is non-singular, i.e., induces an isomorphism of E with its dual 
space (anti-dual in the case of hermitian forms). 

Except for the few remarks on the anti-linearity made in the previous 
chapter, we don’t use the results of the duality in that chapter. We need only 
the duality over fields, given in Chapter III. Furthermore, we don’t essentially 
meet matrices again, except for the remarks on the pfaffian in §10. 

We introduce one more notation. In the study of forms on vector spaces, 
we shall frequently decompose the vector space into direct sums of orthogonal 
subspaces. If £ is a vector space with a form g as above, and F, F' are subspaces, 
we shall write 

E = F 1 F' 

to mean that E is the direct sum of F and £', and that F is orthogonal (or 
perpendicular) to £', in other words, x 1 y (or <x, y) = 0) for all xe F and 
y e £'. We then say that E is the orthogonal sum of F and F'. There will be no 
confusion with the use of the symbol ± when we write FI F' to mean simply that 
F is perpendicular to F'. The context always makes our meaning clear. 

Most of this chapter is devoted to giving certain orthogonal decompositions 

of a vector space with one of our three types offorms, so that each factor in the sum 

is an easily recognizable type. 

In the symmetric and hermitian case, we shall be especially concerned with 
direct sum decompositions into factors which are 1-dimensional. Thus if 
< , > is symmetric or hermitian, we shall say that {v{,.. ., vn} is an orthogonal 
basis (with respect to the form) if (vt, vf) = 0 whenever i # j. We see that an 
orthogonal basis gives such a decomposition. If the form is nondegenerate, 
and if {vx,..., vn} is an orthogonal basis, then we see at once that (v{, v>> ^ 0 
for all i. 

Proposition 1.1. Let E be a vector space over the field k, and let g be a form 

of one of the three above types. Suppose that E is expressed as an orthogonal 

sum, 

E = Ex 1 '±Em. 

Then g is non-degenerate on E if and only if it is non-degenerate on each £,. 
If E® is the kernel of the restriction of g to £, , then the kernel of g in E is the 
orthogonal sum 

E° = £? 1 •••!££. 
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Proof. Elements v, w of E can be written uniquely 

with vh wf e Et. Then 

v = I*.. 
; = i 

m 

V * W = Y,Vi' Wi' 

and t; • w = 0 if v( • wt = 0 for each i = 1, ..., m. From this our assertion is 
obvious. 

Observe that if El9..., Em are vector spaces over fc, and gi,...,gm are forms 
on these spaces respectively, then we can define a form g = gx © • • • © gm on the 
direct sum E = Ex © • • • © Em; namely if v, w are written as above, then we let 

m 

g(v,w)= 
i = 1 

It is then clear that, in fact, we have E = Ex 1 • • • 1 Em. We could also write 
g *= gx 1 ••• lgm. 

Proposition 1.2. Let E be a finite-dimensional space over the field k, and let 

g be a form of the preceding type on E. Assume that g is non-degenerate. Let 

F be a subspace of E. The form is non-degenerate on F if and only if 

F + F1 = E, and also if and only if it is non-degenerate on F1. 

Proof. We have (as a trivial consequence of Chapter III, §5) 

dim F + dim F1 = dim E = dim(F -f F1) -f dim(F n F1). 

Hence F -f F1 = E if and only if dim(F n FL) = 0. Our first assertion follows 
at once. Since F, F1 enter symmetrically in the dimension condition, our second 
assertion also follows. 

Instead of saying that a form is non-degenerate on £, we shall sometimes say, 
by abuse of language, that E is non-degenerate. 

Let E be a finite-dimensional space over the field k, and let g be a form of 
the preceding type. Let E0 be the kernel of the form. Then we get an induced 
form of the same type 

go : E/Eq x E/E0 —> /c, 

because g(x, y) depends only on the coset of x and the coset of y modulo E0. 

Furthermore, gQ is non-degenerate since its kernel on both sides is 0. 
Let F, E' be finite-dimensional vector spaces, with forms g, g' as above, 

respectively. A linear map o: E -> E is said to be metric if 

g\(7X, ay) = g(x9 y) 
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or in the dot notation, ox • ay = x • y for all x, y e E. If a is a linear isomorphism, 
and is metric, then we say that o is an isometry. 

Let E, E0 be as above. Then we have an induced form on the factor space 
E/E0. If LF is a complementary subspace of £0, in other words, E = E0 ® W, 

and if we let o: E -> E/E0 be the canonical map, then o is metric, and induces 
an isometry of W on E/E0. This assertion is obvious, and shows that if 

E = E0®W' 

is another direct sum decomposition of £, then W is isometric to W. We know 
that W % £/£0 is nondegenerate. Hence our form determines a unique non¬ 
degenerate form, up to isometry, on complementary subspaces of the kernel. 

§2. QUADRATIC MAPS 

Let R be a commutative ring and let £, F be E-modules. We suppress the 
prefix E- as usual. We recall that a bilinear map /: £ x £ -► F is said to be 
symmetric if f (x, y) = f (y, x) for all x, y e E. 

We say that F is without 2-torsion if for all y e F such that 2y = 0 we have 
y = 0. (This holds if 2 is invertible in R.) 

Let/ : £ -► F be a mapping. We shall say that/is quadratic (i.e. E-quadratic) 
if there exists a symmetric bilinear map g: E x £ -+ F and a linear map h: E F 

such that for all x e £ we have 

/(x) = g(x, x) + h(x). 

Proposition 2.1. Assume that F is without 2-torsion. Let /:£-►£ be 

quadratic, expressed as above in terms of a symmetric bilinear map and a 

linear map. Then g, h are uniquely determined by f For all x, ye E we have 

2g(x9 y) =f(x + y) — f(x) - f(y). 

Proof If we compute fix F y) — fix) - f(y), then we obtain 2g(x, y). 

If g] is symmetric bilinear, h{ is linear, and fix) = gfx, x) -F hi(x), then 
20(x, y) = 20j(x, y). Since £ is assumed to be without 2-torsion, it follows that 
g(x, y) = gfx, y) for all x, ye E, and thus that g is uniquely determined. But 
then h is determined by the relation 

hix) = fix) - 0(x, x). 

We call g, h the bilinear and linear maps associated with f 

Iff: E F is a map, we define 

A/: £ x E-F 
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by 

A/Cx, y) =f(x + y) -/(x) — f (y). 

We say that / is homogeneous quadratic if it is quadratic, and if its associated 
linear map is 0. We shall say that F is uniquely divisible by 2 if for each zeF 

there exists a unique ue F such that 2 u = z. (Again this holds if 2 is invertible 
in R.) 

Proposition 2.2. Let f:E->F be a map such that Af is bilinear. Assume 

that F is uniquely divisible by 2. Then the map xy-+f(x) — ^A/(x, x) is 

Z-linear. If f satisfies the condition f (2x) = 4/(x), then f is homogeneous 

quadratic. 

Proof. Obvious. 

By a quadratic form on E, one means a homogeneous quadratic map 
/: E -► R, with values in R. 

In what follows, we are principally concerned with symmetric bilinear 
forms. The quadratic forms play a secondary role. 

§3. SYMMETRIC FORMS, ORTHOGONAL BASES 

Let k be a field of characteristic =£ 2. 

Let E be a vector space over k, with the symmetric form g. We say that g 

is a null form or that E is a null space if <x, y} = 0 for all x, ye E. Since we 
assumed that the characteristic of k is # 2, the condition x2 = 0 for all x e E 

implies that g is a null form. Indeed, 

4x ■ y = (x + y)2 - (x - y)2. 

Theorem 3.1. Let E be =k 0 and finite dimensional over k. Let g be a sym¬ 

metric form on E. Then there exists an orthogonal basis. 

Proof. We assume first that g is non-degenerate, and prove our assertion by 
induction in that case. If the dimension n is 1, then our assertion is obvious. 

Assume n > 1. Let ^eEbe such that v\ # 0 (such an element exists since 
g is assumed non-degenerate). Let F = (v{) be the subspace generated by 
Then F is non-degenerate, and by Proposition 1.2, we have 

E = F + F1. 

Furthermore, dim F1 = n - 1. Let {v2,..., vn} be an orthogonal basis of F1. 
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Then {vx,..., vn} are pairwise orthogonal. Furthermore, they are linearly 
independent, for if 

axvx + •• • + anvn = 0 

with a{ e k then we take the scalar product with vt to get a-t vf = 0 whence a{ = 0 
for all /. 

Remark. We have shown in fact that if^ is non-degenerate, and v e Eis such 
that v2 # 0 then we can complete v to an orthogonal basis of E. 

Suppose that the form g is degenerate. Let E0 be its kernel. We can write 
£ as a direct sum 

E = E0@W 

for some subspace W. The restriction of g to W is non-degenerate; otherwise 
there would be an element of W which is in the kernel of £, and ^ 0. Hence if 
{vu ..., vr} is a basis of E0, and {n^,..., w„_r} is an orthogonal basis of W, then 

(h. »r.Wj ,...,Wn_r} 

is an orthogonal basis of £, as was to be shown. 

Corollary 3.2. Let {vl,...,vn} be an orthogonal basis of £. Assume that 

vf 7^ 0 jor i ^ r and vf = 0 for i > r. Then the kernel of E is equal to 

(vr+ j,..., vn). 

Proof Obvious. 

If {vu ..., vn} is an orthogonal basis of £ and if we write 

X = xtvx -F ••• -F xnvn 

with Xi £ /c, then 

X2 = axx\ -F • • • -F anx2n 

where at = <vi9 vf). In this representation of the form, we say that it is diagonal¬ 
ized. With respect to an orthogonal basis, we see at once that the associated 
matrix of the form is a diagonal matrix, namely 

h l a2 0 

ar 

0 0 
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Example. Note that Exercise 33 of Chapter XIII gave an interesting example 
of an orthogonal decomposition involving harmonic polynomials. 

§4. SYMMETRIC FORMS OVER ORDERED FIELDS 

Theorem 4.1. (Sylvester) Let k be an ordered field and let E be a finite 

dimensional vector space over k, with a non-degenerate symmetric form g. There 

exists an integer r ^ 0 such that, if {vl9... ,vn} is an orthogonal basis of E, 

then precisely r among the n elements v2,..., vf are > 0, and n — r among 

these elements are < 0. 

Proof Let a{ = vf, for i = 1,..., n. After renumbering the basis elements, 
say «!,... ,ar > Oand a( < Ofor i > r. Let {wb ..., w„} beany orthogonal basis, 
and let h, = wf. Say bx, ..., bs > 0 and bj < 0 for j > s. We shall prove that 
r = s. Indeed, it will suffice to prove that 

Vitv, ws+j,..., wn 

are linearly independent, for then we get r + n - s ^ n, whence r ^ s, and 
r = s by symmetry. Suppose that 

xlv1 + ••• + xrvr + ys+ !Ws+i + ••• + T„wn = 0. 

Then 

xlv1 + ••• + xrvr = -ys+1ws + l-ynwn. 

Squaring both sides yields 

axx\ + • • • + arx2r = bs+1y2+ !+••• + bny2n. 

The left-hand side is ^ 0, and the right-hand side is ^ 0. Hence both sides are 
equal to 0, and it follows that x, = yj = 0, in other words that our vectors are 
linearly independent. 

Corollary 4.2. Assume that every positive element of k is a square. Then 

there exists an orthogonal basis {vu ..., vn} of E such that vf = 1 for i ^ r 

and vf = — 1 for i > r, and r is uniquely determined. 

Proof. We divide each vector in an orthogonal basis by the square root of 
the absolute value of its square. 

A basis having the property of the corollary is called orthonormal. If X is an 
element of E having coordinates (x1?..., xn) with respect to this basis, then 

X2 = x\ + • • • + xf - xf+! - • • • - xf. 
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We say that a symmetric form g is positive definite if X2 > 0 for all 
X e £, X =£ 0. This is the case if and only if r = n in Theorem 4.1. We say 
that g is negative definite if X2 < 0 for all X e £, X =£ 0. 

Corollary 4.3. TTie vector space E admits an orthogonal decomposition 
E = E+ 1 E~ such that g is positive definite on E+ and negative definite on 
E~. The dimension of E+ (or E~) is the same in all such decompositions. 

Let us now assume that the form g is positive definite and that every positive 
element of k is a square. 

We define the norm of an element v e E by 

\v\ = yjv • v. 

Then we have \v\ > 0 if v # 0. We also have the Schwarz inequality 

\v • w| ^ \ v\ I w| 

for all v,weE. This is proved in the usual way, expanding 

0 ^ (av ± hw)2 = (av ± bw) • (av ± bw) 

by bilinearity, and letting b = \ v\ and a = |w|. One then gets 

+ 2abv-w 211;|21w|2. 

If | v | or | w | = 0 our inequality is trivial. If neither is 0 we divide by | v \ | w | to get 
what we want. 

From the Schwarz inequality, we deduce the triangle inequality 

\v 4* w| ^ |t?| 4- |w\. 

We leave it to the reader as a routine exercise. 

When we have a positive definite form, there is a canonical way of getting an 
orthonormal basis, starting with an arbitrary basis {vu ..., vn} and proceeding 
inductively. Let 

v'= mPi' 

Then v{ has norm 1. Let 

w2 = v2 - (v2 • v\)v\. 

v2 
|w2| 

w 7 

and then 
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Inductively, we let 

wr= vr- (vr • v\)v\-(vr • v'f.— j 

and then 

"r iwrr- 
The {v\,..., v’n} is an orthonormal basis. The inductive process just described 
is known as the Gram-Schmidt orthogonalization. 

§5. HERMITIAN FORMS 

Let k0 be an ordered field (a subfield of the reals, if you wish) and let k = k0(i\ 

where i = yf— T. Then k has an automorphism of order 2, whose fixed field 
is k0. 

Let £ be a finite-dimensional vector space over k. We shall deal with a hermi- 
tian form on E, i.e. a map 

E x £-/e 

written 

(x, y) i ► <x, y> 

which is k-linear in its first variable, /c-anti-linear in its second variable, and such 
that 

<*, y> = <y, *> 

for all x, ye E. 

We observe that <x, x) 6 k0 for all xe E. This is essentially the reason why 
the proofs of statements concerning symmetric forms hold essentially without 
change in the hermitian case. We shall now make the list of the properties which 
apply to this case. 

Theorem 5.1. There exists an orthogonal basis. If the form is non-degenerate, 
there exists an integer r having the following property. If {vu . . . , vn} is an 

orthogonal basis, then precisely r among the n elements 

(vU v{).(vn, vn) 

are > 0 and n — r among these elements are < 0. 
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An orthogonal basis {vu ..., vn} such that (vt, ^) = 1 or — 1 is called an 
orthonormal basis. 

Corollary 5.2. Assume that the form is non-degenerate, and that every positive 

element of k0 is a square. Then there exists an orthonormal basis. 

We say that the hermitian form is positive definite if (x, x) > 0 for all 
x e E. We say that it is negative definite if (x, x) < 0 for all x e E, x =£ 0. 

Corollary 5.3. Assume that the form is non-degenerate. Then E admits an 

orthogonal decomposition E = E+ 1 E~ such that the form is positive definite 

on E+ and negative definite on E'. The dimension of E+ (or E~) is the same 

in all such decompositions. 

The proofs of Theorem 5.1 and its corollaries are identical with those of the 
analogous results for symmetric forms, and will be left to the reader. 

We have the polarization identity, for any /c-linear map A : E -► E, namely 

<A(x + y), (x + y)> - (A(x - y), (x - y)> = 2[</lx, y> + <Ay, x>]. 

If <Ax, x> = 0 for all x, we replace x by ix and get 

(Ax, y} + (Ay, x> = 0, 

i(Ax, y) - i(Ay, x> = 0. 

From this we conclude: 

If (Ax, x) = 0, for all x, then A = 0. 

This is the only statement which has no analogue in the case of symmetric 
forms. The presence of i in one of the above linear equations is essential to the 
conclusion. In practice, one uses the statement in the complex case, and one 
meets an analogous situation in the real case when A is symmetric. Then the 
statement for symmetric maps is obvious. 

Assume that the hermitian form is positive definite, and that every positive 

element of k0 is a square. 

We have the Schwarz inequality, namely 

\<X, y)I2 ^ (x,x}(y,y) 

whose proof comes again by expanding 

0 ^ <ax + fy, ax + /?y> 

and setting a = (y, y) and f = — (x, y). 

We define the norm of | x | to be 

\x\ = V<x7x>. 
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Then we get at once the triangle inequality 

I* + y\ = 1*1 + M. 

and for at 6 k, 

\<*x\ = |a|\x\. 

Just as in the symmetric case, given a basis, one can find an orthonormal 
basis by the inductive procedure of subtracting successive projections. We leave 
this to the reader. 

§6. THE SPECTRAL THEOREM (HERMITIAN CASE) 

Throughout this section, we let Ehea finite dimensional space over C, of dimension 

^ 1, and we endow E with a positive definite hermitian form. 

Let A : E -► E be a linear map (i.e. C-linear map) of E into itself. For fixed 
yeE, the map xy-+(Ax, y) is a linear functional, and hence there exists a 
unique element y* € E such that 

(Ax,y) = <x, y*} 

for all xe E. We define the map A* : E -► E by A*y = y*. It is immediately 
clear that A* is linear, and we shall call A* the adjoint of A with respect to our 
hermitian form. 

The following formulas are trivially verified, for any linear maps A, B of E 

into itself: 

(A + £)* = A* + B*, A** = A, 

(a. A)* = at A*, (AB)* = B*A*. 

A linear map A is called self-adjoint (or hermitian) if A* = A. 

Proposition 6.1. A is hermitian if and only if (Ax, x) is real for all x e E. 

Proof Let A be hermitian. Then 

(Ax, x> = <x, >4x> = <i4x, x>, 

whence (Ax, x) is real. Conversely, assume (Ax, x) is real for all x. Then 

<i4x, x) = (Ax, x) = <x, Ax) = (A*x, x), 

and consequently ((A — A*)x, x) = 0 for all x. Hence A = A* by polarization. 
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Let A : E -> E be a linear map. An element £ e E is called an eigenvector 
of A if there exists A e C such that = A£. If £ # 0, then we say that A is an 
eigenvalue of A, belonging to 

Proposition 6.2. A be hermitian. Then all eigenvalues belonging to 

nonzero eigenvectors of A are real. If £' are eigenvectors =£ 0 having 

eigenvalues A, A' respectively, and if A =£ A, /ben £ ± f'. 

Proo/ Let A be an eigenvalue, belonging to the eigenvector £ # 0. Then 
<A£, O = <£, AO> and these two numbers are equal respectively to A<£, O 
and A<£, £>• Since £ # 0, it follows that A = A, i.e. that A is real. Secondly, 
assume that £, and A, A' are as described above. Then 

<AZ, O = A<£, O = <«, ^'> = W O, 

from which it follows that <£, £'> = 0. 

Lemma 6.3. L^/ A : E —> E be a linear map, and dim E ^ 1. Then there 

exists at least one non-zero eigenvector of A. 

Proof We consider C[A], i.e. the ring generated by A over C. As a vector 
space over C, it is contained in the ring of endomorphisms of E, which is finite 
dimensional, the dimension being the same as for the ring of all n X n matrices 
if n = dim E. Hence there exists a non-zero polynomial P with coefficients in 
C such that P(A) = 0. We can factor P into a product of linear factors, 

P(X) = (X- A,) ...(X- AJ 

with Xj e C. Then (A — XJ) • •• (A — Am7) = 0. Hence not all factors A — A,/ 
can be isomorphisms, and there exists A e C such that A — XI is not an iso¬ 
morphism. Hence it has an element £ / 0 in its kernel, and we get A£ — A^ = 0. 
This shows that £ is a non-zero eigenvector, as desired. 

Theorem 6.4. (Spectral Theorem, Hermitian Case). Let E be a non¬ 

zero finite dimensional vector space over the complex numbers, with a positive 

definite hermitian form. Let A : E —> E be a hermitian linear map. Then E has 

an orthogonal basis consisting of eigenvectors of A. 

Proof Let ^ be a non-zero eigenvector, with eigenvalue Xl9 and let Ex be 
the subspace generated by Then A maps Ef into itself, because 

<A£j, = <E|, A^> = <E|, A^) = Aj<E|, {,) = 0, 

whence AE| is perpendicular to 
Since ^ # Owe have <^, ^) > 0 and hence, since our hermitian form is 

non-degenerate (being positive definite), we have 

E = Ex © E|. 
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The restriction of our form to Ef is positive definite (if dim E > 1). From 
Proposition 6.1, we see at once that the restriction of A toF/is hermitian. Hence 
we can complete the proof by induction. 

Corollary 6.5. Hypotheses being as in the theorem, there exists an ortho¬ 

normal basis consisting of eigenvectors of A. 

Proof Divide each vector in an orthogonal basis by its norm. 

Corollary 6.6. Let E be a non-zero finite dimensional vector space over the 

complex numbers, with a positive definite hermitian form f. Let g be another 

hermitian form on E. Then there exists a basis of E which is orthogonal for 

both f and g. 

Proof We write/(x, y) = <x, y>. Since / is non-singular, being positive 
definite, there exists a unique hermitian linear map A such that g(x9 y) = <Ax, y> 
for all x, ye E. We apply the theorem to A, and find a basis as in the theorem, 
say {vl9..., vn}. Let Af be the eigenvalue such that Av{ = Ativ Then 

g(Vi, Vj) = (Avt, Vj) = VjX 

and therefore our basis is also orthogonal for g, as was to be shown. 

We recall that a linear map U : E —> E is unitary if and only if U* = U~1. 
This condition is equivalent to the property that (Ux, Uy) = (x, y) for all elements 
x, y e E. In other words, U is an automorphism of the form/. 

Theorem 6.7. (Spectral Theorem, Unitary Case). Let E be a non-zero 

finite dimensional vector space over the complex numbers, with a positive definite 

hermitian form. Let U : E^Ebea unitary linear map. Then E has an orthogonal 

basis consisting of eigenvectors of U. 

Proof. Let ^ # 0 be an eigenvector of U. It is immediately verified that 
the subspace of E orthogonal to tsl is mapped into itself by 17, using the relation 
U* = because if rj is perpendicular to £l5 then 

<Uri, *!> = <rj, U^y = <>/, U-'^y = <rj, A"1^) = 0. 

Thus we can finish the proof by induction as before. 

Remark. If A is an eigenvalue of the unitary map U, then A has necessarily 
absolute value 1 (because U preserves length), whence A can be written in the 
form eie with 9 real, and we may view U as a rotation. 

Let A : E —> E be an invertible linear map. Just as one writes a non-zero 
complex number z = re10 with r > 0, there exists a decomposition of A as a 
product called its polar decomposition. Let P : E —» E be linear. We say that P 

is semipositive if P is hermitian and we have (Px, x) ^ 0 for all x e E. If we 
have (Px, x) > 0 for all x =£ 0 in E then we say that P is positive definite. For 
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example, if we let P = A*A then we see that P is positive definite, because 

(A*Ax, x) = (Ax, Ax) > 0 if x =£ 0. 

Proposition 6.8. Let P be semipositive. Then P has a unique semipositive 

square root B : E —> E, i.e. a semipositive linear map such that B2 = P. 

Proof. For simplicity, we assume that P is positive definite. By the spectral 
theorem, there exists a basis of E consisting of eigenvectors. The eigenvalues 
must be > 0 (immediate from the condition of positivity). The linear map defined 
by sending each eigenvector to its multiple by the square root of the corresponding 
eigenvalue satisfies the required conditions. As for uniqueness, since B commutes 
with P because B2 = P, it follows that if {vx,. .., vn} is a basis consisting of 
eigenvectors for P, then each vt is also an eigenvector for B. (Cf. Chapter XIV, 
Exercises 12 and 13(d).) Since a positive number has a unique positive square 
root, it follows that B is uniquely determined as the unique linear map whose 
effect on is multiplication by the square root of the corresponding eigenvalue 
for P. 

Theorem 6.9. Let A : E —> E be an invertible linear map. Then A can be 

written in a unique way as a product A = UP, where U is unitary and P is 

positive definite. 

Proof. Let P = (A*A)1/2, and let U = AP~l. Using the defiitions, it is 
immediately verified that U is unitary, so we get the existence of the decom¬ 
position. As for uniqueness, suppose A = UXPX. Let 

U2 = PPxl = u~lux. 

Then U2 is unitary, so U2U2 = /. From the fact that P* = P and P* = Pu we 
conclude that P2 = P2. Since P, Px are Hermitian positive definite, it follows 
as in Proposition 6.8 that P = Px, thus proving the theorem. 

Remark. The arguments used to prove Theorem 6.9 apply in the case of 
Hilbert space in analysis. Cf. my Real Analysis. However, for the uniqueness, 
since there may not be “eigenvalues”, one has to use another technique from 
analysis, described in that book. 

As a matter of terminology, the expression A = UP in Theorem 6.9 is called 
the polar decomposition of A. Of course, it does matter in what order we write 
the decomposition. There is also a unique decomposition A = PXUX with Px 

positive definite and Ux unitary (apply Theorem 6.9 to A~\ and then take 
inverses). 

§7. THE SPECTRAL THEOREM (SYMMETRIC CASE) 

Let E be a finite dimensional vector space over the real numbers, and let g be 

a symmetric positive definite form on E. If A : E E is a linear map, then we know 
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that its transpose, relative to g, is defined by the condition 

(Ax, y> = (x,fAy> 

for all x, ye E. We say that A is symmetric if A = lA. As before, an element 
^ g E is called an eigenvector of A if there exists A e R such that A£ = and A 
is called an eigenvalue if £ # 0. 

Theorem 7.1. (Spectral Theorem, Symmetric Case). E =£ 0. 
A : E —> E be a symmetric linear map. Then E has an orthogonal basis 

consisting of eigenvectors of A. 

Proof. If we select an orthogonal basis for the positive definite form, 
then the matrix of A with respect to this basis is a real symmetric matrix, and 
we are reduced to considering the case when E = R". Let M be the matrix repre¬ 
senting A. We may view M as operating on C", and then M represents a hermi- 
tian linear map. Let z # 0 be a complex eigenvector for M, and write 

z = x + iy, 

with x, y e R". By Proposition 6.2, we know that an eigenvalue A for Af, be¬ 
longing to z, is real, and we have Mz = Az. Hence Mx = Ax and My = Ay. 
But we must have x / 0 or y / 0. Thus we have found a nonzero eigenvector 
for M, namely, A, in E. We can now proceed as before. The orthogonal comple¬ 
ment of this eigenvector in E has dimension (n - 1), and is mapped into itself by 
A. We can therefore finish the proof by induction. 

Remarks. The spectral theorems are valid over a real closed field; our 
proofs don’t need any change. Furthermore, the proofs are reasonably close 
to those which would be given in analysis for Hilbert spaces, and compact 
operators. The existence of eigenvalues and eigenvectors must however be 
proved differently, for instance using the Gelfand-Mazur theorem which we have 
actually proved in Chapter XII, or using a variational principle (i.e. finding a 
maximum or minimum for the quadratic function depending on the operator). 

Corollary 7.2. Hypotheses being as in the theorem, there exists an ortho¬ 

normal basis consisting of eigenvectors of A. 

Proof Divide each vector in an orthogonal basis by its norm. 

Corollary 7.3. Let E be a non-zero finite dimensional vector space over the 

reals, with a positive definite symmetric form f Let g be another symmetric 

form on E. Then there exists a basis of E which is orthogonal for both f and g. 

Proof We write /(x, y) = <x, y>. Since / is non-singular, being positive 
definite, there exists a unique symmetric linear map A such that 

g(x, y) = (Ax, y> 
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for all x, ye £. We apply the theorem to A, and find a basis as in the theorem. 
It is clearly an orthogonal basis for g (cf. the same proof in the hermitian case). 

The analogues of Proposition 6.8 and the polar decomposition also hold in 
the present case, with the same proofs. See Exercise 9. 

§8. ALTERNATING FORMS 

Let £ be a vector space over the field /c, on which we now make no restriction. 
We let/be an alternating form on £, i.e. a bilinear map /: £ x £ -► /e such that 
/(x, x) = x2 = 0 for all x e £. Then 

x • y = — y • x 

for all x, y e £, as one sees by substituting (x 4- y) for x in x2 = 0. 

We define a hyperbolic plane (for the alternating form) to be a 2-dimensional 
space which is non-degenerate. We get automatically an element w such that 
w2 = 0, w ^ 0. If P is a hyperbolic plane, and w e P, w ^ 0, then there exists 
an element y =£ 0 in P such that w • y ^ 0. After dividing y by some constant, 
we may assume that w • y = 1. Then y • w = -1. Hence the matrix of the form 
with respect to the basis {w, y} is 

The pair w, y is called a hyperbolic pair as before. Given a 2-dimensional vector 
space over k with a bilinear form, and a pair of elements {w, y} satisfying the 
relations 

w2 = y2 = 0, y • w = — 1, w • y — 1, 

then we see that the form is alternating, and that (w, y) is a hyperbolic plane for 
the form. 

Given an alternating form / on £, we say that £ (or /) is hyperbolic if £ is 
an orthogonal sum of hyperbolic planes. We say that E (or f) is null if x • y = 0 
for all x, y e £. 

Theorem 8.1. Let f be an alternating form on the finite dimensional vector 
space E over k. Then E is an orthogonal sum of its kernel and a hyperbolic 
subspace. If E is non-degenerate, then E is a hyperbolic space, and its dimension 
is even. 

Proof. A complementary subspace to the kernel is non-degenerate, and 
hence we may assume that £ is non-degenerate. Let w e £, w # 0. There 
exists y e £ such that w • y # 0 and y # 0. Then (w, y) is non-degenerate, hence 
is a hyperbolic plane P. We have £ = P © P1 and P1 is non-degenerate. We 
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complete the proof by induction. 

Corollary 8.2. All alternating non-degenerate forms of a given dimension 

over afield k are isometric. 

We see from Theorem 8.1 that there exists a basis of E such that relative to 
this basis, the matrix of the alternating form is 

0 1 

-1 0 

\ 

0 1 

-1 0 

For convenience of writing, we reorder the basis elements of our orthogonal 
sum of hyperbolic planes in such a way that the matrix of the form is 

0 Ir 

Ir 0 

0 0 

where Ir is the unit r x r matrix. The matrix 

0 lr 

-K 0 

is called the standard alternating matrix. 

Corollary 8.3. Let E be a finite dimensional vector space over k, with a 

non-degenerate symmetric form denoted by { , ). Let El be a non-de¬ 

generate alternating form on E. Then there exists a direct sum decomposition 

E = Ex © E2 and a symmetric automorphism A of E (with respect to { , )) 
having the following property. If x, y e E are written 

x = (x1? x2) with xleE1 and x2e£2> 

y = (yuyi) with y1eEl and 
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then 

0(x, y) = (Axu y2> - <Ax29y1}. 

Proof. Take a basis of E such that the matrix of Q with respect to this basis 
is the standard alternating matrix. Let / be the symmetric non-degenerate 
form on E given by the dot product with respect to this basis. Then we obtain 
a direct sum decomposition of E into subspaces Eu E2 (corresponding to the 
first n, resp. the last n coordinates), such that 

0(x, y) =/(x1, y2) -/(x2,y1). 

Since < , > is assumed non-degenerate, we can find an automorphism A having 
the desired effect, and A is symmetric because/is symmetric. 

§9. THE PFAFFIAN 

An alternating matrix is a matrix G such that rG = — G and the diagonal 
elements are equal to 0. As we saw in Chapter XIII, §6, it is the matrix of an 
alternating form. We let G be an n x n matrix, and assume n is even. (For odd 
n, cf. exercises.) 

We start over a field of characteristic 0. By Corollary 8.2, there exists a non¬ 
singular matrix C such that lCGC is the matrix 

/ 0 
K °\ 

Hr 0 
0 

\ 0 0 0/ 

and hence 

det(C)2 det(G) = 1 or 0 

according as the kernel of the alternating form is trivial or non-trivial. Thus in 
any case, we see that det(G) is a square in the field. 

Now we move over to the integers Z. Let r0- (1 ^ i < j ^ n) be n(n — l)/2 
algebraically independent elements over Q, let tu = 0 for i = 1,..., n, and let 
ttj = —tji for i > j. Then the matrix T = (r,y) is alternating, and hence det(T) 
is a square in the field Q(t) obtained from Q by adjoining all the variables tu. 

However, det(T) is a polynomial in Z[f], and since we have unique factorization 
in Z[r], it follows that det(T) is the square of a polynomial in Z[r]. We can write 

det(T) = P(t)2. 

The polynomial P is uniquely determined up to a factor of + 1. If we substitute 
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values for the ti} so that the matrix T specializes to 

then we see that there exists a unique polynomial P with integer coefficients 
taking the value 1 for this specialized set of values of (t). We call P the generic 
Pfaffian of size n, and write it Pf. 

Let R be a commutative ring. We have a homomorphism 

ZM - Rit] 

induced by the unique homomorphism of Z into R. The image of the generic 
Pfaffian of size n in R[t] is a polynomial with coefficients in R, which we still 
denote by Pf. If G is an alternating matrix with coefficients in R, then we write 
Pf(G) for the value of Pf(0 when we substitute gtj for tu in Pf. Since the deter¬ 
minant commutes with homomorphisms, we have: 

Theorem 9.1. Let R be a commutative ring. Let (gtj) = G be an alternating 

matrix with gtj e R. Then 

det(G) = (Pf(G))2. 

Furthermore, if C is an n x n matrix in R, then 

Pf(CG'C) = det(C) Pf(G). 

Proof The first statement has been proved above. The second statement 
will follow if we can prove it over Z. Let (/, j = 1,..., n) be algebraically 
independent over Q, and such that uip t{j are algebraically independent over Q. 
Let U be the matrix (wl7). Then 

Pf(UrU) = ± det(G) Pf(T), 

as follows immediately from taking the square of both sides. Substitute values 
for U and T such that U becomes the unit matrix and T becomes the standard 
alternating matrix. We conclude that we must have a + sign on the right-hand 
side. Our assertion now follows as usual for any substitution of U to a matrix in 
R, and any substitution of T to an alternating matrix in R, as was to be shown. 

§10. WITT’S THEOREM 

We go back to symmetric forms and we let k be a field of characteristic =£ 2. 
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Let £ be a vector space over /c, with a symmetric form. We say that £ is a 
hyperbolic plane if the form is non-degenerate, if £ has dimension 2, and if there 
exists an element w # 0 in £ such that w2 = 0. We say that £ is a hyperbolic 
space if it is an orthogonal sum of hyperbolic planes. We also say that the form 
on £ is hyperbolic. 

Suppose that £ is a hyperbolic plane, with an element w # 0 such that 
w2 = 0. Let u e £ be such that £ = (w, u). Then u • w # 0; otherwise w would 
be a non-zero element in the kernel. Let bekbe such that w -bu = bw -u = 1. 

Then select ask such that 

(aw + bu)2 = 2abw • u + b2u2 = 0. 

(This can be done since we deal with a linear equation in a.) Put v = aw -f bu. 

Then we have found a basis for £, namely £ = (w, v) such that 

w2 = v2 = 0 and w ■ v = 1. 

Relative to this basis, the matrix of our form is therefore 

(::> 
We observe that, conversely, a space £ having a basis {w, v} satisfying 

w2 = v2 = 0 and w • v = 1 is non-degenerate, and thus is a hyperbolic plane. A 
basis {w, i;} satisfying these relations will be called a hyperbolic pair. 

An orthogonal sum of non-degenerate spaces is non-degenerate and hence 
a hyperbolic space is non-degenerate. We note that a hyperbolic space always 
has even dimension. 

Lemma 10.1. Let E be a finite dimensional vector space over k, with a non¬ 

degenerate symmetric form g. Let F be a subspace, F0 the kernel of F, and 

suppose we have an orthogonal decomposition 

F=F0 1 U. 

Let {w1?..., ws} be a basis of £0. Then there exist elements vu ..., vs in E 

perpendicular to V, such that each pair {wf, v(} is a hyperbolic pair generating 

a hyperbolic plane Ph and such that we have an orthogonal decomposition 

U IP, 1 •••!£,. 

Proof Let 

U! = (w2,..., wj® U. 

Then U, is contained in £0 © U properly, and consequently (£0 ® U)1 is 
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contained in Uf properly. Hence there exists an element ux e but 

Uit(F0® U)\ 

We have wt •ui # 0, and hence (w^i^) is a hyperbolic plane Pj. We have 
seen previously that we can find vx e Pl such that {wu vx} is a hyperbolic pair. 
Furthermore, we obtain an orthogonal sum decomposition 

Fi = (w2,..., ws) 1 Pt 1 U. 

Then it is clear that (w2,..., ws) is the kernel of Fu and we can complete the 
proof by induction. 

Theorem 10.2 Let E be a finite dimensional vector space over k, and let g 

be a non-degenerate symmetric form on E. Let F, F' be subspaces of E, and 

let a: F —> F' be an isometry. Then <x can be extended to an isometry of E onto 

itself. 

Proof. We shall first reduce the proof to the case when F is non-degenerate. 
We can write F = F0 1 U as in the lemma of the preceding section, and 

then oF = F' = gF0 1 oU. Furthermore, oF0 = F'0 is the kernel of F'. Now 
we can enlarge both F and F' as in the lemma to orthogonal sums 

U 1 Px 1 • • • 1 Ps and gU _L P\ _L • • • _L P's 

corresponding to a choice of basis in F0 and its corresponding image in F'0. 

Thus we can extend o to an isometry of these extended spaces, which are non¬ 
degenerate. This gives us the desired reduction. 

We assume that F, F' are non-degenerate, and proceed stepwise. 
Suppose first that F' = F, i.e. that g is an isometry of F onto itself. We can 

extend g to E simply by leaving every element of F1 fixed. 
Next, assume that dim F = dim F' = 1 and that F # F'. Say F = (v) and 

F' = (i/). Then v2 = v'2. Furthermore, (v, v') has dimension 2. 
If (v, v') is non-degenerate, it has an isometry extending cr, which maps v on 

v' and v* on v. We can apply the preceding step to conclude the proof. 
If (i>, v') is degenerate, its kernel has dimension 1. Let w be a basis for this 

kernel. There exist a,bek such that v> = av + bw. Then v'2 = a2v2 and hence 
a = ± 1. Replacing v by ~v' if necessary, we may assume a = 1. Replacing w 
by bw, we may assume vr = v + w. Let z = v + v\ We apply Lemma 10.1 to 
the space 

(w, z) = (w) 1 (z). 

We can find an element y e E such that 

y • z = 0, y2 = 0, and w • y = 1. 
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The space (z, w, y) = (z) 1 (w, y) is non-degenerate, being an orthogonal sum 
of (z) and the hyperbolic plane (w, y). It has an isometry such that 

z z, vv <—> — w, y <-► — y. 

But v = }(z - w) is mapped on v' = j(z 4- w) by this isometry. We have 
settled the present case. 

We finish the proof by induction. By the existence of an orthogonal basis 
(Theorem 3.1), every subspace F of dimension > 1 has an orthogonal de¬ 
composition into a sum of subspaces of smaller dimension. Let F = Fj 1 F2 
with dim F{ and dim F2 ^ L Then 

oF = oF{ _L gF 2. 

Let al = g\F1 be the restriction of g to Fv By induction, we can extend ox to 
an isometry 

ctj : E -> E. 

Then dfFl) = (tfiFj)1. Since gF2 is perpendicular to cjF1 = g1F1, it follows 
that oF2 is contained in a^Fl). Let o2 = cr|F2- Then the isometry 

G 2 ' F 2 ^ G 2 F 2 = gF 2 

extends by induction to an isometry 

52\F\ - 

The pair (pu d2) gives us an isometry of Fx 1 F} = E onto itself, as desired. 

Corollary 10.3. Let Ey E' be finite dimensional vector spaces with non¬ 

degenerate symmetric forms, and assume that they are isometric. Let F, F' be 

subspaces, and let a:F —> F' be an isometry. Then a can be extended to an 

isometry of E onto E\ 

Proof Clear. 

Let E be a space with a symmetric form g, and let F be a null subspace. 
Then by Lemma 10.1, we can embed F in a hyperbolic subspace H whose 
dimension is 2 dim F. 

As applications of Theorem 10.2, we get several corollaries. 

Corollary 10.4. Let E be a finite dimensional vector space with a non¬ 

degenerate symmetric form. Let W be a maximal null subspace, and let W' be 

some null subspace. Then dim W' ^ dim W, and W' is contained in some 

maximal null subspace, whose dimension is the same as dim W. 
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Prooj. That W' is contained in a maximal null subspace follows by Zorn’s 
lemma. Suppose dim W’ ^ dim W. We have an isometry ofW onto a subspace 
of W' which we can extend to an isometry of E onto itself. Then a~ l(W’) is a 
null subspace containing W, hence is equal to W9 whence dim W = dim W'. 

Our assertions follow by symmetry. 

Let £ be a vector space with a non-degenerate symmetric form. Let W be a 
null subspace. By Lemma 10.1 we can embed W in a hyperbolic subspace H of 
E such that W is the maximal null subspace of //, and H is non-degenerate. Any 
such H will be called a hyperbolic enlargement of W. 

Corollary 10.5. Let E be a finite dimensional vector space with a non¬ 

degenerate symmetric form. Let W and W' be maximal null subspaces. Let H> 

H' be hyperbolic enlargements ofW, W' respectively. ThenH, H’ are isometric 

and so are H1 and H,J-. 

Proof. We have obviously an isometry of H on H\ which can be extended 
to an isometry of E onto itself. This isometry maps H1 on H’1, as desired. 

Corollary 10.6. Let glt g 2, h be symmetric forms on finite dimensional vector 

spaces over the field of k. If g{ © h is isometric to g2 © h, and if glt g2 are 

non-degenerate, then gx is isometric to g2. 

Proof. Let gx be a form on Ex and g2 a form on E2. Let h be a form on F. 

Then we have an isometry between F © Ex and F © E2. Extend the identity 

id : F —> F to an isometry a of F © Ex to F © E2 by Corollary 10.3. Since Ex 

and E2 are the respective orthogonal complements of F in their two spaces, we 
must have cr(Ex) = E29 which proves what we wanted. 

If g is a symmetric form on £, we shall say that g is definite if g(x, x) =£ 0 
for any x e £, x =£ 0 (i.e. x2 ± 0 if x =£ 0). 

Corollary 10.7. Let g be a symmetric form on E. Then g has a decomposition 

as an orthogonal sum 

9 90 © 9hyp © 9de( 

where g0 is a null form, ghyp is hyperbolic, and gde( is definite. The form 

0hyp®0def is non-degenerate. The forms g0, ghyp9 and gde{ are uniquely 

determined up to isometries. 

Proof. The decomposition g = g0 © gx where g0 is a null form and gx 

is non-degenerate is unique up to an isometry, since g0 corresponds to the 
kernel of g. 

We may therefore assume that g is non-degenerate. If 

9 = 9h © 9d 
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where gh is hyperbolic and gd is definite, then gh corresponds to the hyperbolic 
enlargement of a maximal null subspace, and by Corollary 10.5 it follows that 
gh is uniquely determined. Hence gd is uniquely determined as the orthogonal 
complement of gh. (By uniquely determined, we mean of course up to an 
isometry.) 

We shall abbreviate ghyp by gh and gde( by gd. 

§11. THE WITT GROUP 

Let g9 (p by symmetric forms on finite dimensional vector spaces over k. We 
shall say that they are equivalent if gd is isometric to <pd. The reader will verify 
at once that this is an equivalence relation. Furthermore the (orthogonal) sum 
of two null forms is a null form, and the sum of two hyperbolic forms is hyperbolic. 
However, the sum of two definite forms need not be definite. We write our 
equivalence g ~ (p. Equivalence is preserved under orthogonal sums, and hence 
equivalence classes of symmetric forms constitute a monoid. 

Theorem 11.1. The monoid of equivalence classes of symmetric forms (over 

the field k) is a group. 

Proof We have to show that every element has an additive inverse. Let g 

be a symmetric form, which we may assume definite. We let — g be the form 
such that (—g)(x, y) = — g(x, y). We contend that g © — g is equivalent to 0. 
Let E be the space on which g is defined. Then g © — g is defined on E © E. 

Let W be the subspace consisting of all pairs (x, x) with x e E. Then W is a null 
space for g © — g. Since dim(£ © E) = 2 dim W, it follows that W is a maximal 
null space, and that g © — g is hyperbolic, as was to be shown. 

The group of Theorem 11.1 will be called the Witt group of k, and will be 
denoted by W(k). It is of importance in the study of representations of elements 
of k by the quadratic form /arising from g [i.e. f(x) = g(x9 x)], for instance 
when one wants to classify the definite forms /. 

We shall now define another group, which is of importance in more functorial 
studies of symmetric forms, for instance in studying the quadratic forms arising 
from manifolds in topology. 

We observe that isometry classes of non-degenerate symmetric forms (over 
k) constitute a monoid M(fc), the law of composition being the orthogonal sum. 
Furthermore, the cancellation law holds (Corollary 10.6). We let 

cl: M(k) - WG(k) 
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be the canonical map of M(k) into the Grothendieck group of this monoid, 
which we shall call the Witt-Grothendieck group over k. As we know, the 
cancellation law implies that cl is injective. 

If g is a symmetric non-degenerate form over /c, we define its dimension 
dim g to be the dimension of the space E on which it is defined. Then it is clear 
that 

dim(g © g') = dim g + dim g'. 

Hence dim factors through a homomorphism 

dim : WG(k) - Z. 

This homomorphism splits since we have a non-degenerate symmetric form of 
dimension 1. 

Let WG0(k) be the kernel of our homomorphism dim. If g is a symmetric 
non-degenerate form we can define its determinant det(g) to be the determinant 
of a matrix G representing g relative to a basis, modulo squares. This is well 
defined as an element of k*/k*2. We define det of the 0-form to be 1. Then det is 
a homomorphism 

det:M(/c)-/c*//c*2, 

and can therefore be factored through a homomorphism, again denoted by 
det, of the Witt-Grothendieck group, det: WG(k) -► k*/k*2. 

Other properties of the Witt-Grothendieck group will be given in the 
exercises. 

EXERCISES 

1. (a) Let £ be a finite dimensional space over the complex numbers, and let 

h:E x £-C 

be a hermitian form. Write 

Kx,y) = g(x,y) + i/(x, y) 

where g, / are real valued. Show that g, / are R-bilinear, g is symmetric, / is 

alternating. 
(b) Let £ be finite dimensional over C. Let g: £ x £ -► C be R-bilinear. Assume 

that for all xe£, the map y g(x, y) is C-linear, and that the R-bilinear form 

/(x, y) = g(x, y) - g(y, x) 
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is real-valued on £ x E. Show that there exists a hermitian form h on E and a 
symmetric C-bilinear form ^ on £ such that 2ig = h -I- ip. Show that h and ^ are 

uniquely determined. 

2. Prove the real case of the unitary spectral theorem: If £ is a non-zero finite dimensional 
space over R, with a positive definite symmetric form, and U: £ -► £ is a unitary linear 
map, then £ has an orthogonal decomposition into subspaces of dimension 1 or 2, 

invariant under U. If dim E = 2, then the matrix of U with respect to any ortho¬ 

normal basis is of the form 

/cos 6 -sin0\ /—I O\/cos0 -sin0\ 

\sin 6 cos 6/ \ 0 l/\sin0 cos 0/ 

depending on whether det(U) = 1 or — 1. Thus U is a rotation, or a rotation followed 

by a reflection. 

3. Let E be a finite-dimensional, non-zero vector space over the reals, with a positive 
definite scalar product. Let £:£-►£ be a unitary automorphism of £. Show that E 
is an orthogonal sum of subspaces 

£ = £,!•.-!Em 

such that each £, is T-invariant, and has dimension 1 or 2. If £ has dimension 2, show 
that one can find a basis such that the matrix associated with T with respect to this 

basis is 

cos0 -sinfA /-cos 6 sin 6 

sin 6 cos 6/ \ sin 6 cos 6 

according as det T = 1 or det T = — 1. 

4. Let £ be a finite dimensional non-zero vector space over C, with a positive definite 
hermitian product. Let A, £:£—»£ be a hermitian endomorphism. Assume that 
AB = BA. Prove that there exists a basis of £ consisting of common eigenvectors 

for A and B. 

5. Let £ be a finite-dimensional space over the complex, with a positive definite hermitian 
form. Let S be a set of (C-linear) endomorphisms of £ having no invariant subspace 
except 0 and £. (This means that if £ is a subspace of £ and BF cz F for all fleS, then 
£ = 0 or £ = £.) Let A be a hermitian map of £ into itself such that AB = BA for all 
BeS. Show that A = M for some real number X. [Hint: Show that there exists 
exactly one eigenvalue of A. If there were two eigenvalues, say Xx # A2, one could find 
two polynomials / and g with real coefficients such that f(A) ^ 0, g(A) ^ 0 but 
f(A)g(A) = 0. Let £ be the kernel of g(A) and get a contradiction.] 

6. Let £ be as in Exercise 5. Let T be a C-linear map of £ into itself. Let 

A = j(T 4- £*). 

Show that A is hermitian. Show that T can be written in the form A 4- iB where A, B 
are hermitian, and are uniquely determined. 

7. Let S be a commutative set of C-linear endomorphisms of £ having no invariant sub¬ 
space unequal to 0 or £. Assume in addition that if BeS, then B* e S. Show that each 
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element of S is of type olI for some complex number a. [Hint : Let B0 e S. Let 

A = j(Bq -i- B*). 

Show that A = XI for some real A.] 

8. An endomorphism B of E is said to be normal if B commutes with B*. State and prove a 
spectral theorem for normal endomorphisms. 

Symmetric endomorphisms 

For Exercises 9, 10 and 11 we let E be a non-zero finite dimensional vector space over 

R, with a symmetric positive definite scalar product g, which gives rise to a norm \ \ on E. 

Let A : E —> E be a symmetric endomorphism of E with respect to g. Define A ^ 0 
to mean (Ax, x) ^ 0 for all x E E. 

9. (a) Show that A ^ 0 if and only if all eigenvalues of A belonging to non-zero 
eigenvectors are ^ 0. Both in the hermitian case and the symmetric case, one 
says that A is semipositive if A ^ 0, and positive definite if (Ax, x) > 0 for all 
jc 0. 

(b) Show that an automorphism A of E can be written in a unique way as a product 
A = UP where U is real unitary (that is, {UU = /), and P is symmetric positive 
definite. For two hermitian or symmetric endomorphisms A, P, define A ^ B to 
mean A - B ^ 0, and similarly for A > B. Suppose A > 0. Show that there are 

two real numbers a > 0 and (3 > 0 such that al ^ A ^ pi. 

10. If A is an endomorphism of E, define its norm | A | to be the greatest lower bound of 
all numbers C such that |Ax| ^ C\x\ for all x E E. 

(a) Show that this norm satisfies the triangle inequality. 
(b) Show that the series 

exp(A) = / + A + + • ‘ • 

converges, and if A commutes with B, then exp(A + B) = exp(A) exp(P). 
If A is sufficiently close to /, show that the series 

log(A)=^-^+... 

converges, and if A commutes with B, then 

log(A£) = log A 4- log B. 

(c) Using the spectral theorem, show how to define log P for arbitrary positive 
definite endomorphisms P. 

11. Again, let E be non-zero finite dimensional over R, and with a positive definite 
symmetric form. Let A : E —> E be a linear map. Prove: 

(a) If A is symmetric (resp. alternating), then exp(A) is symmetric positive definite 
(resp. real unitary). 

(b) If A is a linear automorphism of E sufficiently close to /, and is symmetric 
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positive definite (resp. real unitary), then log A is symmetric (resp. 
alternating). 

(c) More generally, if A is positive definite, then log A is symmetric. 

12. Let R be a commutative ring, let E, F be E-modules, and let/: E -> F be a mapping. 
Assume that multiplication by 2 in F is an invertible map. Show that/is homogeneous 
quadratic if and only if/satisfies the parallelogram law: 

fix + y) + fix -y) = 2fix) + 2f(y) 

for all x, y e E. 

13. (Tate) Let E, F be complete normed vector spaces over the real numbers. Let 
/: E -* F be a map having the following property. There exists a number C > 0 such 
that for all x, y e E we have 

I fix + y) -/(*) -/(y)l ^ c. 

Show that there exists a unique additive map g \ E^>F such that |g - f\ is bounded 
(i.e. | g(x) - fix) | is bounded as a function of x). Generalize to the bilinear case. [Hint: 
Let 

g(x) = lim 
n~* oo 

/(2"x) 

2" 

14. (Tate) Let S be a set and f:S —> S a map of S into itself. Let h:S —» R be a real 
valued function. Assume that there exists a real number d > 1 such that h of - df 

is bounded. Show that there exists a unique function hf such that hf - h is bounded, 
and hf°f = dhf. [Hint: Let hf{x) = lim h(fnix))/dn.] 

15. Define maps of degree > 2, from one module into another. [Hint: For degree 3, 

consider the expression 

f(x + y + z) -f(x + y) -/(x + z) -f(y + z) +/(x) + /(}’) +/(z).] 

Generalize the statement proved for quadratic maps to these higher-degree maps, i.e. 
the uniqueness of the various multilinear maps entering into their definitions. 

Alternating forms 

16. Let E be a vector space over a field k and let g be a bilinear form on E. Assume that 
whenever x,ye E are such that g(x, y) = 0, then g(y, x) = 0. Show that g is symmetric 
or alternating. 

17. Let E be a module over Z. Assume that E is free, of dimension n ^ 1, and let /be a 
bilinear alternating form on E. Show that there exists a basis {eJ (i = 1,..., n) and 
an integer r such that 2r ^ w, 

*e2 = <*1, ^3^4 = 02, • • • , &2r— 1 *^2r = 0r 

where Aj,..., ar e Z, a, ^ 0, and <2, divides ai+ { for i = 1,..., r — 1 and finally 
et • ej; = 0 for all other pairs of indices i ^ j. Show that the ideals Za, are uniquely 
determined, [ifmt: Consider the injective homomorphism (pf:E^EvofE into the 
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dual space over Z, viewing (pf(E) as a free submodule of £v.]. Generalize to principal 
rings when you know the basis theorem for modules over these rings. 

Remark. A basis as in Exercise 18 is called a symplectic basis. For one use of 
such a basis, see the theory of theta functions, as in my Introduction to Algebraic and 

Abelian Functions (Second Edition, Springer Verlag), Chapter VI, §3. 

18. Let E be a finite-dimensional vector space over the reals, and let < , > be a symmetric 
positive definite form. Let Q be a non-degenerate alternating form on E. Show that 
there exists a direct sum decomposition 

E = Ex © E2 

having the following property. If x, y e E are written 

x = (xj, x2) with x{eEi and x2e£2, 

y = (yiiyi) with yxeEx and y2e£2, 

then fl(x, y) = (x,, y2) - (x2, yx). [Hint: Use Corollary 8.3, show that A is positive 
definite, and take its square root to transform the direct sum decomposition obtained 
in that corollary.] 

19. Show that the pfaffian of an alternating n x n matrix is 0 when n is odd. 

20. Prove all the properties for the pfaffian stated in Artin’s Geometric Algebra (Inter¬ 

science, 1957), p. 142. 

The Witt group 

21. Show explicitly how W(k) is a homomorphic image of WG(k). 

22. Show that WG(k) can be expressed as a homomorphic image of Z[k*/k*2~\ [Hint: 

Use the existence of orthogonal bases.] 

23. Witt’s theorem is still true for alternating forms. Prove it or look it up in Artin (ref. 
in Exercise 20). 

sL„m 

There is a whole area of linear algebraic groups, giving rise to an extensive algebraic 
theory as well as the possibility of doing Fourier analysis on such groups. The group 
SLn(R) (or SLn(C)) can serve as a prototype, and a number of basic facts can be easily 
verified. Some of them are listed below as exercises. Readers wanting to see solutions can 
look them up in [JoL 01], Spherical Inversion on SLn(R), Chapter I. 

24. Iwasawa decomposition. We start with GLn(R). Let: 

G = GLn( R); 

K = subgroup of real unitary n x n matrices; 

U = group of real unipotent upper triangular matrices, that is having components 1 
on the diagonal, arbitrary above the diagonal, and 0 below the diagonal; 
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A = group of diagonal matrices with positive diagonal components. 

Prove that the product map U x A x K UAK c= G is actually a bijection. This 
amounts to Gram-Schmidt orthogonalization. Prove the similar statement in the 
complex case, that is, for G(C) = GLn(C), X(C) = complex unitary group, U(C) = 
complex unipotent upper triangular group, and A the same group of positive diag¬ 

onal matrices as in the real case. 

25. Let now G = SLn(R), and let K, A be the corresponding subgroups having deter¬ 
minant 1. Show that the product U x A x K —► UAK again gives a bijection with G. 

26. Let a be the R-vector space of real diagonal matrices with trace 0. Let av be the 
dual space. Let a, (i = 1,..., n - 1) be the functional defined on an element H — 
diag(/2i,. by a,(//) — h( - hi+ j. (a) Show that {oci,..., a„_i} is a basis of av 
over R. (b) Let Hi i+\ be the diagonal matrix with hi — 1, hi+ \ = -1, and hj = 0 
for y#/,/+1. Show that • •., is a basis of a. (c) Abbreviate 
Hi i+\ — Hi (i = 1,... ,n - 1). Let ql[ e a v be the functional such that a/(//,) = Sy 
(=1 if i=j and 0 otherwise). Thus {aj,..., a'_,} is the dual basis of 
{Hi,..., //„_i}. Show that 

ot'i(H) = h\ + • • • + hi. 

27. The trace form. Let Mat„(R) be the vector space of real n x n matrices. Define the 
twisted trace form on this space by 

Bt(X, Y) = tv(XtY) = {Xy F>,. 

As usual, 1Y is the transpose of a matrix Y. Show that Bt is a symmetric positive 
definite bilinear form on Mat„(R). What is the analogous positive definite hermitian 
form on Mat„(C)? 

28. Positivity. On a (real diagonal matrices with trace 0) the form of Exercise 27 can be 
defined by tr(XY), since elements X} Y e a are symmetric. Let stf = {aj,..., a„_i} 
denote the basis of Exercise 26. Define an element H e a to be semipositive (writen 
H ^ 0) if ai(H) ^ 0 for all i = 1,1. For each a e a v, let i/a e a represent a 
with respect to Bt, that is <//„,//) = <x(H) for all H e a. Show that H ^ 0 if and 
only if 

n— 1 

H = J2 SiHa> with Si ^ 0. 
i=i 

Similarly, define H to be positive and formulate the similar condition with st > 0. 

29. Show that the elements not' (/ = 11) can be expressed as linear combina¬ 
tions of oti,..., a„_i with positive coefficients in Z. 

30. Let W be the group of permutations of the diagonal elements in the vector space a of 
diagonal matrices. Show that a^o is a fundamental domain for the action of W on a 
(i.e., given H e a, there exists a unique H+ ^ 0 such that H+ = wH for some 
w e W. 



CHAPTER XVI 
The Tensor Product 

Having considered bilinear maps, we now come to multilinear maps and basic 
theorems concerning their structure. There is a universal module representing 
multilinear maps, called the tensor product. We derive its basic properties, and 
postpone to Chapter XIX the special case of alternating products. The tensor 
product derives its name from the use made in differential geometry, when this 
product is applied to the tangent space or cotangent space of a manifold. The 
tensor product can be viewed also as providing a mechanism for “extending the 
base”; that is, passing from a module over a ring to a module over some algebra 
over the ring. This “extension” can also involve reduction modulo an ideal, 
because what matters is that we are given a ring homomorphism /: A —> £, and 
we pass from modules over A to modules over B. The homomorphism /can be 
of both types, an inclusion or a canonical map with B = A/J for some ideal J, 

or a composition of the two. 
I have tried to provide the basic material which is immediately used in a 

variety of applications to many fields (topology, algebra, differential geometry, 
algebraic geometry, etc.). 

§1. TENSOR PRODUCT 

Let R be a commutative ring. If Eu F are modules, we denote by 

Ln(El, F) 

the module of n-multilinear maps 

f\Ex x ••• x E„-F. 

601 
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We recall that a multilinear map is a map which is linear (i.e., F-linear) in each 
variable. We use the words linear and homomorphism interchangeably. Unless 

otherwise specified, modules, homomorphisms, linear, multilinear refer to the ring R. 

One may view the multilinear maps of a fixed set of modules Eu ...,£„ as the 
objects of a category. Indeed, if 

f:Ex x ••• x En-> F and g: Ex x ••• x En-> G 

are multilinear, we define a morphism / -► <7 to be a homomorphism h: F -► G 
which makes the following diagram commutative: 

x • • • x 

F 

h 

G 

A universal object in this category is called a tensor product of El9...9En 

(over R). 

We shall now prove that a tensor product exists, and in fact construct one in a 
natural way. By abstract nonsense, we know of course that a tensor product is 
uniquely determined, up to a unique isomorphism. 

Let M be the free module generated by the set of all n-tuples (xj,..., x„), 
(XfGFj), i.e. generated by the set Ex x ••• x En. Let N be the submodule 
generated by all the elements of the following type: 

(Xj, ..., x, + xj,..., x„) - (x1?..., xi9..., x„) - (Xj, .. 

(x1,...,axi,...,xw) - a(xj,...,xn) 

Xj > • • * > Xn) 

for all X/ e Ei9 x'i e E{9 aeR. We have the canonical injection 

Fj x ••• x En-> M 

of our set into the free module generated by it. We compose this map with the 
canonical map M -► M/N on the factor module, to get a map 

(p :Ex x • • • x En —► M/N. 

We contend that cp is multilinear and is a tensor product. 
It is obvious that q> is multilinear—our definition was adjusted to this 

purpose. Let 

f:El x - x En-> G 

be a multilinear map. By the definition of free module generated by 

Et x • • • x En 



XVI, §1 TENSOR PRODUCT 603 

we have an induced linear map M -► G which makes the following diagram 
commutative: 

M 

£1 x • • • x En 

Since/is multilinear, the induced map M -► G takes on the value 0 on N. Hence 
by the universal property of factor modules, it can be factored through M/N, 
and we have a homomorphism /* : M/N -► G which makes the following dia¬ 
gram commutative: 

E i x ■ • • x 

M/N 

G 

Since the image of cp generates M/N, it follows that the induced map /* is 
uniquely determined. This proves what we wanted. 

The module M/N will be denoted by 

n 

Ei® •••&£„ or also (X)Ef. 
i = 1 

We have constructed a specific tensor product in the isomorphism class of tensor 
products, and we shall call it the tensor product of Eu ..., En. If x, e Eh we write 

<P(Xu • • • , Xn) = Xj ® • • • ® Xn = Xj ®R • • • x„. 

We have for all i, 

Xi ® • • • ® ax,- ® ® xn = a(xx ® ® x„), 

Xi ® • • • ® (Xj + xj) ® • • • ® Xn 

= (X! ® • * * ® X„) + (Xi ® • • • ® x'i ® • • • ® X„) 

for xf, xjeEi and as R. 

If we have two factors, say E ® F, then every element of E (x) F can be 
written as a sum of terms x (x) y with x £ E and y £ F, because such terms generate 
E (x) E over k, and «(x ® y) = ax ® y for a £ E. 
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Remark. If an element of the tensor product is 0, then that element can 
already be expressed in terms of a finite number of the relations defining the 
tensor product. Thus if £ is a direct limit of submodules £, then 

lim F ® Et = F ® lim E{■ = F ® E. 

In particular, every module is a direct limit of finitely generated submodules, 
and one uses frequently the technique of testing whether an element of F ® E is 
0 by testing whether the image of this element in F ® £, is 0 when £, ranges over 
the finitely generated submodules of £. 

Warning. The tensor product can involve a great deal of collapsing between 
the modules. For instance, take the tensor product over Z of Z/mZ and Z/nZ 
where m, n are integers > 1 and are relatively prime. Then the tensor product 

Z/nZ ® Z/mZ = 0. 

Indeed, we have n(x ® y) = (nx) ® y = 0 and m(x ® y) = x ® my = 0. Hence 
x ® y = 0 for all x e Z/nZ and y e Z/mZ. Elements of type x (x) y generate the 
tensor product, which is therefore 0. We shall see later conditions under which 
there is no collapsing. 

In many subsequent results, we shall assert the existence of certain linear 
maps from a tensor product. This existence is proved by using the universal 
mapping property of bilinear maps factoring through the tensor product. The 
uniqueness follows by prescribing the value of the linear maps on elements of 
type x (x) y (say for two factors) since such elements generate the tensor product. 

We shall prove the associativity of the tensor product. 

Proposition 1.1. Let El9 E2, E3 be modules. Then there exists a unique 

isomorphism 

(£j ® E2) ® E3 -► E{ (x) (E2 (x) E3) 

such that 

(x ® y) ® zh-> x ® (y (x) z) 

for x e Eu ye E2 and ze E3. 

Proof Since elements of type (x ® y) ® z generate the tensor product, the 
uniqueness of the desired linear map is obvious. To prove its existence, let 
xeEx. The map 

Xx: E2 x E3 -► (El ® E2) ® E3 
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such that Xx(y\ z) = (x ® y) ® z is clearly bilinear, and hence factors through a 
linear map of the tensor product 

lx: E2 <8> £3 -► (E1 ® E2) ® £3. 

The map 

£1 x (£2 (g) £3) -► (£t (8) £2) (8) £3 

such that 

(x, a) 1 * Ix(a) 

for xe£! and a g£2 (x) £3 is then obviously bilinear, and factors through a 
linear map 

£1 ® (£2 ® £3) -► (£1 ® £2) ® £3» 

which has the desired property (clear from its construction). 

Proposition 1.2. Let £, F be modules. Then there is a unique isomorphism 

E (8) £ -► F (8) £ 

such x (8) y 1—► T ® x for xe E and yeF. 

Proof The map £ x £ -► F (8) £ such that (x, y) f—► y (8) x is bilinear, and 
factors through the tensor product £ ® £, sending x (8) T on y (8) x. Since this 
last map has an inverse (by symmetry) we obtain the desired isomorphism. 

The tensor product has various functorial properties. First, suppose that 

/ : El -► £f (f = 1.n) 

is a collection of linear maps. We get an induced map on the product, 

n/^n^n*,- 
If we compose { ] /’■ with the canonical map into the tensor product, then we get 
an induced linear map which we may denote by T(fu which makes the 
following diagram commutative: 

E\ x ■■■ x E’„-» E\®---®E'n 

ns, nr,. ./.> 

£1 X ••• X E„-► El (8) •••(8)£„ 
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It is immediately verified that T is functorial, namely that if we have a com¬ 
posite of linear maps f © gt (i = 1,..., n) then 

T(fl ° 0i, ° 0„) = T(fu ■ ■ ■ , /») ° T’Cfi'l, • • • , 0») 

and 

T(id,..., id) = id. 

We observe that T(fl9...9fn) is the unique linear map whose effect on an 
element x\ ® • • • ® of E\ ® • • • ® E'n is 

x;i (x) • • • ® x; /i(xi) ® • • • ® /„(x;>. 

We may view T as a map 

fl £,) - i/(g) E'19®e\ 
i=l \i= 1 i = l / 

and the reader will have no difficulty in verifying that this map is multilinear. 
We shall write out what this means explicitly for two factors, so that our map can 
be written 

Given homomorphisms f:F’->F and gl9 g2: E' -► F, then 

T(f,g1+g2)-T(f,gl)+T<J,g2\ 

T(f, ag1) = aT(f, Sl). 

In particular, select a fixed module F, and consider the functor t = xF (from 
modules to modules) such that 

t(F) = F ® E. 

Then t gives rise to a linear map 

t:L(F', E) -> L(t(F'), t(F)) 

for each pair of modules F', F, by the formula 

t(/)= T(id,/). 

Remark. By abuse of notation, it is sometimes convenient to write 

fi®---® ftt instead of T(fu ... 
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This should not be confused with the tensor product of elements taken in the 
tensor product of the modules 

L(EfuE1)®--®L(Efn9Enl 

The context will always make our meaning clear. 

§2. BASIC PROPERTIES 

The most basic relation relating linear maps, bilinear maps, and the tensor 
product is the following: For three modules F, F, G, 

L(F, L(F, G)) « L2(F, F; G) « L(E (x) F, G). 

The isomorphisms involved are described in a natural way. 

(i) L\E, F,G) - L(E, L(F, G)). 

If /: £ x F -► G is bilinear, and xe E, then the map 

fx'F^G 

such that fx(y) = /(x, y) is linear. Furthermore, the map xh fx is linear, and 
is associated with / to get (i). 

(ii) L(F, L(F, G)) -► L2(F, F; G). 

Let <p e L(F, L(F, G)). We let : E x F -► G be the bilinear map such that 

/*(*, y) = p(*)00- 

Then defines (ii). 
It is clear that the homomorphisms of (i) and (ii) are inverse to each other 

and therefore give isomorphisms of the first two objects in the enclosed box. 

(iii) L2(F, F; G) - L(E ® F, G). 

This is the map /1—► /* which associates to each bilinear map / the induced 
linear map on the tensor product. The association /»—►/* is injective (because 
/* is uniquely determined by /), and it is surjective, because any linear map 
of the tensor product composed with the canonical map E x F -► E (x) F gives 
rise to a bilinear map on E x F. 
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Proposition 2.1. Let E — 0) Et be a direct sum. Then we have an isomor- 
i = 1 

phism 

F®E~@(F®Ei). 
i = 1 

Proof. The isomorphism is given by abstract nonsense. We keep F fixed, 
and consider the functor x : X i—► F ® X. As we saw above, x is linear. We have 
projections nt•: E -► E of E on Et. Then 

7o Tii = nh 7ij ° 7iy = 0 if i # j, 

t ni =id- 

i = i 

We apply the functor t, and see that 1(71,) satisfies the same relations, hence gives 
a direct sum decomposition of x(E) = F ® E. Note that t(7c,) = id ® tc, . 

Corollary 2.2. Let I be an indexing set, and E = © Et. Then we have an 
i e / 

isomorphism 

(0 e\ ® F » © (£,• (g) F). 
\«e/ / ie/ 

Proo/ Let 5 be a finite subset of /. We have a sequence of maps 

(© e\ X F -> 0 (£, ® F) - 0 (£, ® F) 
\ieS / ieS ie/ 

the first of which is bilinear, and the second is linear, induced by the inclusion of 
S in/. The first is the obvious map. If S' c= S', then a trivial commutative diagram 
shows that the restriction of the map 

(© £,) x F-0(£,0F) 
\i e S' / i e / 

induces our preceding map on the sum for i e S. But we have an injection 

(©£,) x F^ (©£,.) x F. 

Hence by compatibility, we can define a bilinear map 

f© e) x F - 0 (£, ® F), 
\i€/ / 16/ 
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and consequently a linear map 

(® e) <g)F^@(Ei® F). 
\iel J i e/ 

In a similar way, one defines a map in the opposite direction, and it is clear 
that these maps are inverse to each other, hence give an isomorphism. 

Suppose now that E is free, of dimension 1 over R. Let {t;} be a basis, and 
consider F (x) E. Every element of F ® E can be written as a sum of terms y ® av 
with y e F and aeR. However, y ® av = ay (x) v. In a sum of such terms, we can 
then use linearity on the left, 

y.'j ® v, 3>i e F. 

Hence every element is in fact of type y (x) v with some yeF. 
We have a bilinear map 

F x F-F 

such that (y, i—► ay, inducing a linear map 

F ® E F. 

We also have a linear map F -► F ® E given by y i—► y (x) y. It is clear that these 
maps are inverse to each other, and hence that we have an isomorphism 

F ® E % F. 

Thus every element of F ® E can be written uniquely in the form y ® v, yeF. 

Z O'. ® v) = (z 
i=l \i= 1 

Proposition 2.3. Let E be free over R, w/t/i basis e/. Then efery element 
of F ® E has a unique expression of the form 

Z ^ ® 
iel 

with almost all yt = 0. 

Proof. This follows at once from the discussion of the 1-dimensional case, 
and the corollary of Proposition 2.1. 

Corollary 2.4. Let E, F be free over R, with bases {^}ie/ and {wj}j€j re¬ 
spectively. Then E (x) F is free, with basis {yf ® w,-}. We have 

dim(E (g) F) = (dim L)(dim F). 
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Proof. Immediate from the proposition. 

We see that when E is free over R, then there is no collapsing in the tensor 
product. Every element of F ® E can be viewed as a “formal” linear combina¬ 
tion of elements in a basis of E with coefficients in F. 

In particular, we see that R ® E (or E ® R) is isomorphic to £, under the 
correspondence x i—► x ® 1. 

Proposition 2.5. Let E, F be free offinite dimension over R. Then we have an 

isomorphism 

Endr(E) ® EndR(F) - End*(£ ® F) 

which is the unique linear map such that 

f ®gy-+T(f,g) 

for f e EndR(E) and g £ End*(F). 

[We note that the tensor product on the left is here taken in the tensor 
product of the two modules EndR(E) and EndR(Fy] 

Proof Let {vt} be a basis of E and let {wj} be a basis of F. Then {vt ® w,} 
is a basis of E ® F. For each pair of indices there exists a unique endo¬ 
morphism / = f r of E and g = gjtj> of F such that 

f(Vi) = vr and f(vv) = 0 if v / i 

g(Wj) = Wf and g(wf) = 0 if p # j. 

Furthermore, the families {fjf and {gjj } are bases of EndR(E) and EndR(F) 

respectively. Then 

T(f, g)(vv ® wM) = 
vv ® wr 

0 
if (v, p) = (ij) 

if (v, p) # (ij). 

Thus the family {T(fir, gjj’)} is a basis of End^(E ® F). Since the family 
{f j. ® gj j.} is a basis of EndR(E) ® End^(F), the assertion of our proposition is 
now clear. 

In Proposition 2.5, we see that the ambiguity of the tensor sign in / ® g is in 
fact unambiguous in the important special case of free, finite dimensional 
modules. We shall see later an important application of Proposition 2.5 when 
we discuss the tensor algebra of a module. 

Proposition 2.6. Let 

o -► E 4 E 4 E" -*■ 0 
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be an exact sequence, and F any module. Then the sequence 

F ®E -F<g)F-F(g)F"-0 

is exact. 

Froo/ Given x" 6E” and yef, there exists xe£ such that x" = \j/(x)9 and 
hence y ® x" is the image of y ® x under the linear map 

F®E^F®E 

Since elements of type y ® x" generate F ® F", we conclude that the preceding 
linear map is surjective. One also verifies trivially that the image of 

F® E -+ F ®E 

is contained in the kernel of 

F ® E -> F ® E". 

Conversely, let / be the image of F ® E -► F ® F, and let 

f:(F®E)/I^F®E" 

be the canonical map. We shall define a linear map 

g :F ® E" -> (F ® E)/I 

such that go f = id, This obviously will imply that / is injective, and hence will 
prove the desired converse. 

Let y 6 F and x" e E". Let x e E be such that ijj(x) = x". We define a map 
F x E" - (F ® F)// by letting 

(y, x")h-+y®x (mod /), 

and contend that this map is well defined, i.e. independent of the choice of x 
such that \//(x) = x". If ^(x^ = ^(x2) = x", then \j/(xl — x2) = 0, and by 
hypothesis, xx — x2 = (p(x') for some x' e E. Then 

y ® - y ® x2 = y ® (x! - x2) = y ® (p(x’). 

This shows that y ® xx = y ® x2 (mod /), and proves that our map is well 
defined. It is obviously bilinear, and hence factors through a linear map g, on 
the tensor product. It is clear that the restriction of g © / on elements of type 
y ® x" is the identity. Since these elements generate F ® E", we conclude 
that / is injective, as was to be shown. 
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It is not always true that the sequence 

0->£(g)£/-£®£->£(g)£,, - 0 

is exact. It is exact if the first sequence in Proposition 2.6 splits, i.e. if £ is 
essentially the direct sum of £' and £". This is a trivial consequence of Pro¬ 
position 2.1, and the reader should carry out the details to get accustomed to the 
formalism of the tensor product. 

Proposition 2.7. Let a be an ideal of R. Let E be a module. Then the map 
(R/a) x £ -► £/a£ induced by 

(a, x)i—► ax (mod a£), as £, x e £ 

is bilinear and induces an isomorphism 

(R/a) (x) £ £/a£. 

Proo/ Our map (a, x) i—► ax (mod a£) clearly induces a bilinear map of 
R/a x £ onto £/a£, and hence a linear map of R/a (x) £ onto £/a£. We can 
construct an inverse, for we have a well-defined linear map 

£ -> £/a <g) £ 

such that x i-> T (x) x (where T is the residue class of 1 in R/a). It is clear that a£ 
is contained in the kernel of this last linear map, and thus that we obtain a 
homomorphism 

E/aE -► R/a (x) £, 

which is immediately verified to be inverse to the homomorphism described in 
the statement of the proposition. 

The association £ i—► E/aE « £/a (g) £ is often called a reduction map. In 
§4, we shall interpret this reduction map as an extension of the base. 

§3. FLAT MODULES 

The question under which conditions the left-hand arrow in Proposition 2.6 
is an injection gives rise to the theory of those modules for which it is, and we 
follow Serre in calling them flat. Thus formally, the following conditions are 
equivalent, and define a flat module £, which should be called tensor exact. 

F 1. For every exact sequence 

£'-£-> E 
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the sequence 

F ® £' -► F ® E -► F ® E" 

is exact. 

F 2. For every short exact sequence 

0 -►£'-►£-►£"-► 0 

the sequence 

0 -► £ (g) £' -► £ (g) £ -► £ (g) £" -► 0 

is exact. 

F 3. For every injection 0 —> £' —> £ the sequence 

0 ->£(g)£'->£(g)£ 

is exact. 

It is immediate that F 1 implies F 2 implies F 3. Finally, we see that F 3 implies 
F 1 by writing down the kernel and image of the map £' -► £ and applying F 3. 
We leave the details to the reader. 

The following proposition gives tests for flatness, and also examples. 

Proposition 3.1. 

(i) The ground ring is flat as module over itself. 

(ii) Let F = 0) £, be a direct sum. Then F is flat if and only if each Ft is flat. 

(iii) A projective module is flat. 

The properties expressed in this proposition are basically categorical, cf. the 
comments on abstract nonsense at the end of the section. In another vein, we 
have the following tests having to do with localization. 

Proposition 3.2. 

(i) Let S be a multiplicative subset of R. Then S~ XR is flat over R. 

(ii) A module M is flat over R if and only if the localization Mp is flat over Rv 
for each prime ideal p of R. 

(iii) Let Rbe a principal ring. A module F is flat if and only if F is torsion free. 

The proofs are simple, and will be left to the reader. More difficult tests for 
flatness will be proved below, however. 

Examples of non-flatness. If R is an entire ring, and a module M over R 
has torsion, then M is not flat. (Prove this, which is immediate.) 
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There is another type of example which illustrates another bad phenomenon. 
Let R be some ring in a finite extension K of Q, and such that R is a finite 
module over Z but not integrally closed. Let R' be its integral closure. Let p be 
a maximal ideal of R and suppose that p/?' is contained in two distinct maximal 
ideals ^ and $P2. Then it can be shown that /?' is not flat over /?, otherwise R' 
would be free over the local ring Rv, and the rank would have to be 1, thus 
precluding the possibility of the two primes ^ and ^S2- It is good practice for 
the reader actually to construct a numerical example of this situation. The same 
type of example can be constructed with a ring R = k[x,y], where k is an 
algebraically closed field, even of characteristic 0, and x, y are related by an 
irreducible polynomial equation f(x,y) = 0 over k. We take R not integrally 
closed, such that its integral closure exhibits the same splitting of a prime p of 
R into two primes. In each one of these similar cases, one says that there is a 
singularity at p. 

As a third example, let R be the power series ring in more than one variable 
over a field k. Let m be the maximal ideal. Then m is not flat, because otherwise, 
by Theorem 3.8 below, m would be free, and if R = k[[xl9. . . , jtJ], then xl9 
. . ., xn would be a basis for m over R9 which is obviously not the case, since 
*i, x2 are linearly dependent over/? when n ^ 2. The same argument, of course, 
applies to any local ring R such that m/m2 has dimension ^ 2 over R/m. 

Next we come to further criteria when a module is flat. For the proofs, we 
shall snake it all over the place. Cf. the remark at the end of the section. 

Lemma 3.3. Let F be flat, and suppose that 

0-N-M-F-0 

is an exact sequence. Then for any E9 we have an exact sequence 

Proof Represent E as a quotient of a flat L by an exact sequence 

0-K-L-F-0. 
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Then we have the following exact and commutative diagram: 

0 

N ® K->M ®K-> F ® K->0 

0->N ® L-► M ® L-► F ® L 

N ® E-► M ® E 

0 0 

The top right 0 comes by hypothesis that F is flat. The 0 on the left comes from 
the fact that L is flat. The snake lemma yields the exact sequence 

0 -+N®E^M®E 

which proves the lemma. 

Proposition 3.4. Let 

0 - F - F - F" - 0 

be an exact sequence, and assume that F" is flat. Then F is flat if and only if F' 
is flat. More generally, let 

0 _ F° _ F1 --► F" - 0 

be an exact sequence such that F1,..., Fn are flat. Then F° is flat. 
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Proof. Let 0 E' -> E be an injection. We have an exact and commuta¬ 
tive diagram: 

0 

0-* F ® E'-> F ® E'-> F" ® E'-> 0 

0-> F ® E-> F ® E-► F" ® E 

The 0 on top is by hypothesis that F" is flat, and the two zeros on the left are 
justified by Lemma 3.3. If F is flat, then the first vertical map is an injection, and 
the snake lemma shows that F is flat. If F is flat, then the middle column is an 
injection. Then the two zeros on the left and the commutativity of the left square 
show that the map F ® E -► F ® E is an injection, so F is flat. This proves the 
first statement. 

The proof of the second statement is done by induction, introducing kernels 
and cokernels at each step as in dimension shifting, and apply the first statement 
at each step. This proves the proposition 

To give flexibility in testing for flatness, the next two lemmas are useful, in 
relating the notion of flatness to a specific module. Namely, we say that F is 
F-flator flat for E, if for every monomorphism 

0 - F - £ 

the tensored sequence 

is also exact. 

0 -► F ® E' -► F ® E 

Lemma 3.5. Assume that F is E-flat. Then F is also flat for every submodule 
and every quotient module of E. 

Proof. The submodule part is immediate because if E\ are 
submodules, and F ® E\ -> F ® E is a monomorphism so is F ® E\ —> F ® E'2 
since the composite map with F ® E'2 -> F ® E is a monomorphism. The only 
question lies with a factor module. Suppose we have an exact sequence 

O-N-F-M-O. 

Let M' be a submodule of M and F its inverse image in E. Then we have a 
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commutative diagram of exact sequences: 

0-► JV-► E'-►M'->0 

II 

0->N->E -►M->0. 

We tensor with F to get the exact and commutative diagram 

0 K 

F® N->F ® E->F ® M'-► 0 

0->F® N-> F ® E-F ® M 

0 

where K is the questionable kernel which we want to prove is 0. But the snake 
lemma yields the exact sequence 

O-K-O 

which concludes the proof. 

Lemma 3.6. Let {EJ be a family of modules, and suppose that F is flat for each 
Et. Then F is flat for their direct sum. 

Proof Let E = (0 Ef be their direct sum. We have to prove that given any 
submodule E' of E, the sequence 

O->E(g)E'->E(g)E = 0E(g)EI- 

is exact. Note that if an element of F ® E' becomes 0 when mapped into the 
direct sum, then it becomes 0 already in a finite subsum, so without loss of 
generality we may assume that the set of indices is finite. Then by induction, 
we can assume that the set of indices consists of two elements, so we have two 
modules Ex and E2, and E = Ej © E2. Let TV be a submodule of E. Let N\ 
= N D E{ and let N2 be the image of N under the projection on E2. Then 
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we have the following commutative and exact diagram: 

0 0 

N j->N->N2->0 

0-->E->E2 

Tensoring with F we get the exact and commutative diagram: 

0 0 

F ® Ni-> F ® N-*F ® N2-> 0 

0->F® Ex-► F® E->F®E2 

The lower left exactness is due to the fact that E = Ex ® E2. Then the snake 
lemma shows that the kernel of the middle vertical map is 0. This proves the 
lemma. 

The next proposition shows that to test for flatness, it suffices to do so only 
for a special class of exact sequences arising from ideals. 

Proposition 3.7. F is flat if and only if for every ideal aofR the natural map 

a ® F -> aF 

is an isomorphism. In fact, F is flat if and only for every ideal aofR tensoring 
the sequence 

0 —► a —► R —► R/a —► 0 

with F yields an exact sequence. 

Proof If F is flat, then tensoring with F and using Proposition 2.7 shows 
that the natural map is an isomorphism, because aM is the kernel of M -► M/aM. 
Conversely, assume that this map is an isomorphism for all ideals a. This means 
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that F is R-flat. By Lemma 3.6 it follows that F is flat for an arbitrary direct sum 
of R with itself, and since any module M is a quotient of such a direct sum, 
Lemma 3.5 implies that F is M-flat, thus concluding the proof. 

Remark on abstract nonsense. The proofs of Proposition 3.1(i), (ii), (iii), 
and Propositions 3.3 through 3.4 are basically rooted in abstract nonsense, 
and depend only on arrow theoretic arguments. Specifically, as in Chapter XX, 
§§, suppose that we have a bifunctor T on two distinct abelian categories G and 
(B such that for each A, the functor B »-> T(A, B) is right exact and for each B 
the functor A «-* T(A, B) is right exact. Instead of “flat” we call an object A 
of G //-exact if B «-* T(A, B) is an exact functor; and we call an object L of (B 
T-exact if A «-* T(A, L) is exact. Then the references to the base ring and free 
modules can be replaced by abstract nonsense conditions as follows. 

In the use of L in Lemma 3.3, we need to assume that for every object E of B 
there is a 'T-exact L and an epimorphism 

L - E -► 0. 

For the analog of Proposition 3.7, we need to assume that there is some 
object R in (B for which F is R-exact, that is given an exact sequence 

0 -► a -► R 

then 0 -► T(F, a) -► T(F, R) is exact; and we also need to assume that R is a 
generator in the sense that every object B is the quotient of a direct sum of R with 
itself, then over some family of indices, and T respects direct sums. 

The snake lemma is valid in arbitrary abelian categories, either because its 
proof is “functorial,” or by using a representation functor to reduce it to the 
category of abelian groups. Take your pick. 

In particular, we really don’t need to have a commutative ring as base ring, 
this was done only for simplicity of language. 

We now pass to somewhat different considerations. 

Theorem 3.8. Let R be a commutative local ring, and let M be a finite flat 
module over R. Then M is free. In fact, if xl9..., xn e M are elements of M 
whose residue classes are a basis of M/mM over R/m, then xl5..., xn form 
a basis of M over R. 

Proof Let R{n) -> M be the map which sends the unit vectors of R(n) on 
xl9..., xn respectively, and let N be its kernel. We get an exact sequence 

0-N-R(n)-M, 
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whence a commutative diagram 

m (x) N-► m (g) R(n)-► m (x) M 

f 0 h 

0->N->Rin)-► Af 

in which the rows are exact. Since M is assumed flat, the map h is an injection. 
By the snake lemma one gets an exact sequence 

0 -► coker / -► coker g -+ coker h9 

and the arrow on the right is merely 

R(n)/mR(n) - M/mAf, 

which is an isomorphism by the assumption on xlr..,xr It follows that 
coker / = 0, whence mN = N, whence N = 0 by Nakayama if R is Noetherian, 
so N is finitely generated. If R is not assumed Noetherian, then one has to add 
a slight argument as follows in case M is finitely presented. 

Lemma 3.9. Assume that M is finitely presented, and let 

0-N-£-M-0 

be exact, with E finite free. Then N is finitely generated. 

Proof. Let 

Lj -L2-M->0 

be a finite presentation of M, that is an exact sequence with Lu L2 finite free. 
Using the freeness, there exists a commutative diagram 

such that L2^> E is surjective. Then the snake lemma gives at once the exact 
sequence 

0 -► coker(L! N) -+ 0, 

so coker(Lx -> N) = 0, whence N is an image of Lx and is therefore finitely 
generated, thereby proving the lemma, and also completing the proof of Theorem 
3.8 when M is finitely presented. 
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We still have not proved Theorem 3.8 in the fully general case. For this we 
use Matsumura’s proof (see his Commutative Algebra, Chapter 2), based on the 
following lemma. 

Lemma 3.10. Assume that M is flat over R. Let af- e A, x, e M for i = 1, 
. . . , rc, a«d suppose that we have the relation 

n 

Zaix. = o. 
i = 1 

TTien r/iere exists an integer s and elements btje A and yjS M (j = 1,..., 5) 
such that 

£ afiij = 0 /or all j and x, = £ b^yj for all i. 
» j 

Proof We consider the exact sequence 

0 - X - K(n) - K 

where the map R(n) R is given by 
n 

(h1?.. -, 1—► Z u,h/, 
i - 1 

and K is its kernel. Since M is flat it follows that 

K ® M -> M(n) M 

is exact, where /M is given by 

n 

fM{zi,...,zn)= Y^aiZi. 
1 = 1 

Therefore there exist elements e K and yj e M such that 

(x„...,x„) = fJPJyj. 
i= 1 

Write fj = (frl7-,..., with e X. This proves the lemma. 

We may now apply the lemma to prove the theorem in exactly the same way 
we proved that a finite projective module over a local ring is free in Chapter X, 
Theorem 4.4, by induction. This concludes the proof. 

Remark. In the applications I know of, the base ring is Noetherian, and so 
one gets away with the very simple proof given at first. I did not want to obstruct 
the simplicity of this proof, and that is the reason I gave the additional tech¬ 
nicalities in increasing order of generality. 
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Applications of homology. We end this section by pointing out a connection 
between the tensor product and the homological considerations of Chapter XX, 
§8 for those readers who want to pursue this trend of thoughts. The tensor product 
is a bifunctor to which we can apply the considerations of Chapter XX, §8. Let 
Af, N be modules. Let 

--£o-A*-0 

be a free or projective resolution of M, i.e. an exact sequence where £, is free or 
projective for all i ^ 0. We write this sequence as 

Em - M - 0. 

Then by definition, 

Tor^M, N) = i-th homology of the complex E (x) JV, that is of 

• • • -► Ei ® N -► 

This homology is determined up to a unique isomorphism. I leave to the reader 
to pick whatever convention is agreeable to fix one resolution to determine a 
fixed representation of Tor,(M, N), to which all others are isomorphic by a 
unique isomorphism. 

Since we have a bifunctorial isomorphism M (g) N « N (x) M, we also get a 
bifunctorial isomorphism 

Tort(M, N) » Torf(JV, M) 

for all i. See Propositions 8.2 and 8.2' of Chapter XX. 
Following general principles, we say that M has Tor-dimension ^ d if 

Tor/Af, N) = 0 for all i > d and all jV. From Chapter XX, §8 we get the follow¬ 
ing result, which merely replaces T-exact by flat. 

Theorem 3.11. The following three conditions are equivalent concerning a 
module M. 

(i) M is flat. 

(ii) Tor j(M, N) = 0 /or all N. 

(iii) Tor,(M, N) = 0 /or all i ^ 1 ond all N, in other words, Af Tor- 
dimension 0. 

Remark. Readers willing to use this characterization can replace some of 
the preceding proofs from 3.3 to 3.6 by a Tor-dimension argument, which is 
more formal, or at least formal in a different way, and may seem more rapid. 
The snake lemma was used ad hoc in each case to prove the desired result. The 
general homology theory simply replaces this use by the corresponding formal 
homological step, once the general theory of the derived functor has been carried 
out. 
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§4. EXTENSION OF THE BASE 

Let R be a commutative ring and let £ be a K-module. We specify R since 
we are going to work with several rings in a moment. Let R -> R' be a homo¬ 
morphism of commutative rings, so that R' is an /^-algebra, and may be viewed as 
an /^-module also. We have a 3-multilinear map 

R' x R' x £ -► R' ®E 

defined by the rule 

(a, h, x) i—i► ab ® x. 

This induces therefore a R-linear map 

R' ®(R'®E)^>R'®E 

and hence a K-bilinear map £' x (R' ® £)-►£' ® £. It is immediately verified 
that our last map makes R' ® E into a /^'-module, which we shall call the 
extension of E over R\ and denote by ER-. We also say that ER> is obtained by 
extension of the base ring from R to R'. 

Example 1. Let a be an ideal of R and let R -► R/a be the canonical homo¬ 
morphism. Then the extension of £ to R/a is also called the reduction of £ 
modulo a. This happens often over the integers, when we reduce modulo a prime 
p (i.e. modulo the prime ideal (p)). 

Example 2. Let R be a field and R' an extension field. Then £ is a vector 
space over £, and ER> is a vector space over R'. In terms of a basis, we see that 
our extension gives what was alluded to in the preceding chapter. This example 
will be expanded in the exercises. 

We draw the same diagrams as in field theory: 

to visualize an extension of the base. From Proposition 2.3, we conclude: 

Proposition 4.1. Let E be a free module over £, with basis Let 
v\= 1 ® vt. Then ER> is a free module over R\ with basis {v'i}ieI. 

We had already used a special case of this proposition when we observed that 
the dimension of a free module is defined, i.e. that two bases have the same 
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cardinality. Indeed, in that case, we reduced modulo a maximal ideal of R to 
reduce the question to a vector space over a field. 

When we start changing rings, it is desirable to indicate R in the notation 
for the tensor product. Thus we write 

Er, = R'®E = R' ®r E. 

Then we have transitivity of the extension of the base, namely, if R ^ R' -> R" is a 
succession of homomorphisms of commutative rings, then we have an iso¬ 
morphism 

R ®R E & R ®R> (R ® R E) 

and this isomorphism is one of /^''-modules. The proof is trivial and will be left 
to the reader. 

If E has a multiplicative structure, we can extend the base also for this 
multiplication. Let R -► A be a ring-homomorphism such that every element in 
the image of R in A commutes with every element in A (i.e. an /^-algebra). Let 
R -► R' be a homomorphism of commutative rings. We have a 4-multilinear 
map 

R' x A x R' x A R' ® A 

defined by 

(a, x, fc, y)y-+ab ® xy. 

We get an induced R-linear map 

R' ® A® R' ® A -► R' ® A 

and hence an induced R-bilinear map 

(R' ® A) x (R' ® A) -> R' ® A. 

It is trivially verified that the law of composition on R' ® A we have just 
defined is associative. There is a unit element in R' ® A, namely, 1 ® 1. We 
have a ring-homomorphism of R' into R' ® A, given by a i-» a ® 1. In this way 
one sees at once that R' ® A = AR> is an /^-algebra. We note that the map 

xk 1 ® x 

is a ring-homomorphism of A into R' ® A, and that we get a commutative 
diagram of ring homomorphisms, 

R' ® A = Ar> 
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For the record, we give some routine tests for flatness in the context of base 
extension. 

Proposition 4.2. Let R -> A be an R-algebra, and assume A commutative. 

(i) Base change. If F is a flat R-module, then A F is a flat A-module. 

(ii) Transitivity. If A is a flat commutative R-algebra and M is a flat A-module, 
then M is flat as R-module. 

The proofs are immediate, and will be left to the reader. 

§5. SOME FUNCTORIAL ISOMORPHISMS 

We recall an abstract definition. Let 91, 93 be two categories. The functors 
of 91 into 93 (say covariant, and in one variable) can be viewed as the 
objects of a category, whose morphisms are defined as follows. If L, M are two 
such functors, a morphism H: L -► M is a rule which to each object X of 91 
associates a morphism Hx: L(X) -► M(X) in 93, such that for any morphism 
/: X Y in 91, the following diagram is commutative: 

L(X) —» M(X) 

Uf)\ 

L(Y) 
hy 

M(f) 

>M{Y) 

We can therefore speak of isomorphisms of functors. We shall see examples of 
these in the theory of tensor products below. In our applications, our categories 
are additive, that is, the set of morphisms is an additive group, and the composi¬ 
tion law is Z-bilinear. In that case, a functor L is called additive if 

L(f 4- g) = L(f) + L(g). 

We let R be a commutative ring, and we shall consider additive functors from 
the category of K-modules into itself. For instance we may view the dual 

module as a functor, 

E h* Ev = L(E, R) = Hom^F, R). 

Similarly, we have a functor in two variables, 

(£, F) L(E, F) = HomK(F, F), 

contravariant in the first, covariant in the second, and bi-additive. 
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We shall give several examples of functorial isomorphisms connected with 
the tensor product, and for this it is most convenient to state a general theorem, 
giving us a criterion when a morphism of functors is in fact an isomorphism. 

Proposition 5.1. Let L, M be two functors (both covariant or both contra- 

variant) from the category of R-modules into itself Assume that both functors 

are additive. Let H: L -► M be a morphism of functors. IfHE: L(E) -> M(E) 

is an isomorphism for every l-dimensional free module E over R, then HE is an 

isomorphism for every finite-dimensional free module over R. 

Proof We begin with a lemma. 

Lemma 5.2. Let E and £, (i = 1,..., m) be modules over a ring. Let 

(pi: Ei~+ E and ^ : E -> E{ be homomorphisms having the following properties: 

\j/i o cpt = id, \pi o(pj = 0 if i / j 

m 

Z <pi ° = id> 

i = 1 

Then the map 

is an isomorphism of E onto the direct product [ j £,, and the map 
1=1 

(xl,...,Xm)t-KplX1 + ••• + (pmXm 

is an isomorphism of the product onto E. Conversely, if E is equal to the direct 

sum of submodules Et{i = 1,..., m), if we let ^ be the inclusion of E{ in E, 
and (Pi the projection of E on Eh then these maps satisfy the above-mentioned 

properties. 

Proof. The proof is routine, and is essentially the same as that of Proposition 
3.1 of Chapter III. We shall leave it as an exercise to the reader. 

We observe that the families {<p,} and {i/'J satisfying the properties of the 
lemma behave functorially: If T is an additive contravariant functor, say, then 
the families {T and {T (<p,)} also satisfy the properties of the lemma. Similarly 
if T is a covariant functor. 

To apply the lemma, we take the modules £, to be the 1-dimensional 
components occurring in a decomposition of E in terms of a basis. Let us assume 
for instance that L, M are both covariant. We have for each module E a com- 
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mutative diagram 

L(E) -> Af(£) 

and a similar diagram replacing q>t by i//i9 reversing the two vertical arrows. 
Hence we get a direct sum decomposition of L(E) in terms of L(^,) and L(<p,), 
and similarly for M(£), in terms of M(^) and Af(<pf). By hypothesis, HE. is an 
isomorphism. It then follows trivially that HE is an isomorphism. For instance, 
to prove injectivity, we write an element v e L(E) in the form 

V = X L(<Pi)Vi, 

with e L(£,). If HEv = 0, then 

0 = Z H.Licpfo = X M(<Pi)HEtvi9 

and since the maps M(<pt) (i = 1,..., m) give a direct sum decomposition of 
M(£), we conclude that HE.Vi = 0 for all f, whence v{ = 0, and t; = 0. The 
surjectivity is equally trivial. 

When dealing with a functor of several variables, additive in each variable, 
one can keep all but one of the variables fixed, and then apply the proposition. 
We shall do this in the following corollaries. 

Corollary 5.3. Let E\ £, F\ F be free and finite dimensional over R. Then we 
have a functorial isomorphism 

L(F, E) ® L(F, F) -+ L(F ® F, E ® F) 

such that 

f T(f, g). 

Proof. Keep E, F, F fixed, and view L(F, E) ® L(F\ F) as a functor in the 
variable F. Similarly, view 

L(E' (8) F, E ® F) 

as a functor in F. The map/ (g) g i—► T(/, g) is functorial, and thus by the lemma, 
it suffices to prove that it yields an isomorphism when F has dimension 1. 
Assume now that this is the case; fix F of dimension 1, and view the two 
expressions in the corollary as functors of the variable E. Applying the lemma 
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again, it suffices to prove that our arrow is an isomorphism when F has di¬ 
mension 1. Similarly, we may assume that F, F' have dimension 1. In that 
case the verification that the arrow is an isomorphism is a triviality, as desired. 

Corollary 5.4. Let F, F be free and finite dimensional. Then we have a 

natural isomorphism 

Endr(E) ® Endfl(F) -> End*(F (g) F). 

Proof Special case of Corollary 5.3. 

Note that Corollary 5.4 had already been proved before, and that we 
mention it here only to see how it fits with the present point of view. 

Corollary 5.5. Let E, F be free finite dimensional over R. There is a func- 
torial isomorphism 

Fv ® F->F(F, F) 

given for X e F v and y e F by the map 

X®y^ A^y 

where A^y is such that for all x e F, we have A^y(x) = X(x)y. 

The inverse isomorphism of Corollary 5.5 can be described as follows. 
Let {v\,...,vn} be a basis of F, and let ... X} be the dual basis. If 
A e F(F,F), then the element 

XX (g)A(vj) eFv ®F 
i=i 

maps to A. In particular, if F = F, then the element mapping to the identity id^ 
is called the Casimir element 

E vi ® vh 
i= 1 

independent of the choice of basis. Cf. Exercise 14. 
To prove Corollary 5.5, justify that there is a well-defined homomorphism 

of Fv ®F to L(F, F), by the formula written down. Verify that this homo¬ 
morphism is both injective and surjective. We leave the details as exercises. 

Differential geometers are very fond of the isomorphism 

F(F, F) —> Fv ® F, 

and often use Fv ® E when they think geometrically of F(F, F), thereby em¬ 
phasizing an unnecessary dualization, and an irrelevant formalism, when it is 
easier to deal directly with L(F, F). In differential geometry, one applies 
various functors L to the tangent space at a point on a manifold, and elements 
of the spaces thus obtained are called tensors (of type F). 
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Corollary 5.6. Let E, F be free and finite dimensional over R. There is a 

functorial isomorphism 

£v® Fv (£® F)v. 

given for xv e £v and yv e Fv by the map 

*v ® / A, 

where A w swc/i r/ia/, /or all x e E and y e F, 

A(* ® y) = (x, *v)<y, yv). 

Proo/ As before. 

Finally, we leave the following results as an exercise. 

Proposition 5.7. Let E be free and finite dimensional over R. The trace 

function on L(E,E) is equal to the composite of the two maps 

L(E, E) £v ® E -> /?, 

w/iere the/rst map is the inverse of the isomorphism described in Corollary 5.5, 
and the second map is induced by the bilinear map 

(Xv , X) h-> (x, XV ). 

Of course, it is precisely in a situation involving the trace that the iso¬ 
morphism of Corollary 5.5 becomes important, and that the finite dimen¬ 
sionality of E is used. In many applications, this finite dimensionality plays 
no role, and it is better to deal with L(£, E) directly. 

§6. TENSOR PRODUCT OF ALGEBRAS 

In this section, we again let R be a commutative ring. By an /^-algebra we 
mean a ring homomorphism R —> A into a ring A such that the image of R is 
contained in the center of A. 

Let A, B be P-algebras. We shall make A ® B into an P-algebra. Given 
(a, b) e A x B, we have an P-bilinear map 

Mab\ A x B —> A ® B such that Mab(a', b9) = aa' ® bb'. 

Hence Ma b induces an P-linear map ma b: A ® B —> A ® B such that 
ma b(a\ b') = aa' ® bb9. But ma b depends bilinearly on a and b> so we obtain 
finally a unique P-bilinear map 

A®BxA®B^>A®B 
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such that (<a ® b)(a' ® bf) = aaf ® bb\ This map is obviously associative, and 
we have a natural ring homomorphism 

R —> A ® B given by c i—» 1 ® c = c ® 1. 

Thus A ® B is an fl-algebra, called the ordinary tensor product. 

Application: commutative rings 

We shall now see the implication of the above for commutative rings. 

Proposition 6.1. Finite coproducts exist in the category of commutative 

rings, and in the category of commutative algebras over a commutative ring. 

If /? —» A and /? —» B are Wo homomorphisms of commutative rings, then their 

coproduct over R is the homomorphism R —> A ® B given by 

a i—► a ® 1 = 1 ® a. 

Proof. We shall limit our proof to the case of the coproduct of two ring 
homomorphisms R —> A and R —> B. One can use induction. 

Let A, B be commutative rings, and assume given ring-homomorphisms into 
a commutative ring C, 

cp : A -* C and i// : B -> C. 

Then we can define a Z-bilinear map 

A x B —► C 

by (x, y) H-* (p(x)ijj(y). From this we get a unique additive homomorphism 

A ® £-► C 

such that x ® y i—► (p(x)i//(y). We have seen above that we can define a ring 
structure on A (x) B, such that 

(a ® b)(c ® d) = ac ® bd. 

It is then clear that our map A ® B -> C is a ring-homomorphism. We also have 
two ring-homomorphisms 

A ^ A® B and B ^ A ® B 

given by 

x i—► x ® 1 and y i—► 1 ® y. 

The universal property of the tensor product shows that (A ® £, /, g) is a 
coproduct of our rings A and B. 

If A, B, C are R-algebras, and if cp, \js make the following diagram com- 
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mutative, 

then A ® B is also an K-algebra (it is in fact an algebra over R, or A, or B, de¬ 
pending on what one wants to use), and the map A (g) B -> C obtained above 
gives a homomorphism of R-algebras. 

A commutative ring can always be viewed as a Z-algebra (i.e. as an algebra 
over the integers). Thus one sees the coproduct of commutative rings as a 
special case of the coproduct of R-algebras. 

Graded Algebras. Let G be a commutative monoid, written additively. By 
a G-graded ring, we shall mean a ring A, which as an additive group can be 
expressed as a direct sum. 

A = ® ^r> 
r eG 

and such that the ring multiplication maps Ar x As into Ar+S, for all r, seG. 

In particular, we see that A0 is a subring. 
The elements of Ar are called the homogeneous elements of degree r. 
We shall construct several examples of graded rings, according to the 

following pattern. Suppose given for each reG an abelian group Ar (written 
additively), and for each pair r, s e G a map Ar x A5 —» Ar+S. Assume that A0 

is a commutative ring, and that composition under these maps is associative and 
A0-bilinear. Then the direct sum A = @ Ar is a ring: We can define multiplica- 

re G 

tion in the obvious way, namely 

\reG / \seG / leG \r + s = f / 

The above product is called the ordinary product. However, there is another 
way. Suppose the grading is in Z or Z/2Z. We define the super product of 
x eAr and y e As to be (— l)r5xy, where xy is the given product. It is easily veri¬ 
fied that this product is associative, and extends to what is called the super 
product A ® A —> A associated with the bilinear maps. If R is a commutative 
ring such that A is a graded /^-algebra, i.e. RAr C Ar for all r (in addition to the 
condition that A is a graded ring), then with the super product, A is also an 
/^-algebra, which will be denoted by Asu, and will be called the super algebra 
associated with A. 
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Example. In the next section, we shall meet the tensor algebra T(E), which 
will be graded as the direct sum of Tr(E), and so we get the associated super 
tensor algebra TSU(E) according to the above recipe. 

Similarly, let A, B be graded algebras (graded by the natural numbers as 
above). We define their super tensor product 

A ®su B 

to be the ordinary tensor product as graded module, but with the super product 

(a 0 b)(a' 0 b') = (-1 )(deg*)(dega')^' ® bb' 

if b, a' are homogeneous elements of B and A respectively. It is routinely verified 
that A ®su B is then a ring which is also a graded algebra. Except for the sign, 
the product is the same as the ordinary one, but it is necessary to verify associativity 
explicitly. Suppose a' e Ah b e Bj, a" e As, and b' e Br. Then the reader will 
find at once that the sign which comes out by computing 

(a ®su b)(a' ®su b')(a" (x)su b") 

in two ways turns out to be the same, namely (— l)v+js+srm Since bilinearity is 
trivially satisfied, it follows that A ®su B is indeed an algebra. 

The super product in many ways is more natural than what we called the 
ordinary product. For instance, it is the natural product of cohomology in topol¬ 
ogy. Cf. Greenberg-Harper, Algebraic Topology, Chapter 29. For a similar con¬ 
struction with Z/2Z-grading, see Chapter XIX, §4. 

§7. THE TENSOR ALGEBRA OF A MODULE 

Let R be a commutative ring as before, and let £ be a module (i.e. an 
/^-module). For each integer r ^ 0, we let 

r 

Tr{E) = (g) E and T°(£) = R. 
i = 1 

Thus T\E) = E (g) • • • (g) E (tensor product taken r times). Then Tr is a functor, 
whose effect on linear maps is given as follows. If /: E -> F is a linear map, then 

Tr(f) = T(/,...,/) 

in the sense of §1. 
From the associativity of the tensor product, we obtain a bilinear map 

Tr(E) x TS(E) - Tr+s(El 
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which is associative. Consequently, by means of this bilinear map, we can define 
a ring structure on the direct sum 

T(E) = 0 T'(E), 
r= 0 

and in fact an algebra structure (mapping R on T°(E) = R). We shall call T{E) 

the tensor algebra of E, over R. It is in general not commutative. If x, y e T(£), 
we shall again write x (x) y for the ring operation in T(£). 

Let /: E -► F be a linear map. Then / induces a linear map 

Tr(/): T\E) - Tr(F) 

for each r ^ 0, and in this way induces a map which we shall denote by T(f) on 
T(£). (There can be no ambiguity with the map of §1, which should now be 
written T\f\ and is in fact equal to / since T1(E) = £.) It is clear that T(f) is 
the unique linear map such that for xl5..., xr e E we have 

T(f)(xi ® • • • ® xr) = /(Xj) ® ■ • • ® /(xr). 

Indeed, the elements of T1(E) = £ are algebra-generators of T(£) over P. We 
see that T(f) is an algebra-homomorphism. Thus T may he viewed as a functor 

from the category of modules to the category of graded algebras, T(f) being a 

homomorphism of degree 0. 
When £ is free and finite dimensional over P, we can determine the structure 

of T(£) completely, using Proposition 2.3. Let P be an algebra over k. We shall 
say that P is a non-commutative polynomial algebra if there exist elements 
tu ... ,tne P such that the elements 

A#(|)(0 = *!,••• *£. 

with 1 g iv ^ n form a basis of P over £. We may call these elements non- 
commutative monomials in (t). As usual, by convention, when r = 0, the 
corresponding monomial is the unit element of P. We see that tu ..., tn generate 
P as an algebra over fc, and that P is in fact a graded algebra, where Pr consists of 
linear combinations of monomials tix • • • tir with coefficients in R. It is natural to 
say that tu . .., tn are independent non-commutative variables over R. 

Proposition 7.1. Let E be free of dimension n over R. Then T(£) is isomorphic 

to the non-commutative polynomial algebra on n variables over R. In other 

words, if {vl9..., vn} is a basis of E over P, then the elements 

M{i)(v) = vh ® • • • ® viv, 1 ^ iv ^ n 

form a basis of Tr(E), and every element of T(E) has a unique expression as a 

finite sum 

Z ad)Mii)(v\ a{i)eR 
(0 
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with almost all a(i) equal to 0. 

Proof. This follows at once from Proposition 2.3. 

The tensor product of linear maps will now be interpreted in the context of 
the tensor algebra. 

For convenience, we shall denote the module of endomorphisms EndR(E) by 

L{E) for the rest of this section. 

We form the direct sum 

(LT)(E) = 0 L(Tr(E)\ 
r = 0 

which we shall also write LT(E) for simplicity. (Of course, LT(E) is not equal to 
Endr(T(E))9 so we must view LT as a single symbol.) We shall see that LT is a 
functor from modules to graded algebras, by defining a suitable multiplication 
on LT(E). Let / e L(T\E)\ g e L(TS(E)\ h e L(Tm(E)). We define the product 
fg e L(Tr + s(E)) to be T(f,g), in the notation of §1, in other words to be the 
unique linear map whose effect on an element x (x) y with x 6 Tr(E) and 
y e TS(E) is 

x (g y i—► /(x) ® g(y). 

In view of the associativity of the tensor product, we obtain at once the as¬ 
sociativity (fg)h = f(gh), and we also see that our product is bilinear. Hence 
LT(E) is a /c-algebra. 

We have an algebra-homomorphism 

T(L(E)) - LT(E) 

given in each dimension r by the linear map 

/l ® ® fr T(fu ...,/,) = /!••• fr ■ 

We specify here that the tensor product on the left is taken in 

L(E) ® • • • ® L(E). 

We also note that the homomorphism is in general neither surjective nor injective. 
When E is free finite dimensional over R, the homomorphism turns out to be 
both, and thus we have a clear picture of LT(E) as a non-commutative poly¬ 
nomial algebra, generated by L(E). Namely, from Proposition 2.5, we obtain: 

Proposition 7.2. Let E be free, finite dimensional over R. Then we have an 

algebra-isomorphism 

00 

T(L(E)) = T(EndR(£)) -+ LT(E) = ® EndR(7'(£)) 
r = 0 
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given by 

Proof. By Proposition 2.5, we have a linear isomorphism in each dimen¬ 
sion, and it is clear that the map preserves multiplication. 

In particular, we see that LT(E) is a noncommutative polynomial algebra. 

§8. SYMMETRIC PRODUCTS 

Let &„ denote the symmetric group on n letters, say operating on the integers 
(1,..., n). An r-multilinear map 

/: E(r) -► F 

is said to be symmetric if f(xl9..., xr) = /(xff(1),..., xa(r)) for all o £ Sr. 
In Tr(E), we let br be the submodule generated by all elements of type 

*1 ® • • • <g> xr - x^d) ® ® xff(r) 

for all xf e E and £ Sr. We define the factor module 

Sr(E) = Tr(E)[br, 

and let 

S(£) = ® Sr(E) 
r = 0 

be the direct sum. It is immediately obvious that the direct sum 

b= ©br 
r = 0 

is an ideal in T(E\ and hence that S(E) is a graded R-algebra, which is called the 
symmetric algebra of E. 

Furthermore, the canonical map 

Eir) - Sr(E) 

obtained by composing the maps 

Eir) -► T\E) -► Tr(E)/br = 5r(F) 

is universal for r-multilinear symmetric maps. 
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We observe that S is a functor, from the category of modules to the category 

of graded R-algebras. The image of (xj,..., xr) under the canonical map 

£(r) - Sr(E) 

will be denoted simply by xx • xr. 

Proposition 8.1. Let E be free of dimension n over R. Let {vl9 ..., vn} be a 

basis of E over k. Viewed as elements ofS\E) in S(E), these basis elements are 

algebraically independent over R, and S(E) is therefore isomorphic to the 

polynomial algebra in n variables over R. 

Proof Let tl9 ..., tn be algebraically independent variables over R, and 
form the polynomial algebra R[ti9..., t„]. Let Pr be the R-module of homo¬ 
geneous polynomials of degree r. We define a map of E(r) -► Pr as follows. If 
Wj,..., wr are elements of E which can be written 

n 

Wi = £ aivvv, i= 1,r, 
V = 1 

then our map is given by 

(wi,..., vvr)i—► (flnfj 4- • • • 4- alntn) • ■ • (a^tj^ + • • • + arntn). 

It is obvious that this map is multilinear and symmetric. Hence it factors 
through a linear map of Sr(E) into Pr \ 

Pr 

From the commutativity of our diagram, it is clear that the element vix • • • vis in 
Sr(E) maps on tix • • • tis in Pr for each r-tuple of integers (i) — (iu , ir). Since 
the monomials M(i)(t) of degree r are linearly independent over k, it follows that 
the monomials M{i)(v) in Sr(E) are also linearly independent over R, and that 
our map Sr(E) -> Pr is an isomorphism. One verifies at once that the multiplica¬ 
tion in S(E) corresponds to the multiplication of polynomials in R[t]9 and thus 
that the map of S(E) into the polynomial algebra described as above for each 
component Sr(E) induces an algebra-isomorphism of S(E) onto K[r], as desired. 

Proposition 8.2. Let E = E' © E" be a direct sum of finite free modules. 

Then there is a natural isomorphism 

5"(F © E") % 0 SpE' ® SqE". 
p + q-n 

In fact, this is but the n-part of a graded isomorphism 

S(E' © E") x SE' ® SE". 
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Proof. The isomorphism comes from the following maps. The inclusions 
of E' and E" into their direct sum give rise to the functorial maps 

SE' ® SE" -> SE, 

and the claim is that this is a graded isomorphism. Note that SE' and SE" are 
commutative rings, and so their tensor product is just the tensor product of 
commutative rings discussed in §6. The reader can either give a functorial map 
backward to prove the desired isomorphism, or more concretely, SE' is the 
polynomial ring on a finite family of variables, SE" is the polynomial ring in 
another family of variables, and their tensor product is just the polynomial ring 
in the two families of variables. The matter is easy no matter what, and the 
formal proof is left to the reader. 

EXERCISES 

1. Let k be a field and k(a) a finite extension. Let /(X) = Irr(a, /c, X), and suppose that /is 
separable. Let k' be any extension of k. Show that /c(a) 0 k' is a direct sum of fields. 
If k' is algebraically closed, show that these fields correspond to the embeddings of 

k(cc) in k’. 

2. Let k be a field, f(X) an irreducible polynomial over k, and a a root of /. Show that 
/c(a) 0 k’ is isomorphic, as a /c'-algebra, to k'[X]/(f(X)). 

3. Let E be a finite extension of a field k. Show that E is separable over k if and only if 
E 0* L has no nilpotent elements for all extensions L of /c, and also when L = /ca. 

4. Let cp : A —» B be a commutative ring homomorphism. Let E be an A-module and F 
a 5-module. Let FA be the A-module obtained from F via the operation of A on F 
through <p, that is for y E FA and a E A this operation is given by 

(a, y)h+(p(a)y. 

Show that there is a natural isomorphism 

Hom5(5 0^ £, F) % HornA(E, FA). 

5. The norm. Let B be a commutative algebra over the commutative ring R and assume 
that B is free of rank r. Let A be any commutative 5-algebra. Then A 0 £ is both 
an A-algebra and a 5-algebra. We view A 0 B as an A-algebra, which is also free 

of rank r. If {el9. . . , erj is a basis of B over R, then 

\A 0 el9..., \A 0 er 

is a basis of A 0 B over A. We may then define the norm 

N = NA $ B, a ' A ® B —> A 

as the unique map which coincides with the determinant of the regular representation. 
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In other words, if be B and bB denotes multiplication by b, then 

NBtR(b) = det (bB); 

and similarly after extension of the base. Prove: 
(a) Let q>: A -+ C be a homomorphism of P-algebras. Then the following diagram 

is commutative: 

A ®B— >C(g)B 

1 
4 

r 
-► C 
<p 

(b) Let x, ye A ® B. Then N(x 0fly) = N(x) 0 N(y). [Hint: 
mutativity relations e,?,- = and the associativity.] 

Use the com- 

A little flatness 

6. Let A/, N be flat. Show that M 0 N is flat. 

7. Let F be a flat P-module, and let a e R be an element which is not a zero-divisor. Show 
that if ax = 0 for some xeF then x = 0. 

8. Prove Proposition 3.2. 

Faithfully flat 

9. We continue to assume that rings are commutative. Let M be an 4-module. We say 
that M is faithfully flat if M is flat, and if the functor 

Tm : E M ®A E. 

is faithful, that is E ^ 0 implies M 0^, E ^ 0. Prove that the following conditions are 
equivalent. 

(i) M is faithfully flat. 

(ii) M is flat, and if u: F -► E is a homomorphism of 4-modules, u # 0, then 
Tm(u) :M®aF^>M®aE is also ^0. 

(iii) M is flat, and for all maximal ideals m of 4, we have mM ^ M. 

(iv) A sequence of 4-modules N' -► N N" is exact if and only if the sequence 
tensored with M is exact. 

10. (a) Let A ^ B be a ring-homomorphism. If M is faithfully flat over 4, then B ®AM 
is faithfully flat over B. 

(b) Let M be faithfully flat over B. Then M viewed as 4-module via the homomorphism 
4 -► B is faithfully flat over 4 if B is faithfully flat over 4. 

11. Let P, M, E be modules over the commutative ring 4. If P is finitely generated (resp. 
finitely presented) and E is flat, show that the natural homomorphism 

HornA(P, M)®aE -► Hom^P, M ®A E) 

is a monomorphism (resp. an isomorphism). 
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[Hint: Let Fj-^Fo-^P-^Obea finite presentation, say. Consider the diagram 

0-> Hom^P, M) F-> Horna(F0, M) 0^ E-► Hom^Fj, M) 0^ E 

0-* Hom^P, M 0^ E)-► Hom^Fo, M 0^ E)-► Hom^Fj, M®AEy]. 

Tensor products and direct limits 

12. Show that the tensor product commutes with direct limits. In other words, if {£,} is a 
directed family of modules, and M is any module, then there is a natural isomorphism 

lim(FI 0,4 M) « (lim F,) ®AM. 

13. (D. Lazard) Let E be a module over a commutative ring A. Tensor products are all 
taken over that ring. Show that the following conditions are equivalent: 

(i) There exists a direct family {F,} of free modules of finite type such that 

E & lim Fj. 

(ii) E is flat. 

(iii) For every finitely presented module P the natural homomorphism 

Hom^P, A) ®A E -♦ Hom^P, E) 

is surjective. 

(iv) For every finitely presented module P and homomorphism /: P -► E there 
exists a free module F, finitely generated, and homomorphisms 

g : P -> F and h :F -► F 

such that / = h ° g. 

Remark. The point of Lazard’s theorem lies in the first two conditions: E is flat 
if and only if E is a direct limit of free modules of finite type. 

[Hint: Since the tensor product commutes with direct limits, that (i) implies (ii) 
comes from the preceding exercise and the definition of flat. 

To show that (ii) implies (iii), use Exercise 11. 
To show that (iii) implies (iv) is easy from the hypothesis. 
To show that (iv) implies (i), use the fact that a module is a direct limit of finitely 

presented modules (an exercise in Chapter III), and (iv) to get the free modules 
instead. For complete details, see for instance Bourbaki, Algebre, Chapter X, §1, 
Theorem 1, p. 14.] 

The Casimir element 

14. Let A: be a commutative field and let E be a vector space over F, of finite dimension 
n. Let B be a nondegenerate symmetric bilinear form on F, inducing an iso- 
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morphism E —> Ey of E with its dual space. Let {i?i,..., vn} be a basis of E. The B- 
dual basis {t^',..., v'n} consists of the elements of E such that B(vi, vj) = Sy. 

(a) Show that the element ^ vi 0 v[ in E 0 E is independent of the choice of 
basis. We call this element the Casimir element (see below). 

(b) In the symmetric algebra S(E), let QB = Ylviv!- Show that QB is indepen¬ 
dent of the choice of basis. We call QB the Casimir polynomial. It depends on 

B, of course. 
(c) More generally, let D be an (associative) algebra over k, let E —► D be an 

injective linear map of E into D. Show that the element £2 f) = 
o)B,g> is independent of the choice of basis. We call it the Casimir element in 
D, determined by Q) and B. 

Remark. The terminology of the Casimir element is determined by the classical 
case, when G is a Lie group, E = g = Lie(G) is the Lie algebra of G (tangent space at the 
origin with the Lie algebra product determined by the Lie derivative), and @(v) is the 
differential operator associated with v (Lie derivative in the direction of u). The Casimir 
element is then a partial differential operator in the algebra of all differential operators 
on G. Cf. basic books on manifolds and Lie theory, for instance [JoL 01], Chapter II, §1 
and Chapter VII, §2. 

15. Let E = sin(k) = subspace of Mat„(/:) consisting of matrices with trace 0. Let B be 
the bilinear form defined by B{X, Y) = tr(AT). Let G - SLn(k). Prove: 

(a) B is c(G)-invariant, where c(g) is conjugation by an element g e G. 
(b) B is invariant under the transpose (X, Y) ^ ^X/Y). 
(c) Let k = R. Then B is positive definite on the symmetric matrices and nega¬ 

tive definite on the skew-symmetric matrices. 
(d) Suppose G is given with an action on the algebra D of Exercise 14, and that 

the linear map E —> D is G-linear. Show that the Casimir element is G- 
invariant (for the conjugation action on S(E), and the given action on D). 



CHAPTER XVII 
Semisimplicity 

In many applications, a module decomposes as a direct sum of simple sub- 
modules, and then one can develop a fairly precise structure theory, both under 
general assumptions, and particular applications. This chapter is devoted to 
those results which can be proved in general. In the next chapter, we consider 
those additional results which can be proved in a classical and important special 
case. 

I have more or less followed Bourbaki in the proof of Jacobson’s density 
theorem. 

§1. MATRICES AND LINEAR MAPS OVER 
NON-COMMUTATIVE RINGS 

In Chapter XIII, we considered exclusively matrices over commutative 
rings. For our present purposes, it is necessary to consider a more general 
situation. 

Let K be a ring. We define a matrix (<pfj) with coefficients in K just as we 
did for commutative rings. The product of matrices is defined by the same 
formula. Then we again have associativity and distributivity, whenever the 
size of the matrices involved in the operations makes the operations defined. 
In particular, the square n x n matrices over K form a ring, again denoted by 
Mat„(K). We have a ring-homomorphism 

K - Mat„(K) 

on the diagonal. 

641 
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By a division ring we shall mean a ring with 1 # 0, and such that every 
non-zero element has a multiplicative inverse. 

If X is a division ring, then every non-zero X-module has a basis, and the 
cardinalities of two bases are equal. The proof is the same as in the commutative 
case; we never needed commutativity in the arguments. This cardinality is 
again called the dimension of the module over K, and a module over a division 
ring is called a vector space. 

We can associate a matrix with linear maps, depending on the choice of a 
finite basis, just as in the commutative case. However, we shall consider a 
somewhat different situation which we want to apply to semisimple modules. 

Let R be a ring, and let 

E = Ex ® • • • ® F = Fj © • • • ® Fm 

be K-modules, expressed as direct sums of X-submodules. We wish to describe 
the most general K-homomorphism of E into F. 

Suppose first F = Fj has one component. Let 

<p:Ei ©•••©£„ ->F 

be a homomorphism. Let (pj: Ej -► F be the restriction of cp to the factor E-r 
Every element x e E has a unique expression x = xt + • • • + x„, with Xj e Er 
We may therefore associate with x the column vector X = *(xl9..., x„), whose 
components are in Eu ..., En respectively. We can associate with cp the row 
vector (q>u ..., cpn)9 (p} e HornR(Ej9 F), and the effect of (p on the element x of 
E is described by matrix multiplication, of the row vector times the column 
vector. 

More generally, consider a homomorphism 

(p ' Ex ® • * • © En -► Fx © • • • © Fm. 

Let ni:Fl © • • • © Fm -► F{ be the projection on the j-th factor. Then we can 
apply our previous remarks to ° cp, for each i. In this way, we see that there 
exist unique elements (p^ e Hom^(Ej, F*), such that (p has a matrix representa¬ 
tion 

M(«p) = 

whose effect on an element x is given by matrix multiplication, namely 
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Conversely, given a matrix (tpifi with cpu e HornR(Ej9 Ft), we can define an 
element of HornR(E, F) by means of this matrix. We have an additive group- 
isomorphism between Hom^F, F) and this group of matrices. 

In particular, let E be a fixed R-module, and let K = End*(F). Then we have 
a ring-isomorphism 

End*(£<">) - Matn(K) 

which to each cp e EndR(E(n)) associates the matrix 

determined as before, and operating on the left on column vectors of E{n\ with 
components in E. 

Remark. Let £ be a 1-dimensional vector space over a division ring D, 
and let {i;} be a basis. For each ae D, there exists a unique D-linear map 
fa:E -+ E such that fa(v) = av. Then we have the rule 

fa fb = fba • 

Thus when we associate a matrix with a linear map, depending on a basis, the 
multiplication gets twisted. Nevertheless, the statement we just made preceding 
this remark is correct!! The point is that we took the <p{j in EndK(F), and not 
in D, in the special case that R = D. Thus K is not isomorphic to D (in the 
non-commutative case), but anti-isomorphic. This is the only point of difference 
of the formal elementary theory of linear maps in the commutative or non- 
commutative case. 

We recall that an R-module E is said to be simple if it is # 0 and if it has no 
submodule other than 0 or E. 

Proposition 1.1. Schur’s Lemma. Let E, F be simple R-modules. Every 
non-zero homomorphism of E into F is an isomorphism. The ring EndR(E) is 
a division ring. 

Proof. Let/: E -► F be a non-zero homomorphism. Its image and kernel 
are submodules, hence Ker / = 0 and Im / = F. Hence /is an isomorphism. 
If E = F, then / has an inverse, as desired. 

The next proposition describes completely the ring of endomorphisms of a 
direct sum of simple modules. 

Proposition 1.2. Let E = E("l) © • • • © Fj."r) be a direct sum of simple 
modules, the Et being non-isomorphic, and each E{ being repeated n{ times in 
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the sum. Then, up to a permutation, £1?..., Er are uniquely determined up 

to isomorphisms, and the multiplicities nl,...,nr are uniquely determined. 

The ring EndR(£) is isomorphic to a ring of matrices, of type 

where Af, is an nf x nt matrix over EndK(£,). (The isomorphism is the one 

with respect to our direct sum decomposition.) 

Proof. The last statement follows from our previous considerations, taking 
into account Proposition 1.1. 

Suppose now that we have two /^-modules, with direct sum decompositions 
into simple submodules, and an isomorphism 

E\ni) 0 • • • © E(rnr) - F\mi) © • • • © 

such that the £, are non-isomorphic, and the Fj are non-isomorphic. From 
Proposition 1.1, we conclude that each £, is isomorphic to some £,-, and con¬ 
versely. It follows that r = s, and that after a permutation, £, % £,. Further¬ 
more, the isomorphism must induce an isomorphism 

£(«.) f(mi) 

for each i. Since £, « £,, we may assume without loss of generality that in 
fact £, = £,. Thus we are reduced to proving: If a module is isomorphic to 
E(n) and to £(m), with some simple module £, then n = m. But EndK(£(n)) is 
isomorphic to the n x n matrix ring over the division ring EndK(£) = K. 

Furthermore this isomorphism is verified at once to be an isomorphism as 
K-vector space. The dimension of the space of n x n matrices over K is n2. 

This proves that the multiplicity n is uniquely determined, and proves our 
proposition. 

When £ admits a (finite) direct sum decomposition of simple submodules, 
the number of times that a simple module of a given isomorphism class occurs 
in a decomposition will be called the multiplicity of the simple module (or of 
the isomorphism class of the simple module). 

Furthermore, if 

E = E\ni) © •. • © £<"r) 

is expressed as a sum of simple submodules, we shall call nx + • • • + nr the 
length of £. In many applications, we shall also write 

r 

E = © • • • © nrEr = (J) «,£,. 
i = 1 
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§2. CONDITIONS DEFINING SEMISIMPLICITY 

Let R be a ring. Unless otherwise specified in this section all modules and 

homomorphisms will be R-modules and R-homomorphisms. 

The following conditions on a module E are equivalent: 

SS 1. E is the sum of a family of simple submodules. 

SS 2. E is the direct sum of a family of simple submodules. 

SS3. Every submodule F of E is a direct summand, i.e. there exists a 
submodule F' such that E = F © F'. 

We shall now prove that these three conditions are equivalent. 

Lemma 2.1. Let E = 2 be a sum (not necessarily direct) of simple sub- 
ze/ 

modules. Then there exists a subset Jc / such that E is the direct sum 

®Ej. 
j^J 

Proof. Let J be a maximal subset of / such that the sum £ Ej is direct. 
jeJ 

We contend that this sum is in fact equal to E. It will suffice to prove that each 
Et is contained in this sum. But the intersection of our sum with F, is a sub- 
module of Ff, hence equal to 0 or Ej. If it is equal to 0, then J is not maximal, 
since we can adjoin i to it. Hence E{ is contained in the sum, and our lemma is 
proved. 

The lemma shows that SS 1 implies SS 2. To see that SS 2 implies SS 3, take 
a submodule F, and let J be a maximal subset of / such that the sum F + 

jeJ 

is direct. The same reasoning as before shows that this sum is equal to E. 

Finally assume SS3. To show SS 1, we shall first prove that every non-zero 
submodule of E contains a simple submodule. Let v e F, v =£ 0. Then by 
definition, Rv is a principal submodule, and the kernel of the homomorphism 

R^Rv 

is a left ideal L # R. Hence L is contained in a maximal left ideal M # R 

(by Zorn’s lemma). Then M/L Is a maximal submodule of R/L (unequal to 
R/L\ and hence Mv is a maximal submodule of Rv, unequal to Rv, correspond¬ 
ing to M/L under the isomorphism 

R/L - Rv. 
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We can write E = Mv © M' with some submodule AF. Then 

Rv = Mv © (Af n Fi?), 

because every element x e Rv can be written uniquely as a sum x = av -f- x' 
with a e M and x' e Af', and x' = x - av lies in Rv. Since Mv is maximal in 
Rv, it follows that Af' fl Fi; is simple, as desired. 

Let E0 be the submodule of E which is the sum of all simple submodules of 
E. If E0 # E, then E = E0 © F with F^O, and there exists a simple sub- 
module of F, contradicting the definition of E0. This proves that SS 3 implies 
SSI. 

A module E satisfying our three conditions is said to be semisimple. 

Proposition 2.2. Every submodule and every factor module of a semisimple 

module is semisimple. 

Proof. Let F be a submodule. Let F0 be the sum of all simple submodules 
of F. Write E = F0 © F'0. Every element x of F has a unique expression 
x = x0 4- x'0 with x0 g F0 and x'0 e F'0. But x'0 = x — x0 e F. Hence F is 
the direct sum 

F = F0 © (F n F'0). 

We must therefore have F0 = F, which is semisimple. As for the factor module, 
write E = F © F'. Then F' is a sum of its simple submodules, and the canonical 
map E -► E/F induces an isomorphism of F' onto E/F. Hence E/F is semisimple. 

§3. THE DENSITY THEOREM 

Let E be a semisimple F-module. Let R’ = R'(E) be the ring End/?(F). Then 
E is also a Rf-module, the operation of R’ on E being given by 

(<p, x) i ► cp(x) 

for cp e Rf and x e E. Each a e R induces a R'-homomorphism fa: E —» E by 
the map fa(x) = ax. This is what is meant by the condition 

cp(ax) = a (p{x). 

We let R” = R"(E) = End^^F). We call Rf the commutant of R and R” the 
bicommutant. Thus we get a ring-homomorphism 

R EndR'(E) = R\E) = R" 
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by a fa. We now ask how big is the image of this ring-homomorphism. 
The density theorem states that it is quite big. 

Lemma 3.1. Let E be semisimple over R. Let R' = EndR(E)9f e End^/E) 
as above. Let x e R. There exists an element a e R such that ax = f(x). 

Proof. Since E is Semisimple, we can write an E-direct sum 

E = Rx © F 

with some submodule F. Let tt: E —* Rx be the projection. Then it e R\ and 
hence 

f(x) = f(nx) = nf(x). 

This shows that /(x) e Rx, as desired. 

The density theorem generalizes the lemma by dealing with a finite number 
of elements of E instead of just one. For the proof, we use a diagonal trick. 

Theorem 3.2. (Jacobson). Let E be semisimple over R, and let 

R' = Endfl(£). Let f e Endfl(E). Let xx,..., xn e E. Then there exists an 

element a e R such that 

ax( =f(Xi) for i=1,...,/i. 

IfE is finitely generated over Rthen the natural map R —» End^E) is surjective. 

Proof. For clarity of notation, we shall first carry out the proof in case E 

is simple. Let f{n): E{n) -► E(n) be the product map, so that 

fn)iyu--,yn) = if (y J,..., f(yn))- 

Let R'n = EndR(Ejn)). Then R'n is none other than the ring of matrices with 
coefficients in R'. Since/commutes with elements of R' in its action on £, one 
sees immediately that/(n) is in End^(E(n)). By the lemma, there exists an element 
a e R such that 

(axi,..., ocx„) = (/(xO,..., /(x„)), 

which is what we wanted to prove. 
When E is not simple, suppose that E is equal to a finite direct sum of simple 

submodules Et (non-isomorphic), with multiplicities nz: 

£ = £<"!> ® ... ® (Ei^Ej if i / 7), 

then the matrices representing the ring of endomorphisms split according to 
blocks corresponding to the non-isomorphic simple components in our direct 
sum decomposition. Hence here again the argument goes through as before. 
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The main point is that/(n) lies in End^(£(,,)), and that we can apply the lemma. 
We add the observation that if E is finitely generated over/?', then an element 

/e Endfl'(Zs) is determined by its value on a finite number of elements of E, so 
the asserted surjectivity R —> End^^E) follows at once. In the applications 
below, E will be a finite dimensional vector space over a field k, and R will be 
a k-algebra, so the finiteness condition is automatically satisfied. 

The argument when E is an infinite direct sum would be similar, but the 
notation is disagreeable. However, in the applications we shall never need the 
theorem in any case other than the case when E itself is a finite direct sum of 
simple modules, and this is the reason why we first gave the proof in that case, 
and let the reader write out the formal details in the other cases, if desired. 

Corollary 3.3. (Burnside’s Theorem). Let E be a finite-dimensional 

vector space over an algebraically closed field k, and let R be a subalgebra of 

End*(E). If E is a simple R-module, then R = End^E). 

Proof. We contend that EndR(E) = k. At any rate, EndR(E) is a division 
ring /?', containing k as a subring and every element of k commutes with every 
element of R'. Let a e /?'. Then k(a) is a field. Furthermore, R' is contained in 
End^E) as a E-subspace, and is therefore finite dimensional over k. Hence k{a) 
is finite over £, and therefore equal to k since k is algebraically closed. This 
proves that EndR(E) = k. Let now {vu ..., vn} be a basis of E over k. Let 
A e End*(E). According to the density theorem, there exists a e R such that 

at;, = Av{ for i = I,..., n. 

Since the effect of A is determined by its effect on a basis, we conclude that 
R = End k(E). 

Corollary 3.3 is used in the following situation as in Exercise 8. Let E 
be a finite-dimensional vector space over field k. Let G be a submonoid of 
GE(E) (multiplicative). A G-invariant subspace F of E is a subspace such that 
o-F C F for all a e G. We say that E is G-simple if it has no G-invariant 
subspace other than 0 and E itself, and E =k 0. Let R = k[G] be the subalgebra 
of End*(E) generated by G over k. Since we assumed that G is a monoid, it 
follows that R consists of linear combinations 

with a{ e k and ox e G. Then we see that a subspace F of E is G-invariant if and 
only if it is E-invariant. Thus E is G-simple if and only if it is simple over R in 
the sense which we have been considering. We can then restate Burnside’s 
theorem as he stated it: 

Corollary 3.4. Let E be a finite dimensional vector space over an alge¬ 

braically closed field k, and let G be a (multiplicative) submonoid of GL(E). 
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If E is G-simple, then /c[G] = Endk(E). 

When k is not algebraically closed, then we still get some result. Quite 
generally, let R be a ring and E a simple R-module. We have seen that End*(E) 
is a division ring, which we denote by D, and E is a vector space over D. 

Let R be a ring, and E any R-module. We shall say that E is a faithful 
module if the following condition is satisfied. Given ole R such that ax = 0 
for all x e E, we have a = 0. In the applications, E is a vector space over a field 
k, and we have a ring-homomorphism of R into End*(E). In this way, E is an 
E-module, and it is faithful if and only if this homomorphism is injective. 

Corollary 3.5. (Wedderburn’s Theorem). Let R be a ring, and E a simple, 

faithful module over R. Let D = EndR(E), and assume that E is finite dimen¬ 

sional over D. Then R = EndD(E). 

Proof. Let {vu ..., vn} be a basis of E over D. Given A e EndD(E), by 
Theorem 3.2 there exists a e R such that 

ctVi = Av{ for n. 

Hence the map R -► EndD(E) is surjective. Our assumption that E is faithful 
over R implies that it is injective, and our corollary is proved. 

Example. Let R be a finite-dimensional algebra over a field k, and assume 
that R has a unit element, so is a ring. If R does not have any two-sided ideals 
other than 0 and R itself, then any nonzero module E over R is faithful, because 
the kernel of the homomorphism 

R - Endfc(E) 

is a two-sided ideal ^ R. If E is simple, then E is finite dimensional over k. 

Then D is a finite-dimensional division algebra over k. Wedderburn’s theorem 
gives a representation of R as the ring of D-endomorphisms of E. 

Under the assumption that R is finite dimensional, one can find a simple 
module simply by taking a minimal left ideal =k 0. Such an ideal exists merely 
by taking a left ideal of minimal non-zero dimension over k. An even shorter 
proof of Wedderburn’s theorem will be given below (Rieffel’s theorem) in this 
case. 

Corollary 3.6. Let R be a ring, finite dimensional algebra over a field k which 

is algebraically closed. Let V be a finite dimensional vector space over k, with 

a simple faithful representation p: R—> End*(V). Then p is an isomorphism, 
in other words, R ~ Matn(k). 

Proof. We apply Corollary 3.5, noting that D is finite dimensional over 
k. Given a e D, we note that k(a) is a commutative subfield of D, whence 
k(a) = k by assumption that k is algebraically closed, and the corollary follows. 
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Note. The corollary applies to simple rings, which will be defined below. 

Suppose next that Vi,...» Vm are finite dimensional vector spaces over a field 
k9 and that R is a ^-algebra with representations 

R End*(V9, i = 1,. . . , m, 

so V- is an /^-module. If we let 

E = V, © • • • © Vm9 

then E is finite over R'(E), so we get the following consequence of Jacobson’s 
density theorem. 

Theorem 3.7. Existence of projection operators. Let k be a field, R a 

k-algebra, and Vx,..., Vm finite dimensional k-spaces which are also simple 

R-modules, and such that Vt is not R-isomorphic to Vj for i =£ j. Then there 

exist elements et e R such that et acts as the identity on V; and e^Vj = 0 

Proof. We observe that the projection f from the direct sum E to the i-th 
factor is in End^E), because if cp e R' then <p(Vj) C Vj for all j. We may therefore 
apply the density theorem to conclude the proof. 

Corollary 3.8. (Bourbaki). Let k be a field of characteristic 0. Let R be 

a k-algebra, and let E, F be semisimple R-modules, finite dimensional over k. 

For each a e R, let aE, aF be the corresponding k-endomorphisms on E and 

F respectively. Suppose that the traces are equal; that is, 

tr(aE) = tr(aF) for all a e. R. 

Then E is isomorphic to F as R-module. 

Proof. Each of E and F is isomorphic to a finite direct sum of simple R- 

modules, with certain multiplicities. Let V be a simple /^-module, and suppose 

E = © direct summands not isomorphic to V 

F = V(m) © direct summands not isomorphic to V. 

It will suffice to prove that m = n. Let ev be the element of R found in Theorem 
3.7 such that ev acts as the identity on V, and is 0 on the other direct summands 
of E and F. Then 

tr(££) = ndinifc(V) and tr(eF) = mdim*(V). 

Since the traces are equal by assumption, it follows that m = n, thus concluding 
the proof. Note that the characteristic 0 is used here, because the values of the 
trace are in k. 

Example. In the language of representations, suppose G is a monoid, and 
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we have two semisimple representations into finite dimensional ^-spaces 

p : G —> End*(F) and p': G —> End*(F) 

(so p and p' map G into the multiplicative monoid of End*). Assume that 
tr p(cr) = tr p'(er) for all cr e G. Then p and p' are isomorphic. Indeed, we let 
R = k[G], so that p and p' extend to representations of R. By linearity, one has 
that tr p(a) = tr p'(a) for all a e F, so one can apply Corollary 3.8. 

§4. SEMISIMPLE RINGS 

A ring R is called semisimple if 1 / 0, and if R is semisimple as a left module 
over itself. 

Proposition 4.1. If R is semisimple, then every R-module is semisimple. 

Proof. An R-module is a factor module of a free module, and a free module 
is a direct sum of R with itself a certain number of times. We can apply Proposi¬ 
tion 2.2 to conclude the proof. 

Examples. 1) Let ^ be a field and let R = Matn(k) be the algebra of 
n x n matrices over k. Then R is semisimple, and actually simple, as we shall 
define and prove in §5, Theorem 5.5. 

2) Let G be a finite group and suppose that the characteristic of k does not 
divide #(G). Then the group ring k[G] is semisimple, as we shall prove in Chapter 
XVIII, Theorem 1.2. 

3) The Clifford algebras Cn over the real numbers are semisimple. See Exer¬ 
cise 19 of Chapter XIX. 

A left ideal of R is an F-module, and is thus called simple if it is simple as a 
module. Two ideals L, L are called isomorphic if they are isomorphic as 
modules. 

We shall now decompose R as a sum of its simple left ideals, and thereby 
get a structure theorem for R. 

Let {L,}ie/ be a family of simple left ideals, no two of which are isomorphic, 
and such that each simple left ideal is isomorphic to one of them. We say that 
this family is a family of representatives for the isomorphism classes of simple 
left ideals. 

Lemma 4.2. Let L be a simple left ideal, and let E be a simple R-module. 

If L is not isomorphic to E, then LE = 0. 

Proof. We have RLE = LE, and LE is a submodule of F, hence equal to 
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0 or E. Suppose LE = E. Let y e E be such that 

Ly # 0. 

Since Ly is a submodule of E, it follows that Ly = E. The map a i—► ocy of L 

into E is a homomorphism of L into £, which is surjective, and hence nonzero. 
Since L is simple, this homomorphism is an isomorphism. 

Let 

«,= 
Li 

be the sum of all simple left ideals isomorphic to Lf. From the lemma, we con¬ 
clude that R{Rj = 0 if i # j. This will be used constantly in what follows. We 
note that R, is a left ideal, and that R is the sum 

R = I 
iel 

because R is a sum of simple left ideals. Hence for any j e /, 

Rj c= RjR = RjRj a R7, 

the first inclusion because R contains a unit element, and the last because Rj 

is a left ideal. We conclude that Rj is also a right ideal, i.e. Rj is a two-sided 
ideal for all j e /. 

We can express the unit element 1 of R as a sum 

1 = Z ei 
iel 

with g Rj. This sum is actually finite, almost all e, = 0. Say e, # 0 for 
indices i = 1,..., 5, so that we write 

I = e, + ••• + es. 

For any xeR, write 

X = XjeKi. 
iel 

For j = 1,..., 5 we have ejX = e}Xj and also 

Xj = 1 • = £?jX; + • • • + x j = ejXj. 

Furthermore, x = etx H- • • • + esx. This proves that there is no index i 

other than i = 1,..., s and also that the i-th component x, of x is uniquely 
determined as evx = e,x,. Hence the sum R = R{ + • • • + Rs is direct, and 
furthermore, ex is a unit element for Rh which is therefore a ring. Since 
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RiRj = 0 for i # j, we find that in fact 

* = n *i 
i = 1 

is a direct product of the rings R(. 

A ring R is said to be simple if it is semisimple, and if it has only one 
isomorphism class of simple left ideals. We see that we have proved a structure 
theorem for semisimple rings: 

Theorem 4.3. Let R be semisimple. Then there is only a finite number of 

non-isomorphic simple left ideals, say Ll9...,Ls. If 

Ri= IL 
L - Li 

is the sum of all simple left ideals isomorphic to L,, then Rt is a two-sided ideal, 

which is also a ring (the operations being those induced by R), and R is ring 

isomorphic to the direct product 

* = n 
i = 1 

Each Rt is a simple ring. If et is its unit element, then 1 = ex + • • • + es, and 

Rt = Ret. We have e^j = 0 if i ^ j. 

We shall now discuss modules. 

Theorem 4.4. Let R be semisimple, and let E be an R-module / 0. Then 

E = 0 RiE = 0 e,Et 
i= 1 i= 1 

and R(E is the submodule of E consisting of the sum of all simple submodules 

isomorphic to L, . 

Proof. Let Et be the sum of all simple submodules of E isomorphic to L,. 
If V is a simple submodule of E, then RV = V, and hence L, V — V for some i. 

By a previous lemma, we have L( % V. Hence E is the direct sum of Eu ..., Es. 

It is then clear that R(E = E{. 

Corollary 4.5. Let R be semisimple. Every simple module is isomorphic to 

one of the simple left ideals Lf . 

Corollary 4.6. A simple ring has exactly one simple module, up to iso¬ 

morphism. 
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Both these corollaries are immediate consequences of Theorems 4.3 and 4.4. 

Proposition 4.7. Let k be a field and E a finite dimensional vector space 

over k. Let S be a subset of Endk(E). Let R be the k-algebra generated by the 

elements of S. Then R is semisimple if and only if E is a semisimple R (or S) 
module. 

Proof. If R is semisimple, then E is semisimple by Proposition 4.1. Con¬ 
versely, assume E semisimple as 5-module. Then E is semisimple as R-module, 
and so is a direct sum 

£ = ©£,• 
i= 1 

where each £, is simple. Then for each i there exists an element vt e £, such 
that E( = Rvt. The map 

X i—► (xvi9..., xvn) 

is a /^-homomorphism of R into E, and is an injection since R is contained in 
End*(L). Since a submodule of a semisimple module is semisimple by Proposi¬ 
tion 2.2, the desired result follows. 

§5. SIMPLE RINGS 

Lemma 5.1. Let R be a ring, and \j/ e Endr(R) a homomorphism of R into 

itself viewed as R-module. Then there exists a e R such that \j/(x) = xa/or 

all xe R. 

Proof. We have ij/(x) = \j/(x • 1) = xi^(l). Let a = ^(1). 

Theorem 5.2. Let Rbe a simple ring. Then R is a finite direct sum of simple 

left ideals. There are no two-sided ideals except 0 and R. If L, M are simple 

left ideals, then there exists a e R such that La = M. We have LR = R. 

Proof. Since R is by definition also semisimple, it is a direct sum of simple 
m 

left ideals, say ©£/• We can write 1 as a finite sum 1 = 2 fy, with /3y e Lj. 
j£j j= 1 

m m 

R = © Rfh - © Lj. 

Then 
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This proves our first assertion. As to the second, it is a consequence of the 
third. Let therefore L be a simple left ideal. Then LR is a left ideal, because 
RLR = LR, hence (R being semisimple) is a direct sum of simple left ideals, 
say 

LR = @Lj, L = Lv 
j=\ 

Let M be a simple left ideal. We have a direct sum decomposition R = L®L. 

Let n: R -► L be the projection. It is an R-endomorphism. Let o: L -> M be 
an isomorphism (it exists by Theorem 4.3). Then a ° n : R -► R is an R-endo¬ 
morphism. By the lemma, there exists ole R such that 

cr o n(x) = xa for all x e R. 

Apply this to elements x e L. We find 

<x(x) = xa for all x e L. 

The map x i—► xa is a R-homomorphism of L into M, is non-zero, hence is an 
isomorphism. From this it follows at once that LR = R, thereby proving our 
theorem. 

Corollary 5.3. Let R be a simple ring. Let E be a simple R-module, and L 

a simple left ideal of R. Then LE = E and E is faithful. 

Proof. We have LE = L(RE) = (LR)E = RE = E. Suppose aE = 0 
for some a e R. Then RolRE = RclE = 0. But RclR is a two-sided ideal. Hence 
RclR = 0, and a = 0. This proves that E is faithful. 

Theorem 5.4. (Rieffel). Let R be a ring without two-sided ideals except 0 
and R. Let L be a nonzero left ideal, R' = End^(L) and R" = EndR (L). 

Then the natural map X : R -> R" is an isomorphism. 

Proof. The kernel of A is a two-sided ideal, so X is injective. Since LR 

is a two-sided ideal, we have LR = R and X(L)X(R) = X(R). For any x, y e L, 

and / e R", we have /(xy) = /(x)y, because right multiplication by y is an 
R-endomorphism of L. Hence X(L) is a left ideal of R", so 

R" = R"A(R) = R"A(L)A(R) = X(L)X(R) = X(R), 

as was to be shown. 

In Rieffel’s theorem, we do not need to assume that L is a simple module. 
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On the other hand, L is an ideal. So this theorem is not equivalent with previous 
ones of the same nature. In §7, we shall give a very general condition under 
which the canonical homomorphism 

R -► R" 

of a ring into the double endomorphism ring of a module is an isomorphism. 
This will cover all the previous cases. 

As pointed out in the example following Wedderburn’s theorem, Rieffel’s 
theorem applies to give another proof when R is a finite-dimensional algebra 
(with unit) over a field k. 

The next theorem gives a converse, showing that matrix rings over division 
algebras are simple. 

Theorem 5.5. Let D be a division ring, and E a finite-dimensional vector 

space over D. Let R = EndD(E). Then R is simple and E is a simple R-module. 

Furthermore, D = End R(E). 

Proof. We first show that E is a simple R-module. Let v e E, v # 0. Then 
v can be completed to a basis of E over D, and hence, given w e £, there exists 
a 6 R such that av = w. Hence E cannot have any invariant subspaces other 
than 0 or itself, and is simple over R. It is clear that E is faithful over R. Let 
{vu ..., vm) be a basis of E over D. The map 

ott-+(otvl9..., otvm) 

of R into E(m) is an R-homomorphism of R into E(m\ and is injective. Given 
(wj,..., wm) e E{m\ there exists a g R such that avt = w, and hence R is R- 
isomorphic to E{m). This shows that R (as a module over itself) is isomorphic 
to a direct sum of simple modules and is therefore semisimple. Furthermore, 
all these simple modules are isomorphic to each other, and hence R is simple 
by Theorem 4.3. 

There remains to prove that D = EndR(E). We note that E is a semisimple 
module over D since it is a vector space, and every subspace admits a com¬ 
plementary subspace. We can therefore apply the density theorem (the roles 
of R and D are now permuted!). Let cpe EndR(E). Let ve E, v # 0. By the 

density theorem, there exists an element ae D such that q>{v) = av. Let we E. 

There exists an element / g R such that f(v) = w. Then 

<P(w) = cp(f(v)) = f(cp(v)) = f(av) = af{v) = aw. 

Therefore cp(w) = aw for all w e E. This means that cp e Z), and concludes our 
proof. 

Theorem 5.6. Let k be a field and E a finite-dimensional vector space of 
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dimension m over k. Let R = End*(£). Then R is a k-space, and 

dim* R = m2. 

Furthermore, m is the number of simple left ideals appearing in a direct sum 

decomposition of R as such a sum. 

Proof. The /c-space of /c-endomorphisms of E is represented by the space 
of m x m matrices in k, so the dimension of R as a k-space is m2. On the other 
hand, the proof of Theorem 5.5 showed that R is /^-isomorphic as an R-module 
to the direct sum E(m). We know the uniqueness of the decomposition of a 
module into a direct sum of simple modules (Proposition 1.2), and this proves 
our assertion. 

In the terminology introduced in §1, we see that the integer m in Theorem 
5.6 is the length of R. 

We can identify R = Endk(E) with the ring of matrices Matm(k), once a 
basis of E is selected. In that case, we can take the simple left ideals to be the 
ideals L, (i = 1,..., m) where a matrix in L, has coefficients equal to 0 except 
in the i-th column. An element of Lx thus looks like 

We see that R is the direct sum of the m columns. 
We also observe that Theorem 5.5 implies the following: 

If a matrix M e Matm(k) commutes with all elements of Matm(fc), then M is a 

scalar matrix. 

Indeed, such a matrix M can then be viewed as an K-endomorphism of £, 
and we know by Theorem 5.5 that such an endomorphism lies in k. Of course, 
one can also verify this directly by a brute force computation. 

§6. THE JACOBSON RADICAL, BASE CHANGE, 
AND TENSOR PRODUCTS 

Let R be a ring and let M be a maximal left ideal. Then R/M is an /^-module, 
and actually R/M is simple. Indeed, let J be a submodule of R/M with 
J =£ R/M. Let J be its inverse image in R under the canonical homomorphism. 
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Then J is a left ideal =£ M because J =£ R/M, so 7 = R and J = 0. Conversely, 
let E be a simple /^-module and let v e £, p =£ 0. Then /to is a submodule =£ 0 
of E, and hence /to = £. Let M be the kernel of the homomorphism * i-» xv. 

Then M is a left ideal, and M is maximal; otherwise there is a left ideal M' with 
R D M' D M and M’ ± R, ± M. Then /?/M ~ E and R/M’ is a non-zero homo¬ 
morphic image of E, which cannot exist since E is simple (Schur’s lemma, 
Proposition 1.1). Thus we obtain a bijection between maximal left ideals and 
simple /^-modules (up to isomorphism). 

We define the Jacobson radical of R to be the left ideal N which is the 
intersection of all maximal left ideals of R. We may also denote N = Rad(R). 

Theorem 6.1. (a) For every simple R-module we have NE = 0. 
(b) The radical N is a two-sided ideal, containing all nilpotent two-sided ideals. 
(c) Let R he a finite dimensional algebra over field k. Its radical is {0}, if and 

only if R is semisimple. 

(d) If R is a finite dimensional algebra over a field k, then its radical N is 

nilpotent (i.e. Nr = 0 for some positive integer r). 

These statements are easy to prove, and hints will be given appropriately. See 
Exercises 1 through 5. 

Observe that under finite dimensionality conditions, the radical’s being 0 
gives us a useful criterion for a ring to be semisimple, which we shall use in 
the next result. 

Theorem 6.2. Let Abe a semisimple algebra, finite dimensional over a field 

k. Let K be a finite separable extension of k. Then K ®k A is a semisimple 

over K. 

Proof. In light of the radical criterion for semisimplicity, it suffices to prove 
that K®kA has zero radical, and it suffices to do so for an even larger extension 
than K, so that we may assume K is Galois over k, say with Galois group G. 

Then G operates on K ® A by 

a(x ® a) = ox ® a for x e K and a e A. 

Let N be the radical of K ® A. Since N is nilpotent, it follows that aN is also 
nilpotent for all a e G, whence aN = N because N is the maximal nilpotent 
ideal (Exercise 5). Let {«!,..., am} be a basis of A over k. Suppose N contains 
the element 

£ = 2 xt ® a,- ^ 0 with xj e K. 

For every y e K the element (y ® 1)£ = 2y*/ ® also lies in N. Then 

trace((y <8> 1)£) = 2 = XTr(>■*,•) 0 a,, = 2 1 0 a,Tr(yx,) 

also lies in N, and lies in 1 ® A * A, thus proving the theorem. 
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Remark. For the case when A is a finite extension of k, compare with 
Exercises 1, 2, 3 of Chapter XVI. 

Let A be a semisimple algebra, finite dimensional over a field k. Then by 
Theorem 6.2 the extension of scalars A ®k k* is semisimple if k is perfect. In 
general, an algebra A over k is said to be absolutely semisimple if A ®k k* is 
semisimple. 

We now look at semisimple algebras over an algebraically closed field. 

Theorem 6.3. Let A, B be simple algebras, finite dimensional over a 

field k which is algebraically closed. Then A ®kB is also simple. We have 

A ~ End*(V) and B ~ End^(W) where V, W are finite dimensional vector spaces 

over k, and there is a natural isomorphism 

A ®kB « End*(V W) * End*(V) ®k End*(W). 

Proof. The formula is a special case of Theorem 2.5 of Chapter XVI, and 
the isomorphisms A ~ End^(V), B ~ End*(W) exist by Wedderburn’s theorem 
or its corollaries. 

Let A be an algebra over k and let F be an extension field of k. We denote 
by AF the extension of scalars 

Ap — A ® k F. 

Thus Ap is an algebra over F. As an exercise, prove that if k is the center of A, 
then F is the center of AF. (Here we identify F with 1 ® F.) 

Let A, B be algebras over k. We leave to the reader the proof that for every 
extension field F of k, we have a natural isomorphism 

(A ®k B)f = Af ®F Bf. 

We apply the above considerations to the tensor product of semisimple 
algebras. 

Theorem 6.4. Let A, B be absolutely semisimple algebras finite dimensional 

over a field k. Then A ®kB is absolutely semisimple. 

Proof. Let F = ka. Then AF is semisimple by hypothesis, so it is a direct 
product of simple algebras, which are matrix algebras, and in particular we can 
apply Theorem 6.3 to see that Af ®F Bf has no radical. Hence A ®kB has no 
radical (because if N is its radical, then N ®k F = Nf is a nilpotent ideal of 
Af ®F Bf), whence A ®k B is semisimple by Theorem 6.1(c). 

Remark. We have proved the above tensor product theorems rapidly in 
special cases, which are already important in various applications. For a more 
general treatment, I recommend Bourbaki’s Algebra, Chapter VIII, which gives 
an exhaustive treatment of tensor products of semisimple and simple algebras. 
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§7. BALANCED MODULES 

Let R be a ring and E a module. We let £'(£) = End*(£) and 

£"(£) = End *,(£). 

Let A: R -> R” be the natural homomorphism such that A^y) = xv for x e R 

and v e E. If A is an isomorphism, we shall say that E is balanced. We shall say 
that E is a generator (for £-modules) if every module is a homomorphic image 
of a (possibly infinite) direct sum of E with itself. For example, R is a generator. 

More interestingly, in Rieffel’s Theorem 5.4, the left ideal L is a gen¬ 
erator, because LR = R implies that there is a surjective homomorphism 
Lx • • • x L —» R since we can write 1 as a finite combination 

1 = xxax + • • • + xnan with xt e L and a{ e R. 

The map (x^,..., xn) i-» xxax + • • • + xnan is a /^-homomorphism of left module 
onto R. 

If £ is a generator, then there is a surjective homomorphism Fjn) —> R (we 
can take n finite since R is finitely generated, by one element 1). 

Theorem 7.1. (Morita). Let E be an R-module. Then E is a generator if 

and only if E is balanced and finitely generated projective over £'(£). 

Proof. We shall prove half of the theorem, leaving the other half to the 
reader, using similar ideas (see Exercise 12). So we assume that £ is a generator, 
and we prove that it satisfies the other properties by arguments due to Faith. 

We first prove that for any module £, £ © £ is balanced. We identify R and 
£ as the submodules £ © 0 and 0 © £ of R © £, respectively. For w e £, 
let i/rw:£ © £ —> £ be the map i]jw(x + v) — xw. Then any / e £"(£ © £) 
commutes with 77!, 7r2, and each From this we see at once that 
f(x + v) = f(l)(x + v) and hence that £ © £ is balanced. Let £ be a gen¬ 
erator, and £(n) —> £ a surjective homomorphism. Since £ is free, we can write 
£(«) «= £ © £ for some module £, so that £(n) is balanced, Let g e R\E). 

Then g(n) commutes with every element cp = (<piy) in £'(£(n)) (with components 
(Pij e £'(£)), and hence there is some x e R such that g(n) = A^n). Hence 
g = A*, thereby proving that £ is balanced, since A is obviously injective. 

To prove that £ is finitely generated over £'(£), we have 

R'(Eyn) » Homu(£(n), £) « Hom*(£, £) © Hom*(£, £) 

as additive groups. This relation also obviously holds as £'-modules if we 
define the operation of R' to be composition of mappings (on the left). Since 
Homfl(£, £) is £'-isomorphic to £ under the map /z i—► ^(1), it follows that £ is 
an £'-homomorphic image of £,(n), whence finitely generated over £'. We also 
see that £ is a direct summand of the free £'-module £/(n) and is therefore 
projective over £'(£)• This concludes the proof. 
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EXERCISES 

The radical 

1. (a) Let R be a ring. We define the radical of R to be the left ideal N which is the inter¬ 
section of all maximal left ideals of R. Show that NE = 0 for every simple £-module 

E. Show that N is a two-sided ideal, (b) Show that the radical of R/N is 0. 

2. A ring is said to be Artinian if every descending sequence of left ideals J{ D J2 D • • • 
with J{ =£ 7i+1 is finite, (a) Show that a finite dimensional algebra over a field is 
Artinian. (b) If R is Artinian, show that every non-zero left ideal contains a simple 
left ideal, (c) If R is Artinian, show that every non-empty set of ideals contains a 

minimal ideal. 

3. Let R be Artinian. Show that its radical is 0 if and only if R is semisimple. [Hint: Get 
an injection of R into a direct sum © R/Mt where {M, } is a finite set of maximal left 

ideals.] 

4. Nakayama’s lemma. Let R be any ring and M a finitely generated module. Let N 
be the radical of R. If NM = M show that M - 0. [Hint: Observe that the proof 
of Nakayama’s lemma still holds.] 

5. (a) Let J be a two-sided nilpotent ideal of R. Show that J is contained in the radical, 
(b) Conversely, assume that R is Artinian. Show that its radical is nilpotent, i.e., 
that there exists an integer r ^ 1 such that Nr = 0. [Hint: Consider the descending 
sequence of powers Nr, and apply Nakayama to a minimal finitely generated left 
ideal Lcr such that N°°L ± 0. 

6. Let R be a semisimple commutative ring. Show that R is a direct product of fields. 

7. Let R be a finite dimensional commutative algebra over a field k. If R has no nilpotent 

element ^ 0, show that R is semisimple. 

8. (Kolchin) Let £ be a finite-dimensional vector space over a field k. Let G be a sub¬ 
group of GL(£) such that every element A e G is of type / 4- N where N is nilpotent. 
Assume E ^ 0. Show that there exists an element v e £, v # 0 such that Av = v for all 
A e G. [Hint : First reduce the question to the case when k is algebraically closed by 
showing that the problem amounts to solving linear equations. Secondly, reduce it to 
the case when £ is a simple /c[G]-module. Combining Burnside’s theorem with the 
fact that tr(/4) = tr(7) for all A e G, show that if A0 e G, A0 = / 4- A, then t^iVA") = 0 
for all X e Endk(£), and hence that N = 0, A0 = /.] 

Semisimple operations 

9. Let £ be a finite dimensional vector space over a field k. Let £ be a semisimple sub¬ 
algebra of Endfc(£). Let a,beR. Assume that 

Ker bE => Ker aE, 

where bE is multiplication by b on £ and similarly for aE. Show that there exists an 
element seR such that sa = b. [Hint: Reduce to R simple. Then R = EndD(£0) 
and £ = EftK Let vl9..., vr e £ be a D-basis for aE. Define s by s(avi) = bvt and 
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extend s by D-linearity. Then saE = bEl so sa = b.~\ 

10. Let £ be a finite-dimensional vector space over a field k. Let A e End*(£). We say 
that A is semisimple if £ is a semisimple /4-space, or equivalently, let R be the k-algebra 

generated by A, then £ is semisimple over R. Show that A is semisimple if and only 
if its minimal polynomial has no factors of multiplicity > 1 over k. 

11. Let £ be a finite-dimensional vector space over a field /c, and let S be a commutative 
set of endomorphisms of £. Let R = /c[S]. Assume that R is semisimple. Show that 

every subset of S is semisimple. 

12. Prove that an £-module £ is a generator if and only if it is balanced, and finitely 

generated projective over R'(E). Show that Theorem 5.4 is a consequence of Theorem 

7.1. 

13. Let A be a principal ring with quotient field K. Let An be n-space over A, and let 

T = A" © A" © • • • © A" 

be the direct sum of A" with itself r times. Then T is free of rank nr over A. If we view 
elements of A" as column vectors, then T is the space of n x r matrices over A. Let 
M = Mat„(A) be the ring of n x n matrices over A, operating on the left of T. By a 
lattice L in T we mean an A-submodule of rank nr over A. Prove that any such lattice 
which is M-stable is M-isomorphic to T itself. Thus there is just one M-isomorphism 
class of lattices. [Him: Let g e M be the matrix with 1 in the upper left corner and 
0 everywhere else, so g is a projection of A” on a 1-dimensional subspace. Then multi¬ 

plication on the left g: T —► Ar maps T on the space of n x r matrices with arbitrary 
first row and 0 everywhere else. Furthermore, for any lattice £ in £ the image gL is a 
lattice in Ar, that is a free A-submodule of rank r. By elementary divisors there exists 
anrxr matrix Q such that 

gL = ArQ (multiplication on the right). 

Then show that TQ = L and that multiplication by Q on the right is an M-isomorphism 

of T with L.] 

14. Let £ be a field. Let n = n(£) be the vector space of strictly upper triangular n x n 
matrices over F. Show that n is actually an algebra, and all elements of n are nilpo- 
tent (some positive integral power is 0). 

15. Conjugation representation. Let A be the multiplicative group of diagonal matrices in 
F with non-zero diagonal components. For a e A, the conjugation action of a on 
Mat„(£) is denoted by c(a), so c(a)M = aMa~x for M e Mat„(£). (a) Show that n 
is stable under this action, (b) Show that n is semisimple under this action. More 
precisely, for 1 ^ / < j ^ n, let £,y be the matrix with (//)-component 1, and all other 
components 0. Then these matrices Eij form a basis for n over £, and each Ey is an 
eigenvector for the conjugation action, namely for a = diag(fli,... ,an), we have 

aEijoTx = (ai/aj)Eij, 

so the corresponding character Xy is given by Xij(a) = (c) Show that Mat„(£) 

is semisimple, and in fact is equal to b © n ® 'n, where b is the space of diagonal 
matrices. 



CHAPTER XVIII 
Representations of Finite 
Groups 

The theory of group representations occurs in many contexts. First, it is 
developed for its own sake: determine all irreducible representations of a given 
group. See for instance Curtis-Reiner’s Methods of Representation Theory (Wiley- 
Interscience, 1981). It is also used in classifying finite simple groups. But already 
in this book we have seen applications of representations to Galois theory and 
the determination of the Galois group over the rationals. In addition, there is an 
analogous theory for topological groups. In this case, the closest analogy is with 
compact groups, and the reader will find a self-contained treatment of the compact 
case entirely similar to §5 of this chapter in my book SL2(R) (Springer Verlag), 
Chapter II, §2. Essentially, finite sums are replaced by integrals, otherwise the 
formalism is the same. The analysis comes only in two places. One of them is 
to show that every irreducible representation of a compact group is finite dimen¬ 
sional; the other is Schur’s lemma. The details of these extra considerations are 
carried out completely in the above-mentioned reference. I was careful to write 
up §5 with the analogy in mind. 

Similarly, readers will find analogous material on induced representations in 
SL2(R), Chapter III, §2 (which is also self-contained). 

Examples of the general theory come in various shapes. Theorem 8.4 may 
be viewed as an example, showing how a certain representation can be expressed 
as a direct sum of induced representations from 1-dimensional representations. 
Examples of representations of S3 and S4 are given in the exercises. The entire 
last section works out completely the simple characters for the group GL2(F) 
when F is a finite field, and shows how these characters essentially come from 
induced characters. 

For other examples also leading into Lie groups, see W. Fulton and J. Harris, 
Representation Theory, Springer Verlag 1991. 
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§1. REPRESENTATIONS AND SEMISIMPLICITY 

Let R be a commutative ring and G a group. We form the group algebra 
F[G]. As explained in Chapter II, §3 it consists of all formal linear combinations 

Z a°° 

with coefficients aa e F, almost all of which are 0. The product is taken in the 
natural way, 

( X a*ff)( Z bTx) = E a°bTox. 
\aeG / \xeG / <r, t 

Let E be an F-module. Every algebra-homomorphism 

R[G] EndR(E) 

induces a group-homomorphism 

G -> Autx(E), 

and thus a representation of the ring F[G] in E gives rise to a representation of 
the group. Given such representations, we also say that F[G], or G, operate on 
E. We note that the representation makes E into a module over the ring F[G]. 

Conversely, given a representation of the group, say p : G —> Aut/?(£), we 
can extend p to a representation of F[G] as follows. Let a = Z and x e E. 

We define 

p{a)x = £ a„p(a)x. 

It is immediately verified that p has been extended to a ring-homomorphism of 
R[G] into End/^F). We say that p is faithful on G if the map p : G —» Aut/^Zs) 
is injective. The extension of p to /?[G] may not be faithful, however. 

Given a representation of G on E, we often write simply crx instead of p{cr)x, 
whenever we deal with a fixed representation throughout a discussion. 

An /^-module E, together with a representation p, will be called a G-module, 
or G-space, or also a (G, /?)-module if we wish to specify the ring R. If E, F 
are G-modules, we recall that a G-homomorphism /: E —> F is an F-linear map 
such that /(ox) = crf{x) for all x e E and a e G. 

Given a G-homomorphism / : F —> F, we note that the kernel of / is a G- 
submodule of F, and that the F-factor module F//(F) admits an operation of G 
in a unique way such that the canonical map F —* F//(F) is a G-homomorphism. 

By a trivial representation p :G—> AutR(E), we shall mean the representation 
such that p(G) = 1. A representation is trivial if and only if ax = x for all 
x e E. We also say in that case that G operates trivially. 
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We make R into a G-module by making G act trivially on R. 

We shall now discuss systematically the representations which arise from a 
given one, on Horn, the dual, and the tensor product. This pattern will be repeated 
later when we deal with induced representations. 

First, Hom^Zs, F) is a G-module under the action defined for/e Hom^Zs, F) 

by 

= (Tf((T~lX). 

The conditions for an operation are trivially verified. Note the o~l inside the 
expression. We shall usually omit parentheses, and write simply [o]f(x) for the 
left-hand side. We note that/is a G-homomorphism if and only if [o]f = /for 
all cr e G. 

We are particularly concerned when F = R (so with trivial action), in which 
case Hom^Zs, R) = £v is the dual module. In the terminology of representations, 
if p: G —> Aut/^Zs) is a representation of G on E, then the action we have just 
described gives a representation denoted by 

: G ^ Autfl(£v), 

and called the dual representation (also called contragredient (ugh!) in the 
literature). 

Suppose now that the modules E, F are free and finite dimensional over R. 

Let p be representation of G on E. Let M be the matrix of p{o) with respect to 
a basis, and let Afv be the matrix of pv(<x) with respect to the dual basis. Then 
it is immediately verified that 

(1) A/v = tM~x. 

Next we consider the tensor product instead of Horn. Let E, E' be (G, R)- 

modules. We can form their tensor product E ® E\ always taken over R. Then 
there is a unique action of G on E <8> E' such that for cr e G we have 

ct{x ® xf) = crx ® ax'. 

Suppose that E, F are finite free over R. Then the ^-isomorphism 

(2) £v ®F ~ Hom*(£, F) 

of Chapter XVI, Corollary 5.5, is immediately verified to be a G-isomorphism. 
Whether E is free or not, we define the G-invariant submodule of E to be 

invG(Zs) = Z?-submodule of elements x e E such that ox = x for all a e G. If 
E, F are free then we have an ^-isomorphism 

(3) invG(Zsv ® F) » HomG(E, F). 
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If p: G —> Autr(E) and p': G —» Autfl(F') are representations of G on E 
and E' respectively, then we define their sum p © p' to be the representation 
on the direct sum E © E\ with er e G acting componentwise. Observe that G-iso- 
morphism classes of representations have an additive monoid structure under 
this direct sum, and also have an associative multiplicative structure under the 
tensor product. With the notation of representations, we denote this product by 
p ® p'. This product is distributive with respect to the addition (direct sum). 

If G is a finite group, and £ is a G-module, then we can define the trace 
TrG: E —» E which is an /^-homomorphism, namely 

Trc(x) = X ax- 
a 6 G 

We observe that TrG(x) lies in invG(F), i.e. is fixed under the operation of 
all elements of G. This is because 

t Trc(x) = £ xax, 
creG 

and multiplying by t on the left permutes the elements of G. 
In particular, if f: E —> F is an /^-homomorphism of G-modules, then 

TrG(/): E —> F is a G-homomorphism. 

Proposition 1.1. Let G be a finite group and let E\ F, F, F' be G-modules. 

Let 

£' £ 1+ f ^ f' 

be R-homomorphisms, and assume that ip, i/j are G-homomorphisms. Then 

TrG(^ °/° cp) = TrG(f) ° q>. 

Proof. We have 

Trc(ihf°(p)= X = £ W)0 (ff/)0 (a<P) 
a eG creG 

= t ° ^ !>/ j 0 <P = t ° TrG(/) o <p. 

Theorem 1.2. (Maschke). Let G be a finite group of order n, and let k be a 
field whose characteristic does not divide n. Then the group ring k[G] is 
semisimple. 

Proof. Let E be a G-module, and F a G-submodule. Since k is a field, 
there exists a k-subspace F' such that E is the k-direct sum of F and F'. We let 
the k-linear map tc : E -► F be the projection on F. Then tt(x) = x for all x e F. 
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Let 

<P=~ Tr0(7i). 
n 

We have then two G-homomorphisms 

0 -+F i±E 
<p 

such that j is the inclusion, and (p°j = id. It follows that E is the G-direct sum 
of F and Ker cp, thereby proving that /c[G] is semisimple. 

Except in §7 we denote by G a finite group, and we denote E, F finite 
dimensional k-spaces, where k is a field of characteristic not dividing 
#(G). We usually denote #(G) by n. 

§2. CHARACTERS 

Let p: /c[G] -► Endfc(£) be a representation. By the character Xp of the 
representation, we shall mean the /c-valued function 

XP : k[G] -► k 

such that xp(a) = tr p(a) for all a e /c[G]. The trace here is the trace of an endo¬ 
morphism, as defined in Chapter XIII, §3. If we select a basis for E over fc, it is 
the trace of the matrix representing p(a), i.e., the sum of the diagonal elements. 
We have seen previously that the trace does not depend on the choice of the basis. 
We sometimes write Xe instead of /p. 

We also call E the representation space of p. 

By the trivial character we shall mean the character of the representation of 
G on the k-space equal to k itself, such that ax = x for all xek. It is the function 
taking the value 1 on all elements of G. We denote it by Xo or a^so by 1G if we 
need to specify the dependence on G. 

We observe that characters are functions on G, and that the values of a 
character on elements of /c[G] are determined by its values on G (the extension 
from G to /c[G] being by k-linearity). 

We say that two representations p, cp of G on spaces E, F are isomorphic if 
there is a G-isomorphism between E and F. We then see that if p, cp are iso¬ 
morphic representations, then their characters are equal. (Put in another way, 

if £, F are G-spaces and are G-isomorphic, then Xe = Xf ) In everything that 
follows, we are interested only in isomorphism classes of representations. 
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If E, F are G-spaces, then their direct sum E © F is also a G-space, the opera¬ 
tion of G being componentwise. Ifx©ye£©F with xeE and ye F, then 
<r(x © y) = crx © cry. 

Similarly, the tensor product F®*F=F(g)Fisa G-space, the operation 
of G being given by cr(x ® y) = crx ® cry. 

Proposition 2.1. If E, F are G-spaces, t/ien 

Xe + Xf = Xe®f and XeXf = Xe®f- 

If xy denotes the character of the dual representation on Fv, then 

*v(<r) = Ar(cr_1) 
= x(<r) if k = C. 

Proof The first relation holds because the matrix of an element cr in the 
representation E © F decomposes into blocks corresponding to the representa¬ 
tion in E and the representation in F. As to the second, if {t;J is a basis of E and 
{wj} is a basis of F over k, then we know that {vt (x) w,} is a basis of E <g) F. Let 
(alv) be the matrix of cr with respect to our basis of £, and (hjti) its matrix with 
respect to our basis of F. Then 

a(vt ® wj) = Wj (g) awj = £ aivvv ® X bjnwn 
V 

= X aivbjuVv ® WK- 
V, M 

By definition, we find 

Xe®f(°') = E Z aubjj = Xe(.o)Xf(o), 
i j 

thereby proving the statement about tensor products. The statement for the char¬ 
acter of the dual representation follows from the formula for the matrix *M-1 
given in §1. The value given as the complex conjugate in case k = C will be 
proved later in Corollary 3.2. 

So far, we have defined the notion of character associated with a representa¬ 
tion. It is now natural to form linear combinations of such characters with more 
general coefficients than positive integers. Thus by a character of G we shall 
mean a function on G which can be written as a linear combination of characters 
of representations with arbitrary integer coefficients. The characters associated 
with representations will be called effective characters. Everything we have 
defined of course depends on the field k, and we shall add over k to our expressions 
if we need to specify the field k. 
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We observe that the characters form a ring in view of Proposition 2.1. For 
most of our work we do not need the multiplicative structure, only the additive 
one. 

By a simple or irreducible character of G one means the character of a 
simple representation (i.e., the character associated with a simple £[G]-module). 

Taking into account Theorem 1.2, and the results of the preceding chapter 
concerning the structure of simple and semisimple modules over a semisimple 
ring (Chapter XVII, §4) we obtain: 

Theorem 2.2. There are only a finite number of simple characters of G (over 

k). The characters of representations of G are the linear combinations of the 

simple characters with integer coefficients ^ 0. 

We shall use the direct product decomposition of a semisimple ring. We 
have 

/c[G] = n Ri 
i = 1 

where each Rt is simple, and we have a corresponding decomposition of the unit 
element of /c[G]: 

1 — ex + • • • + es, 

where ex is the unit element of Rh and e.ej = 0 if i # j. Also, RiRj = 0 if i # j. 
We note that s = s(k) depends on k. 

If Lj denotes a typical simple module for R{ (say one of the simple left ideals), 
we let Xi be the character of the representation on L, . 

We observe that xfoi) = 0 for all a e Rj if i / j. This is a fundamental relation 

of orthogonality, which is obvious, but from which all our other relations will 

follow. 

Theorem 2.3. Assume that k has characteristic 0. Then every effective char¬ 

acter has a unique expression as a linear combination 

s 

X = iXi, nie Z, nf ^ 0, 
i = 1 

where Xu • • •, Xsare the simple characters of G over k. Two representations are 

isomorphic if and only if their associated characters are equal. 
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Proof. Let E be the representation space of %. Then by Theorem 4.4 of 
Chapter XVII, 

£ « 0 MiLj. 
i = 1 

The sum is finite because we assume throughout that E is finite dimensional. 
Since e{ acts as a unit element on Lh we find 

lied = dim, L, . 

We have already seen that Xi(ej) = 0 if i ^ j. Hence 

X(ei) = rii dim* Lt. 

Since dim* L, depends only on the structure of the group algebra, we have 
recovered the multiplicities nu ..., ns. Namely, n, is the number of times that 
L( occurs (up to an isomorphism) in the representation space of and is the 
value of x(ed divided by dim* (we are in characteristic 0). This proves our 
theorem. 

As a matter of definition, in Theorem 2.3 we call n, the multiplicity of Xi in x- 

In both corollaries, we continue to assume that k has characteristic 0. 

Corollary 2.4. As functions of G into k, the simple characters 

Xi >•••,& 

are linearly independent over k. 

Proof Suppose that £ atXi = 0 with at e k. We apply this expression to e} 

and get 

o = (Z aili)(ej) = ai dim* Li- 

Hence a} = 0 for all j. 

In characteristic 0 we define the dimension of an effective character to be 
the dimension of the associated representation space. 

Corollary 2.5. The function dim is a homomorphism of the monoid of effective 

characters into Z. 
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Example. Let G be a cyclic group of order equal to a prime number p. 

We form the group algebra Q[G]. Let a be a generator of G. Let 

1 + (7 + a2 4- ••• + ap~l 
ei =-, e2 = 1 — et. 

P 

Then xex = ei for any xeG and consequently e\ = e{. It then follows that 
e\ = e2 and exe2 = 0. The field Qej is isomorphic to Q. Let a> = oe2. Then 
a>p = e2. Let Q2 = Qe2. Since co # e2, and satisfies the irreducible equation 

Xp~l + ... + 1 = 0 

over Q2, it follows that Q2(&>) is isomorphic to the field obtained by adjoining 
a primitive p-th root of unity to the rationals. Consequently, Q[G] admits the 
direct product decomposition 

Q[G] %Qx Q(0 

where C is a primitive p-th root of unity. 
As another example, let G be any finite group, and let 

1 v ex = - ) o. 
n asG 

Then for any teGwe have xex = eu and e\ = ev If we let e\ — 1 — ex then 
e'i = e\y and e\el = exe\ = 0. Thus for any field k (whose characteristic does 
not divide the order of G according to conventions in force), we see that 

fc[G] = kei x k[G~\e\ 

is a direct product decomposition. In particular, the representation of G on the 
group algebra fc[G] itself contains a 1-dimensional representation on the 
component kel9 whose character is the trivial character. 

§3. 1-DIMENSIONAL REPRESENTATIONS 

By abuse of language, even in characteristic p > 0, we say that a character is 
1-dimensional if it is a homomorphism G -► k*. 

Assume that E is a 1-dimensional vector space over k. Let 

p:G -> Autk(E) 

be a representation. Let {v} be a basis of E over k. Then for each o e G, we have 

(tv = x(<r)v 
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for some element x(g) e /c, and /(cr) # 0 since a induces an automorphism of E. 

Then for tgG, 

xcv = x(g)xv = i(o)x(x)v = x(gt)v>. 

We see that x: G -> fc* is a homomorphism, and that our 1-dimensional char¬ 
acter is the same type of thing that occurred in Artin’s theorem in Galois theory. 

Conversely, let x • G fc* be a homomorphism. Let E be a 1-dimensional 
k-space, with basis {t>}, and define o(av) = ax(a)v for all a e k. Then we see at 
once that this operation of G on E gives a representation of G, whose associated 

character is x- 

Since G is finite, we note that 

X{°T = X(0 = X(0 = I- 

Hence the values of 1-dimensional characters are n-th roots of unity. The 
1-dimensional characters form a group under multiplication, and when G is a 
finite abelian group, we have determined its group of 1-dimensional characters 
in Chapter I, §9. 

Theorem 3.1. Let G be a finite abelian group, and assume that k is alge¬ 

braically closed. Then every simple representation of G is l-dimensional. The 

simple characters of G are the homomorphisms of G into k*. 

Proof. The group ring k[G] is semisimple, commutative, and is a direct 
product of simple rings. Each simple ring is a ring of matrices over k (by Corollary 
3.6 Chapter XVII), and can be commutative if and only if it is equal to k. 

For every 1-dimensional character x of G we have 

/(<?)“1 = 

If k is the field of complex numbers, then 

X(g) = /(d)"1 = x(<x-1)- 

Corollary 3.2. Let k be algebraically closed. Let G be a finite group. For 

any character x and o e G, the value x(g) is equal to a sum of roots of unity with 

integer coefficients (i.e. coefficients in Z or Z/pZ depending on the char¬ 

acteristic of k). 

Proof. Let H be the subgroup generated by o. Then H is a cyclic subgroup. 
A representation of G having character x can be viewed as a representation for 
H by restriction, having the same character. Thus our assertion follows from 
Theorem 3.1. 
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§4. THE SPACE OF CLASS FUNCTIONS 

By a class function of G (over k, or with values in k), we shall mean a function 
f:G—>k such that/(errer-1) = /(r) for all a, r e G. It is clear that characters 
are class functions, because for square matrices M, M' we have 

tr (MM'M-1) = tr(M'). 

Thus a class function may be viewed as a function on conjugacy classes. 
We shall always extend the domain of definition of a class function to the 

group ring, by linearity. If 

a = E a„(T, 
a 6 G 

and/is a class function, we define 

/(«)= Z «*/(*)• 
<xe G 

Let a0e G. If cr e G, we write o ~ cr0 if a is conjugate to cr0, that is, if there 
exists an element i such that cr0 = tot - L An element of the group ring of type 

y = Z 
(X~(To 

will also be called a conjugacy class. 

Proposition 4.1. An element of k[G] commutes with every element of G if 

and only if it is a linear combination of conjugacy classes with coefficients in k. 

Proof Let a = £ aa° and assume at = ta for all x e G. Then 
oeG 

Z aaU7T~l = Z aa<J. 
creG creG 

Hence aao = aa whenever a is conjugate to <j0, and this means that we can write 

a = Z av7 
V 

where the sum is taken over all conjugacy classes y. 

Remark. We note that the conjugacy classes in fact form a basis of the 
center of Z[G] over Z, and thus play a universal role in the theory of rep¬ 
resentations. 

We observe that the conjugacy classes are linearly independent over /c, 
and form a basis for the center of /c[G] over k. 
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Assume for the rest of this section that k is algebraically closed. Then 

k[G] = fl Ri 
i = 1 

is a direct product of simple rings, and each R, is a matrix algebra over k. In a 
direct product, the center is obviously the product of the centers of each factor. 
Let us denote by kt the image of kin Rh in other words, 

kt = kei9 

where e{ is the unit element of R{. Then the center of fc[G] is also equal to 

n*. 

which is 5-dimensional over k. 

If is a typical simple left ideal of Ri9 then 

Rt * Endj(Li). 

We let 

Then 

d, = dim,, Li. 

S 

df = dim* R and Yj df = n- 
i= 1 

We also have the direct sum decomposition 

Ri * L\di) 

as a (G, fc)-space. 
The above notation will remain fixed from now on. 

We can summarize some of our results as follows. 

Proposition 4.2. Let k be algebraically closed. Then the number of conjugacy 

classes of G is equal to the number of simple characters of G, both of these being 

equal to the number s above. The conjugacy classes yx,..., ys and the unit 

elements el9... 9 es form bases of the center of /c[G]. 

The number of elements in will be denoted by ht. The number of elements 
in a conjugacy class y will be denoted by hy. We call it the class number. The 
center of the group algebra will be denoted by Zk(G). 
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We can view /c[G] as a G-module. Its character will be called the regular 
character, and will be denoted by /reg or rG if we need to specify the dependence 
on G. The representation on /c[G] is called the regular representation. From our 
direct sum decomposition of /c[G] we get 

We shall determine the values of the regular character. 

Proposition 4.3. Let xreg be the regular character. Then 

Xregfa) = 0 if <T G G, (7/1 

ZregC1) = n. 

Proof Let 1 = ..., on be the elements of G. They form a basis of /c[G] 
over k. The matrix of 1 is the unit n x n matrix. Thus our second assertion 
follows. If a / 1, then multiplication by o permutes ol9 ...9cn9 and it is im¬ 
mediately clear that all diagonal elements in the matrix representing a are 0. 
This proves what we wanted. 

We observe that we have two natural bases for the center Zk(G) of the 
group ring. First, the conjugacy classes of elements of G. Second, the elements 
el9 ..., es (i.e. the unit elements of the rings Rf We wish to find the relation 
between these, in other words, we wish to find the coefficients of et when ex¬ 
pressed in terms of the group elements. The next proposition does this. The 
values of these coefficients will be interpreted in the next section as scalar 
products. This will clarify their mysterious appearance. 

Proposition 4.4. Assume again that k is algebraically closed. Let 

e,' = X aTz, a,ek. 
teG 

Then 

a, = ^Xregie.T: ') = ~ Xi(^ *)• 

Proof We have for all t e G: 

Xreg(ett V) = Zreg^X^^ 'j Xfl<,Xreg(<" ’)• 
a eG 
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By Proposition 4.3, we find 

WgiT_1) = n°r■ 

On the other hand, 

s 

Xreg (<?.• t'"1) = ZdJ xMi T " 1) = di Xi(et t~1) = d, x,(t “1). 

j=t 

Hence 

diXi(* l) = 

for all t g G. This proves our proposition. 

Corollary 4.5. Each ex can be expressed in terms of group elements with 

coefficients which lie in the field generated over the prime field by m-th roots 

of unity, if m is an exponent for G. 

Corollary 4.6. The dimensions dx are not divisible by the characteristic of k. 

Proof Otherwise, e{ = 0, which is impossible. 

Corollary 4.7. The simple characters . . . , %s are linearly independent 

over k. 

Proof The proof in Corollary 2.4 applies, since we now know that the 
characteristic does not divide dx. 

Corollary4.8. Assume in addition that k has characteristic 0. Then dt\n 

for each i. 

Proof. Multiplying our expression for e{ by n/dh and also by ei9 we find 

jei= Z 
ai itgG 

Let C be a primitive m-th root of unity, and let M be the module over Z gen¬ 
erated by the finite number of elements (Ve, (v = 0,..., m — 1 and o e G). 
Then from the preceding relation, we see at once that multiplication by n/dt 

maps M into itself. By definition, we conclude that n/dt is integral over Z, 
and hence lies in Z, as desired. 

Theorem 4.9. Let k be algebraically closed. Let Zk(G) be the center of 

k[G], and let Xk(G) be the k-space of class functions on G. Then Zk(G) and 

Xk(G) are the dual spaces of each other, under the pairing 

(f*)*m. 
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The simple characters and the unit elements el9..., esform orthogonal bases 

to each other. We have 

hie,) = S^df 

Proof. The formula has been proved in the proof of Theorem 2.3. The 
two spaces involved here both have, dimension s, and d( # 0 in k. Our prop¬ 
osition is then clear. 

§5. ORTHOGONALITY RELATIONS 

Throughout this section, we assume that k is algebraically closed. 
If R is a subring of fc, we denote by XR(G) the /^-module generated over R 

by the characters of G. It is therefore the module of functions which are linear 
combinations of simple characters with coefficients in R. If R is the prime ring 
(i.e. the integers Z or the integers mod p if k has characteristic p), then we denote 
XR(G)byX(G). 

We shall now define a bilinear map on X(G) x X(G). If f geX(G\ we 
define 

</.0> = I I 
n oeG 

Theorem 5.1. The symbol </, g) for fge X(G) takes on values in the prime 

ring. T he simple characters form an orthonormal basis for X(G), in other words 

<Xn Xj> = Sir 

For each ring R c: k, the symbol has a unique extension to an R-bilinear form 

Xr(G) x Xr(G) -+ R, given by the same formula as above. 

Proof By Proposition 4.4, we find 

Xjied = 7 I Xi(c~V)Xj(a)- 
n <T€q 

If i # j we get 0 on the left-hand side, so that Xi and Xjare orthogonal. If i = j 

we get dt on the left-hand side, and we know that d, # 0 in k, by Corollary 4.6. 
Hence </, , Xi) = 1. Since every element of X(G) is a linear combination of 
simple characters with integer coefficients, it follows that the values of our 
bilinear map are in the prime ring. The extension statement is obvious, thereby 
proving our theorem. 
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Assume that k has characteristic 0. Let m be an exponent for G, and let R 

contain the m-th roots of unity. If R has an automorphism of order 2 such that 
its effect on a root of unity is (i—► 1, then we shall call such an automorphism 
a conjugation, and denote it by a i—► a. 

Theorem 5.2. Let k have characteristic 0, and let R be a subring containing 

the m-th roots of unity, and having a conjugation. Then the bilinear form on 

X(G) has a unique extension to a hermitian form 

Xr(G) x Xr(G) - R9 

given by the formula 

</, g> = ~ I f{o)g{a). 
M a e G 

The simple characters constitute an orthonormal basis of XR(G) with respect 

to this form. 

Proof. The formula given in the statement of the theorem gives the same 
value as before for the symbol </ g) when/, g lie in X(G). Thus the extension 
exists, and is obviously unique. 

We return to the case when k has arbitrary characteristic. 
Let Z(G) denote the additive group generated by the conjugacy classes 

y j,..., ys over the prime ring. It is of dimension s. We shall define a bilinear map 
on Z(G) x Z(G). If a = £ aao has coefficients in the prime ring, we denote by 
a- the element £ aao~l. 

Proposition 5.3. For a, fie Z(G), we can define a symbol <a, /> by either one 

of the following expressions, which are equal: 

<a, J8> = ^ Xreg(a/n = 1 t, Xv(<*)Xv(P~)- 

The values of the symbol lie in the prime ring. 

Proof. Each expression is linear in its first and second variable. Hence 
to prove their equality, it will suffice to prove that the two expressions are equal 
when we replace a by e{ and / by an element t of G. But then, our equality is 
equivalent to 

s 

Xreg(e,T_1) = X Xv(e,)Zv(t_1). 

v —- 1 

Since = 0 unless v = i, we see that the right-hand side of this last relation 
is equal to dtXi (r~1). Our two expressions are equal in view of Proposition 4.4. 
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The fact that the values lie in the prime ring follows from Proposition 4.3: The 
values of the regular character on group elements are equal to 0 or n, and hence 
in characteristic 0, are integers divisible by n. 

As with Xr(G), we use the notation ZR(G) to denote the R-module generated 
by Vi, • • •, ys over an arbitrary subring R of k. 

Lemma 5.4. For each ring R contained in k, the pairing of Proposition 5.3 
has a unique extension to a map 

Zr(G) x Z(G) -> R 

which is R-linear in its first variable. If R contains the m-th roots of unity, 

where m is an exponent for G, and also contains l/n, then et e ZR(G) for all i. 

The class number ht is not divisible by the characteristic of k, and we have 

s 1 
e,- = £ <«?,-, Tv> 7- Vv 

v= i nx 

Proof We note that h( is not divisible by the characteristic because it is 
the index of a subgroup of G (the isotropy group of an element in yf when G 
operates by conjugation), and hence ht divides n. The extension of our pairing 
as stated is obvious, since yl9..., ys form a basis of Z(G) over the prime ring. 
The expression of e{ in terms of this basis is only a reinterpretation of Proposition 
4.4 in terms of the present pairing. 

Let E be a free module over a subring R of k, and assume that we have a 
bilinear symmetric (or hermitian) form on E. Let {vu ..., vs} be an orthogonal 
basis for this module. If 

v = a1v1 + ••• 4- asvs 

with a{ g R, then we call al9..., as the Fourier coefficients of v with respect to 
our basis. In terms of the form, these coefficients are given by 

<v, 

provided (vi91?£> # 0. 

We shall see in the next theorem that the expression for e, in terms of 
yu ..., ys is a Fourier expansion. 

Theorem 5.5. The conjugacy classes yl9 ..., ys constitute an orthogonal 

basis for Z(G). We have <y,-, y,) = /if. For each ring R contained in k, the 

bilinear map of Proposition 5.3 has a unique extension to a R-bilinear map 

Zr(G) x Zr(G) - R. 
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Proof! We use the lemma. By linearity, the formula in the lemma remains 
valid when we replace R by /e, and when we replace e{ by any element of Zk(G\ in 
particular when we replace e{ by yf. But {yj,..., ys} is a basis of Zfc(G), over k. 

Hence we find that <yf, yf> = and <y,-, y7> = 0 if i # j, as was to shown. 

Corollary 5.6. //G is commutative, r/ten 

1 " (0 if <7 is not equal to t 

) = |l if cr is equal to,. 

Proof When G is commutative, each conjugacy class has exactly one ele¬ 
ment, and the number of simple characters is equal to the order of the group. 

We consider the case of characteristic 0 for our Z(G) just as we did for X(G). 

Let k have characteristic 0, and R be a subring of k containing the m-th roots of 
unity, and having a conjugation. Let a = £ aa o with aa e R. We define 

oeG 

a = E a„a~K 
<xeG 

Theorem 5.7. Let k have characteristic 0, and let R be a subring of k, con¬ 

taining the m-th roots of unity, and having a conjugation. Then the pairing of 

Proposition 5.3 has a unique extension to a hermitian form 

Zr(G) x Zr(G) -> R 

given by the formulas 

<a, /?> = -n Zreg(a^) = ^ ixMxM- 

The conjugacy classes yl9 ..., ysform an orthogonal basis for ZR(G). If R 

contains \jn, then e\,..., es lie in Zr(G) and also form an orthogonal basis for 

Zr{G). We have <ei9 e(y = df/n. 

Proof The formula given in the statement of the theorem gives the same 
value as the symbol <a, /?> of Proposition 5.3 when a, \3 lie in Z(G). Thus the 
extension exists, and is obviously unique. Using the second formula in Propo¬ 
sition 5.3, defining the scalar product, and recalling that ifej) = 0 if v # i, we 
see that 

<eh e,) = - Xi(edXi(e,), 

whence our assertion follows. 
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We observe that the Fourier coefficients of e{ relative to the basis yl9..., ys 

are the same with respect to the bilinear form of Theorem 5.5, or the hermitian 
form of Theorem 5.7. This comes from the fact that yl9..., ys lie in Z(G), and 
form a basis of Z(G) over the prime ring. 

We shall now reprove and generalize the orthogonality relations by another 
method. Let E be a finite dimensional (G, /c)-space, so we have a representation 

G - Aut*(£). 

After selecting a basis of £, we get a representation of G by d x d matrices. If 
{vl9 ..., vd} is the basis, then we have the dual basis {Xl9 ..., Xd} such that 
Xi(vj) = $ij. If an element o of G is represented by a matrix (p,/cr)), then each 
coefficient p,/<r) is a function of <7, called the//-coefficient function. We can also 
write 

Pij(°) = tyovi)- 

But instead of indexing elements of a basis or the dual basis, we may just as 
well work with any functional X on £, and any vector v. Then we get a function 

<j X(av) = px,v(<j), 

which will also be called a coefficient function. In fact, one can always complete 
v = vi to a basis such that X = is the first element in the dual basis, but using 
the notation px v is in many respects more elegant. 

We shall constantly use: 

Schur’s Lemma. Let E, F be simple (G, k)-spaces, and let 

cp: E -> F 

be a homomorphism. Then either cp = 0 or cp is an isomorphism. 

Proof. Indeed, the kernel of (p and the image of cp are subspaces, so the 
assertion is obvious. 

We use the same formula as before to define a scalar product on the space of 
all k-valued functions on G, namely 

</»0> = ^ Z 
n iteG 

We shall derive various orthogonality relations among coefficient functions. 

Theorem 5.8. Let E, F be simple (G, k)-spaces. Let Xbea k-linear functional 

on E9 let x e E and yeF. If £, F are not isomorphic, then 

£ X{ox)o~ ly = 0. 
<xeG 



682 REPRESENTATIONS OF FINITE GROUPS XVIII, §5 

If p is a functional on F then the coefficient functions px x and p^y are ortho¬ 

gonal, that is 

X X(<rx)p(<r~ 1y) = 0. 
<reG 

Proof The map x i—► £ X(gx)<t~ ly is a G-homomorphism of E into F, so 
Schur’s lemma concludes the proof of the first statement. The second comes by 
applying the functional p. 

As a corollary, we see that if ij/ are distinct irreducible characters of G 

over k, then 
(x< <A> = 0, 

that is the characters are orthogonal. Indeed, the character associated with a 
representation p is the sum of the diagonal coefficient functions, 

d 

x = Z Pu> 
i = 1 

where d is the dimension of the representation. Two distinct characters cor¬ 
respond to non-isomorphic representations, so we can apply Proposition 5.8. 

Lemma 5.9. Let E he a simple (G, kfspace. Then any G-endomorphism of 

E is equal to a scalar multiple of the identity. 

Proof The algebra Endc k(E) is a division algebra by Schur’s lemma, 
and is finite dimensional over k. Since k is assumed algebraically closed, it must 
be equal to k because any element generates a commutative subfield over k. 

This proves the lemma. 

Lemma 5.10. Let E be a representation space for G of dimension d. Let A 
be afunctional on F, and let x e F. Let (pXjXe Endk(E) be the endomorphism 
such that 

<Px,x(y) = My)x. 

Then tr(<pA x) = A(x). 

Proof If x = 0 the statement is obvious. Let x # 0. If A(x) # 0 we pick 
a basis of E consisting of x and a basis of the kernel of A. If A(x) = 0, we pick a 
basis of E consisting of a basis for the kernel of A, and one other element. In 
either case it is immediate from the corresponding matrix representing cpk x that 
the trace is given by the formula as stated in the lemma. 

Theorem 5.11. Let p:G-> Autk(E) be a simple representation of G, of 

dimension d. Then the characteristic of k does not divide d. Let x, y e£. Then 

for any functionals A, p on F, 

X A((rx)/i(<r » = ^ X(y)n(x). 
<reG U 
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Proof. It suffices to prove that 

Z A((7X)<7~ ly = ” Hy)x. 
<jeG a 

For fixed y the map 

x i—► £ K<*x)g ly 
asG 

is immediately verified to be a G-endomorphism of £, so is equal to cl for some 
cekby Lemma 5.9. In fact, it is equal to 

'Zpio'1)0 <Px,y° P(O)- 
oeG 

The trace of this expression is equal to n • tr(<pA y) by Lemma 5.10, and also to dc. 

Taking A, y such that A(y) = 1 shows that the characteristic does not divide d, 
and then we can solve for c as stated in the theorem. 

Corollary 5.12. Let % be the character of the representation of G on the 

simple space E. Then 

<Z, X> = 1. 

Proof This follows immediately from the theorem, and the expression of 

X as 

X = Pn + + Pdd- 

We have now recovered the fact that the characters of simple representations 
are orthonormal. We may then recover the idempotents in the group ring, that 

is, if Xi9 • • •, Xs are the simple characters, we may now define 

e. = - Z Xifay1- 
^ ireG 

Then the orthonormality of the characters yields the formulas: 

s 

Corollary 5.13. x,(e,) = and yreg = £ djA. 
i= 1 

Proof The first formula is a direct application of the orthonormality of the 
characters. The second formula concerning the regular character is obtained 
by writing 

Xreg = I mjXj 
j 



684 REPRESENTATIONS OF FINITE GROUPS XVIII, §5 

with unknown coefficients. We know the values xreg(l) = n and ZregC0') = 0 if 
a # 1. Taking the scalar product of /reg with Xi for i = 1, ..., s immediately 
yields the desired values for the coefficients rrij. 

Since a character is a class function, one sees directly that each ex is a linear 
combination of conjugacy classes, and so is in the center of the group ring fc[G]. 

Now let Ei be a representation space of and let Pi be the representation 
of G or fc[G] on E(. For a e /c[G] we let p,(a): £, -► £, be the map such that 
Pi(a)x = ax for all x e £,. 

Proposition 5.14. We have 

Piied = id and p,(^) = 0 / j- 

Proof. The map x i-> etx is a G-homomorphism of Et into itself since et is in 
the center of k[G]. Hence by Lemma 5.9 this homomorphism is a scalar 
multiple of the identity. Taking the trace and using the orthogonality relations 
between simple characters immediately gives the desired value of this scalar. 

We now find that 

E =1 
i= 1 

because the group ring /c[G] is a direct sum of simple spaces, possibly with 
multiplicities, and operates faithfully on itself. 

The orthonormality relations also allow us to expand a function in a Fourier 
expression, relative to the characters if it is a class function, and relative to the 
coefficient functions in general. We state this in two theorems. 

Theorem 5.15. Let fbe a class function on G. Then 

/= 
i - 1 

Proof The number of conjugacy class is equal to the number of distinct 
characters, and these are linearly independent, so they form a basis for the class 
functions. The coefficients are given by the stated formula, as one sees by taking 
the scalar product of/ with any character x} an<3 using the orthonormality. 

Theorem 5.16. Let p{x) be a matrix representation of G on Et relative to a 

choice of basis, and let p[l)>tl be the coefficient functions of this matrix, i = 1,..., s 

and v, p = 1,..., dt. Then the functions p{ft^form an orthogonal basis for the 

space of all functions on G, and hence for any function f on G we have 

f= t 
i = 1 v, pL 
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Proof. That the coefficient functions form an orthogonal basis follows from 
Theorems 5.8 and 5.11. The expression of/in terms of this basis is then merely 
the standard Fourier expansion relative to any scalar product. This concludes 
the proof. 

Suppose now for concreteness that k = C is the complex numbers. Recall 
that an effective character x ls an element of X(G), such that if 

5 

Af = X m,Xi 
i= 1 

is a linear combination of the simple characters with integral coefficients, then 
we have m, ^ 0 for all i. In light of the orthonormality of the simple characters, 
we get for all elements x e X(G) the relations 

IIAril2 = <Af> X) = X mj and m, = <*, *,). 
i= 1 

Hence we get (a) of the next theorem. 

Theorem 5.17. (a) Let x be an effective character in X(G). Then x is simple 

over C if and only if ||^||2 = 1, or alternatively, 

X |*(<7)l2 = #(G). 
cT(=G 

(b) Let x. 4!j be effective characters in X(G), and let E, F be their representation 

spaces over C. Then 

(at. <P)g = dim Homc(£, F). 

Proof. The first part has been proved, and for (b), let ip = 2 q{Xv Then by 
orthonormality, we get 

(X, <A>c = X mflj. 

But if Ei is the representation space of Xi over C, then by Schur’s lemma 

dim HomG(Fz, Et) = 1 and dim Homc(£’/, Ej) = 0 for i =£ j. 

Hence dim HomG(F, F) = 2 ^,<7,, thus proving (b). 

Corollary 5.18 Mr/* r/*o obovo notation and k = C /or simplicity, wo /zovo: 
(a) The multiplicity of 1G in Fv ® F w dim* invG(Fv ® F). 
(b) The (G, k)-space E is simple if and only if 1G has multiplicity 1 in Fv ® F. 

Proof. Immediate from Theorem 5.17 and formula (3) of §1. 

Remark. The criterion of Theorem 5.17(a) is useful in testing whether a 
representation is simple. In practice, representations are obtained by inducing 
from 1-dimensional characters, and such induced representations do have a ten¬ 
dency to be irreducible. We shall see a concrete case in §12. 
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§6. INDUCED CHARACTERS 

The notation is the same as in the preceding section. However, we don’t need 

all the results proved there; all we need is the bilinear pairing on X(G), and its 
extension to 

Xr(G) x Xr(G) - R. 

The symbol < , ) may be interpreted either as the bilinear extension, or the 
hermitian extension according to Theorem 5.2. 

Let S be a subgroup of G. We have an R-linear map called the restriction 

resf : XR(G) XR(S) 

which to each class function on G associates its restriction to S. It is a ring- 
homomorphism. We sometimes let fs denote the restriction of/ to S. 

We shall define a map in the opposite direction, 

indj : X*(S) -► X*(G), 

which we call the induction map. If g e XR(S), we extend g to gs on G by 
letting gs(a) = 0 if cr £ S. Then we define the induced function 

gG(&) = ind£(g)(<r) = - ; 2 
v* • l> reC 

Then ind$(g) is a class function on G. It is clear that ind£ is /^-linear. 

Since we deal with two groups S and G, we shall denote the scalar product 
by < , )s and < , >G when it is taken with these respective groups. The next 
theorem shows among other things that the restriction and transfer are adjoint 
to each other with respect to our form. 

Theorem 6.1. Let S be a subgroup of G. Then the following rules hold: 

(i) (Frobenius reciprocity) For f e XR(G), and g e XR(S) we have 

(ind$(g),f)G = (g, Resf(/)>,. 

(ii) Ind£(g)/= ind§(gfs). 
(iii) IfTCSCG are subgroups ofG, then 

ind^ ° indf = ind^. 

(iv) // cr E G and ga is defined by = g(r), where Ta = cr_1rcr, then 

ind£(0) = ind^(g°-). 

(v) If i/r is an effective character ofS then ind(?( f) is effective. 
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Proof. Let us first prove (ii). We must show that gGf — (gfs)G. We have 

(gGf)(r) = 77^-77 S = * 2 gs((rra~')f(<rra~'). 

The last expression just obtained is equal to (gfs)G, thereby proving (ii). Let us 
sum over i in G. The only non-zero contributions in our double sum will come 
from those elements of S which can be expressed in the form gtg~1 with 
The number of pairs (a, t) such that gxg~ 1 is equal to a fixed element of G is 
equal to n (because for every Ae G, (<rA, A~ atA) is another such pair, and the 
total number of pairs is n2). Hence our expression is equal to 

ZdW/W- 
W • U AeS 

Our first rule then follows from the definitions of the scalar products in G and S 
respectively. 

Now let g = \\t be an effective character of 5, and let / = \ be a simple 
character of Gf From (i) we find that the Fourier coefficients of gG are integers 
^ 0 because res£(*) is an effective character of S. Therefore the scalar product 

<<A> res$(x))s 

is ^ 0. Hence i/fG is an effective character of G, thereby proving (v). 

In order to prove the transitivity property, it is convenient to use the fol¬ 
lowing notation. 

Let {c} denote the set of right cosets of S in G. For each right coset c, we 
select a fixed coset representative denoted by c. Thus if cu ..., cr are these 
representatives, then 

G = (Jc = USc=U Sct. 
c c i = 1 

Lemma 6.2. Let g be a class function on S. Then 

ind Sc(s)(£) = £fe(W). 
/=1 

Proof. We can split the sum over all o e G in the definition of the induced 
function into a double sum 

I = I t 
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and observe that each term gs(erc£c_1c7_I) is equal to g5(c£c_1) if ere 5, because 
g is a class function. Hence the sum over <x e 5 is enough to cancel the factor 
1/(5 : 1) in front, to give the expression in the lemma. 

If T c 5 c G are subgroups of G, and if 

G = (J Set and 5 = [j Tdj 

are decompositions into right cosets, then {3,-cJ form a system of representatives 
for the right cosets of T in G. From this the transitivity property (iii) is obvious. 

We shall leave (iv) as an exercise (trivial, using the lemma). 

§7. INDUCED REPRESENTATIONS 

Let G be a group and 5 a subgroup of finite index. Let F be an 5-module. 
We consider the category C whose objects are 5-homomorphisms ip : F —» E of 
F into a G-module E. (We note that a G-module E can be regarded as an 5- 
moduleby restriction.) If <p': F—> E' is another object in C, we define a morphism 
<p' —> <p in (3 to be a G-homomorphism 17 : E' —> E making the following diagram 
commutative: 

,E' 

F 

A universal object in C is determined up to a unique G-isomorphism. It will 
be denoted by 

indf : F —► ind£(F). 

We shall prove below that a universal object always exists. If cp : F -> E is a 
universal object, we call Ean induced module. It is uniquely determined, up to a 
unique G-isomorphism making a diagram commutative. For convenience, we 
shall select one induced module such that cp is an inclusion. We shall then call 
this particular module indf (F) the G-module induced by F. In particular, given 
an 5-homomorphism <p: F —> E into a G-module F, there is a unique G-homo¬ 
morphism cp*: ind^(F) —> E making the following diagram commutative: 

indf(F) 

<o, = >»df ((p) 

E 
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The association <p i-> indf (<p) then induces an isomorphism 

HomG(indG(F), E) ~ Hom5(F, resG(£)), 

for an 5-module F and a G-module E. We shall see in a moment that indG is a 
functor from Mod(5) to Mod(G), and the above formula may be described as 
saying that induction is the adjoint functor of restriction. One also calls this 
relation Frobenius reciprocity for modules, because Theorem 6.1(i) is a 
corollary. 

Sometimes, if the reference to F as an 5-module is clear, we shall omit the 
subscript 5, and write simply 

indG(F) 

for the induced module. 
Let/: F' -► F be an 5-homomorphism. If 

<P§ ■ F' ind^(F') 

is a G-module induced by F', then there exists a unique G-homomorphism 
indf(F') —> indG(F) making the following diagram commutative: 

F[———► ind^(F') 

/ 

F 
<Ps 

* 

ind^(/) 

ind^(F) 

It is simply the G-homomorphism corresponding to the universal property 
for the S-homomorphism q>sG o f represented by a dashed line in our diagram. 
Thus indG is a functor, from the category of S-modules to the category of G- 
modules. 

From the universality and uniqueness of the induced module, we get some 
formal properties: 

indG commutes with direct sums: If we have an S-direct sum F ® F', then 

ind<§(F © F') » indf(F) 0 indg(F'), 

the direct sum on the right being a G-direct sum. 

Iff g:F' -* F are S-homomorphisms, then 

indj(/ + g) = indf(/) + ind£(g). 

If T cz S cz G are subgroups of G, and F is a T-module, then 

indf o indf (F) == ind^(F). 
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In all three cases, the equality between the left member and the right member 
of our equations follows at once by using the uniqueness of the universal object. 
We shall leave the verifications to the reader. 

To prove the existence of the induced module, we let MG(F) be the additive 
group of functions/: G -► F satisfying 

=/(<*) 

for o e S and £eG. We define an operation of G on MG(F) by letting 

(oim 
for (7, ^ e G. It is then clear that MG(F) is a G-module. 

Proposition 7.1. Let cp: F -► MG(F) be such that cp(x) = cpx is the map 

(px(?) = 
if t 4 S 

if t e 5. 

Then cp is an S-homomorphism, cp: F -► MG(F) is universal, and cp is injective. 

The image of cp consists of those elements feMG(F) such that /(t) = 0 if 

T$S. 

Proof. Let o e S and xeF. Let tgG. Then 

(°(P *)W = (Px(™\ 

If tgS, then this last expression is equal to cpax( t). If r ^ 5, then to $ 5, and 
hence both cpax(r) and cpjjo) are equal to 0. Thus cp is an 5-homomorphism, 
and it is immediately clear that cp is injective. Furthermore, life MG(F) is such 
that /(t) = 0 if t ^ 5, then from the definitions, we conclude that / = cpx where 

*=f( 1). 
There remains to prove that cp is universal. To do this, we shall analyze more 

closely the structure of MG(F). 

r 

Proposition 7.2. Let G = (J Sct be a decomposition of G into right cosets. 
i= 1 

Let F1 be the additive group of functions in having value 0 at elements 

ZeG,/;tS. Then 

MSC(F)= ®crlFu 
i = 1 

the direct sum being taken as an abelian group. 

Proof For each/e Mq(F), let/ be the function such that 

m = 
if ZtSci 

if ZeSdi. 



XVIII, §7 INDUCED REPRESENTATIONS 691 

For all a e S we have/(or,) = (cf/jX<T). It is immediately clear that c; /■ lies in 
Fj, and 

/= icr\c,jd. 
i = 1 

Thus MG(F) is the sum of the subgroups cflFx. It is clear that this sum is 
direct, as desired. 

We note that {c f1,..., c~x} form a system of representatives for the left 

cosets of S in G. The operation of G on MSG(F) is defined by the presceding direct 
sum decomposition. We see that G permutes the factors transitively. The factor 
Fj is S-isomorphic to the original module F, as stated in Proposition 7.1. 

Suppose that instead of considering arbitrary modules, we start with a com¬ 
mutative ring R and consider only F-modules E on which we have a representation 
of G, i.e. a homomorphism G —> Aut/?(F), thus giving rise to what we call a 
(G, F)-module. Then it is clear that all our constructions and definitions can be 
applied in this context. Therefore if we have a representation of S on an F-module 
F, then we obtain an induced representation of G on ind^(F). Then we deal with 
the category C of S-homomorphisms of an (S, F)-module into a (G, F)-module. 
To simplify the notation, we may write “G-module” to mean “(G, F)-module” 
when such a ring R enters as a ring of coefficients. 

Theorem 7.3. Let {Xu ..., Xr) be a system of left coset representatives of S in 

G. There exists a G-module E containing F as an S-submodule, such that 

E = © A(F 
i = 1 

is a direct sum (as R-modules). Let ip : F —> E be the inclusion mapping. Then 

cp is universal in our category C, i.e. E is an induced module. 

Proof. By the usual set-theoretic procedure of replacing Fx by F in MSG(F\ 

obtain a G-module E containing F as a S-submodule, and having the desired 
direct sum decomposition. Let cp’: F -► E' be an S-homomorphism into a 
G-module E'. We define 

h:E E' 

by the rule 

h(Xlxl + • • • + Arxr) = X^cpfx j) + • ■ • + K<P\Xr) 

for xt e F. This is well defined since our sum for E is direct. We must show that 
h is a G-homomorphism. Let cr £ G. Then 

— K (i)To,i 

where a(i) is some index depending on o and /, and xati is an element of S, also 
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depending on o9 i. Then 

h{o AjXf) = h(Xaii)x atiXi) = h(i)(P'(T<T,ixi)- 

Since cp' is an 5-homomorphism, we see that this expression is equal to 

= vK^Xi). 

By linearity, we conclude that h is a G-homomorphism, as desired. 
In the next proposition we return to the case when R is our field k. 

Proposition 7.4. Let \j/ be the character of the representation of S on the 

k-space F. Let E be the space of an induced representation. T hen the character 

X of E is equal to the induced character i)/G, i.e. is given by the formula 

x(0 = Z 
c 

where the sum is taken over the right cosets c of S in G, c is a fixed coset repre¬ 

sentative for c, and \jj0 is the extension of ij/ to G obtained by setting (cr) = 0 

if a $S. 

Proof Let {wl9..., wm} be a basis for F over k. We know that 

E = ®c~lF. 

Let o be an element of G. The elements {co~ lWj}cj form a basis for E over k. 

We observe that cocd~1 is an element of 5 because 

Sco — Sccj = Sea. 

We have 

Let 

o(co lWj) = c l(coca 1 )Wj. 

{coco \j 

be the components of the matrix representing the effect of coco~1 on F with 
respect to the basis {wj,..., wm}. Then the action of o on E is given by 

o(cd~ 'wy) = c~1 Z (cctcct- ‘)w-w„ 

= Z (cac5~\^c~lw^. 

X(o) = Z Z ^aca %■ 

By definition, 
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But co = c if and only if coc 1 € S. Furthermore, 

l/'(C(7C~1) = £(c<7C"%. 

j 

Hence 

x(ff) = I tl/0(coc~l), 
C 

as was to be shown. 

Remark. Having given an explicit description of the representation space 
for an induced character, we have in some sense completed the more elementary 
part of the theory of induced characters. Readers interested in seeing an application 
can immediately read §12. 

Double cosets 

Let G be a group and let S be a subgroup. To avoid superscripts we use the 
following notation. Let yeG. We write 

[y]S = y Sy~l and S[y] = y ~lSy. 

We shall suppose that S has finite index. We let H be a subgroup. A subset of G 

of the form HyS is called a double coset. As with cosets, it is immediately 
verified that G is a disjoint union of double cosets. We let {y} be a family of 
double coset representatives, so we have the disjoint union 

G = U HyS. 
y 

For each y we have a decomposition into ordinary cosets 

H = U tJH n[y]S), 
Ty 

where {ry} is a finite family of elements of H, depending on y. 

Lemma 7.5. The elements {ryy} form a family of left coset representatives 

for S in G; that is, we have a disjoint union 

G = U ryyS. 
y,Ty 

Proof. First we have by hypothesis 

G = U U tJH n [y]S)yS, 
y Ty 

and so every element of G can be written in the form 

Tyysxy~xys2 = ryys with sl9 s2, s e S. 

On the other hand, the elements ryy represent distinct cosets of 5, because if 
TyyS = Ty y'S, then y = y\ since the elements y represent distinct double cosets, 
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whence ry and iy represent the same coset of ySy !, and therefore are equal. 
This proves the lemma. 

Let F be an 5-module. Given ye G, we denote by [y]F the [y]5-module 
such that for ysy~l e [y]5, the operation is given by 

ysy~l • [y]x = [y]s;t. 

This notation is compatible with the notation that if F is a submodule of a G- 
module E, then we may form yF either according to the formal definition above, 
or according to the operation of G. The two are naturally isomorphic (essentially 
equal). We shall write 

[y] : F —> yF or [y]F 

for the above isomorphism from the 5-module F to the [y]S -module yF. If S j 
is a subgroup of 5, then by restriction F is also an -module, and we use [y] 

also in this context, especially for the subgroup H IT [y]5 which is contained in 

[y ]S. 

Theorem 7.6. Applied to the S-module F, we have an isomorphism of H- 

modules 

resg o ind£ - 0 indgn[y]s 0 res™5[?]S ° [y] 
y 

where the direct sum is taken over double coset representatives y. 

Proof. The induced module ind^(F) is simply the direct sum 

ind§(F) = 0 ryyF 

by Lemma 7.5, which gives us coset representatives of 5 in G, and Theorem 
7.3. On the other hand, for each y, the module 

0 Tyyf 
Ty 

is a representation module for the induced representation from /ffl[y]5 on yF 

to H. Taking the direct sum over y, we get the right-hand side of the expression 
in the theorem, and thus prove the theorem. 

Remark. The formal relation of Theorem 7.6 is one which occurred in 
Artin’s formalism of induced characters and L-functions; cf. the exercises and 
[La 70], Chapter XII, §3. For applications to the cohomology of groups, see 
[La 96]. The formalism also emerged in Mackey’s work [Ma 51], [Ma 53], which 
we shall now consider more systematically. The rest of this section is due 
to Mackey. For more extensive results and applications, see Curtis-Reiner 
[CuR 81], especially Chapter 1. See also Exercises 15, 16, and 17. 

To deal more systematically with conjugations, we make some general func- 
torial remarks. Let E be a G-module. Possibly one may have a commutative ring 
R such that E is a (G, R)-module. We shall deal systematically with the functors 
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HomG, Fv, and the tensor product. Let 

A : E kE 

by a /^-isomorphism. Then interpreting elements of G as endomorphisms of E 

we obtain a group AGA-1 operating on kE. We shall also write [A]G instead of 
AGA-1. Let Ei, E2 be (G, F)-modules. Let Aj : Et —> AiEi be /^-isomorphisms. 
Then we have a natural /^-isomorphism 

(1) A2HomG(Fi, E2)ki 1 = HomA2GA-i(Ai£i, k2E2), 

and especially 

[A]HomG(F, E) = Hom[A]G(AF, AF). 

As a special case of the general situation, let //, S be subgroups of G, and let 
Fx, F2 be (//, /?)- and (5, F)-modules respectively, and let cr, r e G. Suppose 

that (t~1t lies in the double coset D = //yS. Then we have an /^-isomorphism 

(2) Hom[0.]//nfTj5([cr]FI, [t]F2) ~ Horn» ll/Wi)- 

This is immediate by conjugation, writing r = ahys with heH,seS, conjugating 
first with [oh}~\ and then observing that for s e 5, and an 5-module F, we 
have [s]S = 5, and [.y-1]F is isomorphic to F. In light of (2), we see that the 
F-module on the left-hand side depends only on the double coset. Let D be a 
double coset. We shall use the notation 

Md(Fi, F2) = Hom^n^s (^i> [yWi) 

where y represents the double coset D. With this notation we have: 

Theorem 7.7. Let H, S be subgroups of finite index in G. Let Fx, F2 be 

(H, R) and (5, R)-modules respectively. Then we have an isomorphism of R- 

modules 

HomG(indg(F,), ind#(F2)) - ® MD(FU F2), 
D 

where the direct sum is taken over all double cosets HyS = D. 

Proof. We have the isomorphisms: 

HomG(indg(F,), ind#(F2)) « Hom^F,, res# ° ind#(F2)) 

* 0 Hom„(F,,ind#n[7]s ° res^f[y]S° [y]F2) 
y 

~ © Honv/n[*y]s(Fi, [y]F2) 

by applying the definition of the induced module in the first and third step, and 
applying Theorem 7.6 in the second step. Each term in the last expression is 
what we denoted by MD(FU F2) if y is a representative for the double coset D. 

This proves the theorem. 
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Corollary 7.8. Let R = k = C. Let S, H be subgroups of the finite group 

G. Let D = HyS range over the double cosets, with representatives y. Let \ 

be an effective character of H and ip an effective character of S. Then 

<indg((*), ind<?(i//))G = [yWwn^s- 

Proof. Immediate from Theorem 5.17(b) and Theorem 7.7, taking dimen¬ 
sions on the left-hand side and on the right-hand side. 

Corollary 7.9. (Irreducibility of the induced character). Let S be a 

subgroup of the finite group G. Let R = k = C. Let ^ be an effective character 

of S. Then ind^i/O is irreducible if and only if is irreducible and 

('I', ly]4>)sn[y]s = 0 

for all y e G, y £ S. 

Proof Immediate from Corollary 7.8 and Theorem 5.17(a). It is of course 
trivial that if i/f is reducible, then so is the induced character. 

Another way to phrase Corollary 7.9 is as follows. LetF, F’ be representation 
spaces for S (over C). We call F, F' disjoint if no simple 5-space occurs both 
in F and F\ Then Corollary 7.9 can be reformulated: 

Corollary 7.9'. Let S be a subgroup of the finite group G. Let F be an 

(5, k)-space (with k - C). Then indf(F) is simple if and only if F is simple 

and for all y e G and y £ 5, the S f! [y]S-modules F and [y]F are disjoint. 

Next we have the commutation of the dual and induced representations. 

Theorem 7.10. Let S be a subgroup ofG and let F be a finite free R-module. 

Then there is a G-isomorphism 

indf(Fv) = (indf(F))v. 

Proof. Let G = LJ A,5 be a left coset decomposition. Then, as in Theorem 
7.3, we can express the representation space for ind^ (F) as 

indf(F) = 0A ,F. 

We may select Aj = 1 (unit element of G). There is a unique F-homomorphism 

f ■ Fv (ind£(F))v 

such that for <p e Fv and x e F we have 

/(<p)(A,x) = 
0 if; * 1 

xp(x) if ; = 1, 

which is in fact an /^-isomorphism of Fv on (A]F)V. We claim that it is an S- 
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homomorphism. This is a routine verification, which we write down. We have 

fO if i * 1 
fao-mM , 

Lcr(<p(cr '*)) if i = 1. 

On the other hand, note that if cr e 5 then cr~1 A, e S so cr^'A]* e \{F for 
jef; but if cr ^ 5, then <r_lA, ^ S for / =# 1 so o^'A,* £ A,F. Hence 

_, f 0 if i + 1 
[«■](/(<P))(A]T) = crf(<p)(cr A,jr) = j , 

lo-(<p((T lx)) if i = 1. 

This proves that / commutes with the action of 5. 
By the universal property of the induced module, it follows that there is a 

unique (G, F)-homomorphism 

ind?(/):indF(Fv)^(ind^(F))v, 

which must be an isomorphism because/was an isomorphism on its image, the 
Ai-component of the induced module. This concludes the proof of the theorem. 

Theorems and definitions with Horn have analogues with the tensor product. 
We start with the analogue of the definition. 

Theorem 7.11. Let S be a subgroup of finite index in G. Let F be an S- 

module, and E a G-module (over the commutative ring R). Then there is an 

isomorphism 

ind£(res5(F) ® F) « E ® ind£(F). 

Proof. The G-module ind§ (F) contains Fas a summand, because it is the 
direct sum (j^AzF with left coset representatives A, as in Theorem 7.3. Hence 
we have a natural 5-isomorphism 

/: res5(F) ® F F <g)AjF C E ® ind£(F). 

taking the representative A! to be 1 (the unit element of G). By the universal 
property of induction, there is a G-homomorphism 

ind£(/) : ind£(ress(£) ® F) -> E ® ind£(F), 

which is immediately verified to be an isomorphism, as desired. (Note that here 
it only needed to verify the bijectivity in this last step, which comes from the 
structure of direct sum as F-modules.) 

Before going further, we make some remarks on functorialities. Suppose we 
have an isomorphism G G\ a subgroup H of G corresponding to a subgroup 
H' of G’ under the isomorphism, and an isomorphism F ~ F' from an //-module 
F to an //'-module F' commuting with the actions of //, //'. Then we get an 
isomorphism 

indg(F) = indg'(F'). 
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In particular, we could take cr e G, let G' = [cr]G = G, //' = [er]// and 
F' = [cr]F. 

Next we deal with the analogue of Theorem 7.7. We keep the same notation 
as in that theorem and the discussion preceding it. With the two subgroups H 

and S, we may then form the tensor product 

l<r]F{ ® [t]F2 

with cr, r e G. Suppose er-1r e D for some double coset D = //yS. Note that 
[a]Fx ® [t]F2 is a [<r]// fl [r]5-module. By conjugation we have an isomorphism 

(3) ind^]wri[T]s([(r]Fi ® MF2) * indtfn[7]s(^i ® [y]^)- 

Theorem 7.12. There is a G-isomorphism 

indg(F,) ® indj(F2) = 0 indgn [yjs^i ® [y]^). 
y 

where the sum is taken over double coset representatives y. 

Proof. We have: 

indgCFj) ® ind^(F2) ~ ind^(Fj ® res,/ indf(F2)) by Theorem 7.11 

“ 0 indg(F, ® indgn[?]s reswn[;^([y]F2) by Theorem 7.6 
y 

= 0 indg^ndgn[7]s(res^n[r]s(^i) ® res«nS[y]i([y]^2)^ by Theorem 7.7 

« (J) indgnjyis^i ® [y]^) by transitivity of induction 

where we view Fx fl [y]F2 as an H D [y]S-module in this last line. This proves 
the theorem. 

General comment. This section has given a lot of relations for the induced 
representations. In light of the cohomology of groups, each formula may be 
viewed as giving an isomorphism of functors in dimension 0, and therefore gives 
rise to corresponding isomorphisms for the higher cohomology groups Hq. The 
reader may see this developed further than the exercises in [La 96]. 
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The next three sections, which are essentially independent of each other, give 

examples of induced representations. In each case, we show that certain 

representations are either induced from certain well-known types, or are linear 

combinations with integral coefficients of certain well-known types. The most 

striking feature is that we obtain all characters as linear combinations of in¬ 

duced characters arising from l-dimensional characters. Thus the theory of 

characters is to a large extent reduced to the study of 1 -dimensional, or abelian 

characters. 

§8. POSITIVE DECOMPOSITION OF THE 
REGULAR CHARACTER 

Let G be a finite group and let k be the complex numbers. We let 1G be the 
trivial character, and rG denote the regular character. 

Proposition 8.1. Let H be a subgroup of G, and let i/f be a character of H. 

Let ij/G be the induced character. Then the multiplicity of 1H in i/j is the same 

as the multiplicity of \G in i/jg. 

Proof. By Theorem 6.1 (i), we have 

1 h)h ~ 1g)g• 

These scalar products are precisely the multiplicities in question. 

Proposition 8.2. The regular representation is the representation induced 

by the trivial character on the trivial subgroup of G. 

Proof This follows at once from the definition of the induced character 

<AG(t) = 2 (/'//(crro--1), 
creC 

taking \j/ = 1 on the trivial subgroup. 

Corollary 8.3. The multiplicity of 1G in the regular character rG is equal to 1. 

We shall now investigate the character 

UG ~ rG ~ 1G • 

Theorem 8.4. (Aramata). The character nuG is a linear combination with 

positive integer coefficients of characters induced by 1 -dimensional characters 

of cyclic subgroups of G. 

The proof consists of two propositions, which give an explicit description of 
the induced characters. I am indebted to Serre for the exposition, derived from 
Brauer’s. 



700 REPRESENTATIONS OF FINITE GROUPS XVIII, §8 

If A is a cyclic group of order a, we define the function dA on A by the condi¬ 
tions: 

9a(<?) = 

if a is a generator of A 

otherwise. 

We let XA = (p(a)rA — dA (where q> is the Euler function), and XA = 0 if a = 1. 
The desired result is contained in the following two propositions. 

Proposition 8.5. Let G be a finite group of order n. Then 

nuG = Z A 

the sum being taken over all cyclic subgroups of G. 

Proof Given two class functions x, \p on G, we have the usual scalar 
product: 

<</s x>g = - Z 
n aec 

Let \p be any class function on G. Then: 

<i^, nuG> = (ip, nrG> - <^, nlG> 

= «<A(1) - Z <KCT)- 
<X E G 

On the other hand, using the fact that the induced character is the transpose of 
the restriction, we obtain 

Yi'i', a \a) 
A A 

= Z<^'lj4> ~ 

= Z - Z ~ Z 
y4 >1 ^ <r gen A 

= #(i) - Z |/'(<7)- 
cr e G 

Since the functions on the right and left of the equality sign in the statement of our 
proposition have the same scalar product with an arbitrary function, they are 
equal. This proves our proposition. 

Proposition 8.6. If A # {1}, the function XA is a linear combination of ir¬ 
reducible nontrivial characters of A with positive integral coefficients. 
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Proof. If A is cyclic of prime order, then by Proposition 8.5, we know that 
XA = nuA, and our assertion follows from the standard structure of the regular 
representation. 

In order to prove the assertion in general, it suffices to prove that the Fourier 
coefficients of XA with respect to a character of degree 1 are integers ^ 0. Let 
^ be a character of degree 1. We take the scalar product with respect to A, and 
obtain: 

<<P, )-a> = <p(a)<p(l) - X He) 
a gen 

= <P(a) - X •A(o') 
a gen 

= £ (1 - He)). 
a gen 

The sum £ ^(<r) taken over generators of A is an algebraic integer, and is in fact 
a rational number (for any number of elementary reasons), hence a rational 
integer. Furthermore, if i// is non-trivial, all real parts of 

1 - \l/(c) 

are > 0 if o ^ id and are 0 if o = id. From the last two inequalities, we conclude 
that the sums must be equal to a positive integer. If \p is the trivial character, 
then the sum is clearly 0. Our proposition is proved. 

Remark. Theorem 8.4 and Proposition 8.6 arose in the context of zeta 
functions andL-functions, in Aramata’s proof that the zeta function of a number 
field divides the zeta function of a finite extension [Ar 31], [Ar 33]. See also 
Brauer [Br 47a], [Br 47b]. These results were also used by Brauer in showing 
an asymptotic behavior in algebraic number theory, namely 

log(hR) ~ log D1/2 for [k : Q]/log D —» 0, 

where h is the number of ideal classes in a number field k, R is the regulator, 
and D is the absolute value of the discriminant. For an exposition of this appli¬ 
cation, see [La 70], Chapter XVI. 
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§9. SUPERSOLVABLE GROUPS 

Let G be a finite group. We shall say that G is supersolvable if there exists a 
sequence of subgroups 

{1}cG,cGjC...cG, = G 

such that each Gf is normal in G, and Gi+ j/G* is cyclic of prime order. 
From the theory of p-groups, we know that every p-group is super-solvable, 

and so is the direct product of a p-group with an abelian group. 

Proposition 9.1. Every subgroup and every factor group of a supersolvable 

group is supersolvable. 

Proof Obvious, using the standard homomorphism theorems. 

Proposition 9.2. Let G be a non-abelian supersolvable group. Then there 

exists a normal abelian subgroup which contains the center properly. 

Proof Let C be the center of G, and let G = G/C. Let H be a normal 
subgroup of prime order in G and let H be its inverse image in G under the 
canonical map G -► G/C. If a is a generator of //, then an inverse image o of o, 

together with C, generate H. Hence H is abelian, normal, and contains the 
center properly. 

Theorem 9.3. (Blichfeldt). Let G be a supersolvable group, let k be alge¬ 

braically closed. Let E be a simple (G, k)-space. If dim* E > 1, then there 

exists a proper subgroup H of G and a simple H-space F such that E is induced 

by F. 

Proof. Since a simple representation of an abelian group is 1-dimensional, 
our hypothesis implies that G is not abelian. 

We shall first give the proof of our theorem under the additional hypothesis 
that E is faithful. (This means that ox = x for all x e E implies o = 1.) It will 
be easy to remove this restriction at the end. 

Lemma 9.4. Let G be a finite group, and assume k algebraically closed. Let 

E be a simple, faithful G-space over k. Assume that there exists a normal abelian 

subgroup H of G containing the center of G properly. Then there exists a 

proper subgroup H\ of G containing H, and a simple H\-space Fsuch that E 

is the induced module of F from H\ to G. 

Proof. We view E as an H-space. It is a direct sum of simple H-spaces, and 
since H is abelian, such simple H-space is 1-dimensional. 

Let veE generate a 1-dimensional H-space. Let if/ be its character. If 
we E also generates a 1-dimensional H-space, with the same character then 
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for all a9bek and x e H we have 

x(av + bw) = \j/(x)(av + bw). 

If we denote by F^ the subspace of E generated by all 1-dimensional H-sub¬ 
spaces having the character ij/9 then we have an H-direct sum decomposition 

* 

We contend that E ^ F^. Otherwise, let v e F, v # 0, and <7 g G. Then c~ lv 
is a 1-dimensional JT-space by assumption, and has character \Jj. Hence for 
t g H, 

x(a~lv) = i//(x)(7~lv 

(oxo *)y = (nj/(x)o lv = \)/(x)v. 

This shows that oxc~1 and x have the same effect on the element v of E. Since 
H is not contained in the center of G, there exist xeH and <7 g G such that 
axe-1 / r, and we have contradicted the assumption that E is faithful. 

We shall prove that G permutes the spaces F^ transitively. 

Let v g F^. For any xeH and <7 g G, we have 

x(ov) = o(o~lxo)v = <nl/(<j~1xo)v = il/a(x)(jv9 

where is the function on H given by 1/^(1) = \jj{o~lXG). This shows that 0 

maps F^ into F^a. However, by symmetry, we see that g~1 maps Fij/a into F^, 
and the two maps a, g~1 give inverse mappings between F^a and F^. Thus G 
permutes the spaces {F^}. 

Let E' = GF^0 = 2 vF^ for some fixed 1j/0. Then E' is a G-subspace of F, 
and since E was assumed to be simple, it follows that F' = F. This proves that 
the spaces {Fare permuted transitively. 

Let F = F^ for some fixed 1/^. Then F is an H-subspace of F. Let be 
the subgroup of all elements tgG such that tF = F. Then Hx ^ G since 
F # F^. ITe contend that F is a simple H ^subspace, and that E is the induced 

space of F from Hx to G. 

To see this, let G = (J Hxc be a decomposition of G in terms of right cosets 
of Hv Then the elements {c-1} form a system of left coset representatives of 
Hl. Since 

E= Y,aF 
<reG 

it follows that 

E = £ c~ 1F. 
C 

We contend that this last sum is direct, and that F is a simple Hx -space. 
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Since G permutes the spaces {F^}, we see by definition that Hx is the isotropy 
group of F for the operation of G on this set of spaces, and hence that the elements 
of the orbit are precisely {c~ *F}, as c ranges over all the cosets. Thus the spaces 
{c~1F} are distinct, and we have a direct sum decomposition 

£ = ©c-'F. 
C 

If W is a proper //rsubspace of F, then © c~1W is a proper G-subspace of F, 
contradicting the hypothesis that E is simple. This proves our assertions. 

We can now apply Theorem 7.3 to conclude that E is the induced module 
from F, thereby proving Theorem 9.3, in case E is assumed to be faithful. 

Suppose now that E is not faithful. Let G0 be the normal subgroup of G 

which is the kernel of the representation G -> Autk(E). Let G = G/G0. Then 
E gives a faithful representation of G. As E is not 1-dimensional, then G is not 
abelian and there exists a proper normal subgroup H of G and a simple H-space 
F such that 

E = ind|(F). 

Let H be the inverse image of H in the natural map G -► G. Then H z> G0, 
and F is a simple //-space. In the operation of G as a permutation group of the 
k-subspaces {oF}aeG, we know that H is the isotropy group of one component. 
Hence H is the isotropy group in G of this same operation, and hence applying 
Theorem 7.3 again, we conclude that E is induced by F in G, i.e. 

E = indg(F), 

thereby proving Theorem 9.3. 

Corollary 9.5. Let G be a product of a p-group and a cyclic group, and let k 

be algebraically closed. IfE is a simple (G, k)-space and is not \-dimensional, 

then E is induced by a 1 -dimensional representation of some subgroup. 

Proof. We apply the theorem step by step using the transitivity of induced 
representations until we get a 1-dimensional representation of a subgroup. 

§10. BRAUER'S THEOREM 

We let k = C be the field of complex numbers. We let R be a subring of k. 

We shall deal withX^(G), i.e. the ring consisting of all linear combinations with 
coefficients in R of the simple characters of G over k. (It is a ring by Proposition 
2.1.) 
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Let H = {Ha} be a fixed family of subgroups of G, indexed by indices {a}. 
We let Vr(G) be the additive subgroup of XR(G) generated by all the functions 
which are induced by functions in XR{Ha) for some Hx in our family. In other 
words, 

Vr(G) = 2 ind§a(XR(Ha)). 
a 

We could also say that VR(G) is the subgroup generated over R by all the char¬ 
acters induced from all the Ha. 

Lemma 10.1. VR(G) is an ideal in XR(G). 

Proof. This is immediate from Theorem 6.1. 

For many applications, the family of subgroups will consist of “elementary” 
subgroups: Let p be a prime number. By a p-elementary group we shall mean 
the product of a p-group and a cyclic group (whose order may be assumed prime 
to p, since we can absorb the p-part of a cyclic factor into the p-group). An 
element o e G is said to be p-regular if its period is prime to p, and p-singular 
if its period is a power of p. Given xeG, we can write in a unique way 

X = CJT 

where o is p-singular, t is p-regular, and cr, t commute. Indeed, if prm is the period 
of x, with m prime to p, then 1 = vpr 4- pm whence x = (xmY(xpry and we get our 
factorization. It is clearly unique, since the factors have to lie in the cyclic 
subgroup generated by x. We call the two factors the p-singular and p-regular 
factors of x respectively. 

The above decomposition also shows: 

Proposition 10.2. Every subgroup and every factor group of a p-elementary 

group is p-elementary. If S is a subgroup of the p-elementary group P x C, 
where P is a p-group, and C is cyclic, of order prime to p, then 

S = (S n P) x (S n C). 

Proof. Clear. 

Our purpose is to show, among other things, that if our family {Ha} is such that 

every p-elementary subgroup of G is contained in some Ha, then VR(G) = XR(G) 

for every ring R. It would of course suffice to do it for R = Z, but for our pur¬ 
poses, it is necessary to prove the result first using a bigger ring. The main result 
is contained in Theorems 10.11 and 10.13, due to Brauer. We shall give an 
exposition of Brauer-Tate (Annals of Math., July 1955). 

We let R be the ring Z[(] where £ is a primitive n-th root of unity. There 
exists a basis of R as a Z-module, namely 1, (, ..., 1 for some integer N. 

This is a trivial fact, and we can take N to be the degree of the irreducible poly¬ 
nomial of £ over Q. This irreducible polynomial has leading coefficient 1, and 
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has integer coefficients, so the fact that 

form a basis of Z[(] follows from the Euclidean algorithm. We don’t need to 

know anything more about this degree N. 

We shall prove our assertion first for the above ring R. The rest then follows 
by using the following lemma. 

Lemma 10.3. If de Z and the constant function d. 1G belongs to VR then 

d.\G belongs to Vz. 

Proof We contend that 1, £,..., CN~ 1 are linearly independent over XZ(G). 

Indeed, a relation of linear dependence would yield 

s N- 1 

Z Z c*jXvCj = o 
v = 1 j =0 

with integers cvj not all 0. But the simple characters are linearly independent 
over k. The above relation is a relation between these simple characters with 
coefficients in R, and we get a contradiction. We conclude therefore that 

Vr = Vz® Vzc®---® vztN~l 

is a direct sum (of abelian groups), and our lemma follows. 

If we can succeed in proving that the constant function 1G lies in VR(G\ 

then by the lemma, we conclude that it lies in FZ(G), and since VZ(G) is an ideal, 
that XZ(G) = VZ(G). 

To prove our theorem, we need a sequence of lemmas. 
Two elements x, x' of G are said to be /^-conjugate if their p-regular factors 

are conjugate in the ordinary sense. It is clear that p-conjugacy is an equivalence 
relation, and an equivalence class will be called a p-conjugacy class, or simply a 
p-class. 

Lemma 10.4. Let f e XR(G), and assume that /(cr) e Z for all a £ G. Then 

f is constant mod p on every p-class. 

Proof Let x = or, where o is p-singular, and t is p-regular, and cr, t com¬ 
mute. It will suffice to prove that 

/(x) =/(t) (mod p). 

Let H be the cyclic subgroup generated by x. Then the restriction of / to H 

can be written 

/h — X ajll/j 
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with a} e R, and if/j being the simple characters of H, hence homomorphisms of 
H into k*. For some power pr we have xpr = xp\ whence ij/fx)^ = and 
hence 

f(x)pr=f(T)pr (mod pR). 

We now use the following lemma. 

Lemma 10.5. Let R = Z[£] be as before. If a e Z and as pR then a e pZ. 

Proof This is immediate from the fact that R has a basis over Z such that 
1 is a basis element. 

Applying Lemma 10.5, we conclude that /(x)=/(t) (mod p), because 
bpr = b (mod p) for every integer b. 

Lemma 10.6. Let t be p-regular in G, and let T be the cyclic subgroup 

generated by t. Let C be the subgroup of G consisting of all elements com- 
muting with t. Let Pbea p-Sylow subgroup of C. Then there exists an element 

ijj E Xr(T X P) such that the inducedfunctionf— if/3 has the following properties: 

(i) f(o)e Z for all oeG. 

(ii) f{o) = 0 if o does not belong to the p-class of t. 

(hi) /(t) = (C:P)# 0(mod p). 

Proof We note that the subgroup of G generated by T and P is a direct pro¬ 
duct T x P. Let \f/u ... ,i//r be the simple characters of the cyclic group T, and 
assume that these are extended to T x P by composition with the projection: 

T x P- T-/c*. 

We denote the extensions again by ... 9i//r. Then we let 

= L '/'vW'/'v 

The orthogonality relations for the simple characters of T show that 

ty) = iKt) = (T: 1) for yeP 

^(cr) = 0 if cr £ TP, and <j ^ tP. 

We contend that ij/G satisfies our requirements. 
First, it is clear that i/j lies in XR(TP). 
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We have for cr e G: 

^ = WTY) L +”*xax~l) = JpTT)^ 

where /t(cr) is the number of elements x e G such that xox-1 lies in rF. The 
number p(<r) is divisible by (P: 1) because if an element x of G moves a into xP 

by conjugation, so does every element of Px. Hence the values of lie in Z. 
Furthermore, p(<r) # 0 only if cr is p-conjugate to t, whence our condition 

(ii) follows. 
Finally, we can have xtx- 1 = xy with yeP only if y = 1 (because the period 

of x is prime to p). Hence p(t) = (C: 1), and our condition (iii) follows. 

Lemma 10.7. Assume that the family of subgroups {Ha} covers G (i.e. every 

element of G lies in some Ha). Iff is a class function on G taking its values in 

Z, and such that all the values are divisible by n = (G: 1), then f belongs to 

Vr(G). 

Proof Let y be a conjugacy class, and let p be prime to n. Every element 
of G is p-regular, and all p-subgroups of G are trivial. Furthermore, p-conjugacy 
is the same as conjugacy. Applying Lemma 10.6, we find that there exists in 
Vr(G) a function taking the value 0 on elements a 4 7, and taking an integral 
value dividing n on elements of y. Multiplying this function by some integer, we 
find that there exists a function in VR(G) taking the value n for all elements of y, 

and the value 0 otherwise. The lemma then follows immediately. 

Theorem 10.8. (Artin). Every character of G is a linear combination with 

rational coefficients of induced characters from cyclic subgroups. 

Proof In Lemma 10.7, let {Ha} be the family of cyclic subgroups of G. The 
constant function n.lG belongs to VR(G). By Lemma 10.3, this function belongs 
to KZ(G), and hence nXz(G) <= VZ(G). Hence 

XZ(G) <= 1 VZ(G), 

thereby proving the theorem. 

Lemma 10.9. Let p be a prime number, and assume that every p-elementary 

subgroup of G is contained in some Ha. Then there exists a function f e VR(G) 

whose values are in Z, and = 1 (mod pr). 

Proof We apply Lemma 10.6 again. For each p-class y, we can find a func¬ 
tion fy in Vr(G\ whose values are 0 on elements outside y, and ^ 0 mod p for 
elements of y. Let / = £/y, the sum being taken over all p-classes. Then 

/(cr) ^ 0 (mod/?) for all o e G. Taking f^~x)pr 1 gjves what we want. 
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Lemma 10.10. Let pbe a prime number and assume that every p-elementary 

subgroup of G is contained in some Ha. Let n = n0pr where n0 is prime to p. 

Then the constant function n0. lG belongs to KZ(G). 

Proof By Lemma 10.3, it suffices to prove that n0.lG belongs to VR(G). 

Let/be as in Lemma 10.9. Then 

Mg = Mg “/) + nof 

Since «oOg -/) has values divisible by nopr = n, it lies in VR(G) by Lemma 
10.7. On the other hand, nof e VR(G) because f e VR(G). This proves our lemma. 

Theorem 10.11. (Brauer). Assume that for every prime number p, every 

p-elementary subgroup of G is contained in some Ha. Then X(G) = LZ(G). 
Every character of G is a linear combination, with integer coefficients, of 

characters induced from subgroups Ha. 

Proof Immediate from Lemma 10.10, since we can find functions n0.lG *n 
VZ(G) with n0 relatively prime to any given prime number. 

Corollary 10.12. A class function f on G belongs to X(G) if and only if its 

restriction to Ha belongs to Xr(HJfor each a. 

Proof Assume that the restriction of/to Ha is a character on Ha for each a. 
By the theorem, we can write 

1 c = £ Ca indga(^a) 
a 

where ca e Z, and 6 X(Ha). Hence 

/ = 2 Ca ^&H(f{l/afHa)i 

using Theorem 6.1. If fH<xeX(Ha\ we conclude that /belongs to X(G). The 
converse is of course trivial. 

Theorem 10.13. (Brauer). Every character of G is a linear combination 

with integer coefficients of characters induced by 1-dimensional characters of 

subgroups. 

Proof By Theorem 10.11, and the transitivity of induction, it suffices to 
prove that every character of a p-elementary group has the property stated in 
the theorem. But we have proved this in the preceding section, Corollary 9.5. 
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§11. FIELD OF DEFINITION OF A 
REPRESENTATION 

We go back to the general case of k having characteristic prime to #G. Let 
E be a k-space and assume we have a representation of G on E. Let k' be an 
extension field of k. Then G operates on k' ®k E by the rule 

o(a ® x) = a ® ox 

for a g k' and xe E. This is obtained from the bilinear map on the product 
k! x E given by 

(a, x) hh► a (x) ox. 

We view E' = k' ®kE as the extension of E by k', and we obtain a representation 
of G on E'. 

Proposition 11.1. Let the notation he as above. Then the characters of the 

representations of G on E and on E' are equal. 

Proof. Let {vu ..., vm} be a basis of E over k. Then 

{1 ® 1 ® vm) 

is a basis of E' over k'. Thus the matrices representing an element o of G with 
respect to the two bases are equal, and consequently the traces are equal. 

Conversely, let k' be a field and k a subfield. A representation of G on a 
k'-space El is said to be definable over k if there exists a k-space E and a repre¬ 
sentation of G on E such that E' is G-isomorphic to k' ®k E. 

Proposition 11.2. Let E, F be simple representation spaces for the finite 

group G over k. Let k! be an extension of k. Assume that E, F are not G- 
isomorphic. Then no k'-simple component of Ew appears in the direct sum 

decomposition of Fk> into k'-simple subspaces. 

Proof. Consider the direct product decomposition 

s(k) 

fccc] = n *#) 
n= 1 

over k, into a direct product of simple rings. Without loss of generality, we may 
assume that E, F are simle left ideals of k[G], and they will belong to distinct 
factors of this product by assumption. We now take the tensor product with 
k', getting nothing else but k'[G]. Then we obtain a direct product decomposi¬ 
tion over k'. Since Rv(k)R^(k) = 0 if v # p9 this will actually be given by a direct 
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product decomposition of each factor Rfk): 

s(k) m(n) 

Vig] = n n jw 
A/=l i= 1 

Say E = Lv and F = with v # p. Then R^E = 0. Hence = 0 for 
each i = 1,..., m(fi). This implies that no simple component of Ek. can be 
G-isomorphic to any one of the simple left ideals of and proves what we 
wanted. 

Corollary 11.3. The simple characters Xi> ..., xs(k) of G over k are linearly 
independent over any extension k! of k. 

Proof This follows at once from the proposition, together with the linear 
independence of the kf-simple characters over k'. 

Propositions 11.1 and 11.2 are essentially general statements of an abstract 
nature. The next theorem uses Brauer’s theorem in its proof. 

Theorem 11.4. (Brauer). Let G be a finite group of exponent m. Every 
representation of G over the complex numbers (or an algebraically closed field 
of characteristic 0) is definable over the field Q((m) where (m is a primitive 
m-th root of unity. 

Proof. Let x he the character of a representation of G over C, i. e. an effective 
character. By Theorem 10.13, we can write 

x = 'Lcj ind^(i/ry), Cj e Z, 

the sum being taken over a finite number of subgroups Sj, and being a 1- 
dimensional character of Sj. It is clear that each is definable over Q(£m). Thus 
the induced character ij/f is definable over Q(£m). Each iff can be written 

= X djixX^ 4> e z 

where {^} are the simple characters of G over Q((w)- Hence 

The expression of x as a linear combination of the simple characters over k is 
unique, and hence the coefficient 

Yj cjdjn 

is ^ 0. This proves what we wanted. 
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§12. EXAMPLE: GL2 OVER A FINITE FIELD 

Let F be a field. We view GL2(F) as operating on the 2-dimensional 
vector space V = F2. We let Fa be the algebraic closure as usual, and we let 
ya = faxFa = p®y (tensor product over F). By semisimple, we always 
mean absolutely semisimple, i.e. semisimple over the algebraic closure Fa. An 
element a e GL2(F) is called semisimple if Va is semisimple over Fa[a]. A sub¬ 
group is called semisimple if all its elements are semisimple. 

Let K be a separable quadratic extension of F. Let {a^, o)2} be a basis of K. 

Then we have the regular representation of K with respect to this basis, namely 
multiplication representing K* as a subgroup of GL2{F). The elements of norm 
1 correspond precisely to the elements of SL2(F) in the image of /f*. A different 
choice of basis of K corresponds to conjugation of this image in GL2(F). Let CK 

denote one of these images. Then CK is called a non-split Cartan subgroup. 
The subalgebra 

F[Ck\ C Mat2(F) 

is isomorphic to K itself, and the units of the algebra are therefore the elements 
of CK « K*. 

Lemma 12.1. The subgroup CK is a maximal commutative semisimple 

subgroup. 

Proof. If a e GL2(F) commutes with all elements of CK then a must lie in 
F[Ck], for otherwise {1, a} would be linearly independent over F[CK], whence 
Mat2(F) would be commutative, which is not the case. Since a is invertible, a 

is a unit in F[CK], so a e CK, as was to be shown. 

By the split Cartan subgroup we mean the group of diagonal matrices 

(a 0\ 
with a, d e F*. 

VO d] 

We denote the split Cartan by A, or A(F) if the reference to F is needed. 
By a Cartan subgroup we mean a subgroup conjugate to the split Cartan or 

to one of the subgroups CK as above. 

Lemma 12.2. Every maximal commutative semisimple subgroup of GL2(F) 

is a Cartan subgroup, and conversely. 

Proof. It is clear that the split Cartan subgroup is maximal commutative 
semisimple. Suppose that// is a maximal commutative semisimple subgroup of 
GL2(F). If H is diagonalizable over F, then H is contained in a conjugate of the 
split Cartan. On the other hand, suppose H is not diagonalizable over F. It is 
diagonalizable over the separable closure of F, and the two eigenspaces of 
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dimension 1 give rise to two characters 

</r, </r' : // -> Fs* 

of H in the multiplicative group of the separable closure. For each element 
a e H the values i/<a) and i//(a) are the eigenvalues of a, and for some element 
a e H these eigenvalues are distinct, otherwise H is diagonalizable over F. 

Hence the pair of elements i/<a), are conjugate over F. The image 
is cyclic, and if i/>(a) generates this image, then we see that i/e(a) generates a 
quadratic extension K of F. The map 

a i-> if/(a) with a e H 

extends to an F-linear mapping, also denoted by i/>, of the algebra F[H] into K. 

Since F[H] is semisimple, it follows that i/j : F[H] —> K is an isomorphism. 
Hence i/e maps H into K*, and in fact maps H onto F* because H was taken to 
be maximal. This proves the lemma. 

In the above proof, the two characters i/e, i// are called the (eigen)characters 
of the Cartan subgroup. In the split case, if a has diagonal elements, a, d then 
we get the two characters such that i//(a) = a and i//(a) = d. In the split case, 
the values of the characters are in F. In the non-split case, these values are 
conjugate quadratic over F, and lie in K. 

Proposition 12.3. Let H be a Cartan subgroup of GL2(F) (split or not). Then 

H is of index 2 in its normalizer N(H). 

Proof We may view GL2(F) as operating on the 2-dimensional vector space 
V* = Fa © Fa, over the algebraic closure Fa. Whether H is split or not, the 
eigencharacters are distinct (because of the separability assumption in the non¬ 
split case), and an element of the normalizer must either fix or interchange the 
eigenspaces. If it fixes them, then it lies in H by the maximality of H in Lemma 
12.2. If it interchanges them, then it does not lie in //, and generates a unique 
coset of N/H, so that H is of index 2 in N. 

In the split case, a representative of N/A which interchanges the eigenspaces 
is given by 

In the non-split case, let cr\ K —> K be the non-trivial automorphism. Let 
{a, era} be a normal basis. With respect to this basis, the matrix of cr is precisely 
the matrix 

w = 

Therefore again in this case we see that there exists a non-trivial element in the 
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normalizer of A. Note that it is immediate to verify the relation 

l) = M(ox), 

if M(x) is the matrix associated with an element x e K. 

Since the order of an element in the multiplicative group of a field is prime 
to the characteristic, we conclude: 

If F has characteristic p, then an element of finite order in GL2{F) is semisimple 

if and only if its order is prime to p. 

Conjugacy classes 

We shall determine the conjugacy classes explicitly. We specialize the sit¬ 
uation, and from now on we let: 

F = finite field with q elements; 
G = GL2(F)\ 

Z = center of G; 
A = diagonal subgroup of G; 

C * K* = a non-split Cartan subgroup of G. 

Up to conjugacy there is only one non-split Cartan because over a finite field 
there is only one quadratic extension (in a given algebraic closure Fa) (c/. 
Corollary 2.7 of Chapter XIV). Recall that 

#(G) = {q2 - 1 )(q2 - q) = q(q + D(q ~ l)2. 

This should have been worked out as an exercise before. Indeed, F x F has q2 

elements, and #(G) is equal to the number of bases of F x F. There are q2 — 1 
choices for a first basis element, and then q2 - q choices for a second (omitting 
(0, 0) the first time, and all chosen elements the second time). This gives the 
value for #(G). 

There are two cases for the conjugacy classes of an element a. 

Case 1. The characteristic polynomial is reducible, so the eigenvalues lie 
in F. In this case, by the Jordan canonical form, such an element is conjugate 
to one of the matrices 

g :)• g :)• g :) 
These are called central, unipotent, or rational not central respectively. 

Case 2. The characteristic polynomial is irreducible. Then a is such that 
F[a\ ~ F, where E is the quadratic extension of F of degree 2. Then {1, a) is 
a basis of F[a\ over F, and the matrix associated with a under the representation 
by multiplication on F[a] is 

0 —b 
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where a, b are the coefficients of the characteristic polynomial X2 4- ax + b. 

We then have the following table. 

Table 12.4 

class # of classes # of elements in the class 

(; °) q - 1 1 
VO a) 

C ’) 
q- 1 q2 - 1 

V0 a) 

(' °) 
Vo d) \{q - 1)(* - 2) q2 + q 

with a ¥= d 

aeC - F* - 1)<7 q2 - q 

In each case one computes the number of elements in a given class as the index 
of the normalizer of the element (or centralizer of the element). Case 1 is trivial. 
Case 2 can be done by direct computation, since the centralizer is then seen to 
consist of the matrices 

with x =£ 0. The third and fourth cases can be done by using Proposition 12.3. 
As for the number of classes of each type, the first and second cases correspond 

to distinct choices of a e F* so the number of classes is q — 1 in each case. In 
the third case, the conjugacy class is determined by the eigenvalues. There are 
q — 1 possible choices for a, and then q — 2 possible choices for d. But the 
non-ordered pair of eigenvalues determines the conjugacy class, so one must 
divide (q — l)(q — 2) by 2 to get the number of classes. Finally, in the case 
of an element in a non-split Cartan, we have already seen that if a generates 
Gal(AyF), then M(ctx) is conjugate to M(x) in GL2{F). But on the other 
hand, suppose x, x' e K* and M(x), M(xf) are conjugate in GL2{F) under a given 
regular representation of K* on K with respect to a given basis. Then this 
conjugation induces an F-algebra isomorphism on F[CK], whence an automor¬ 
phism of K, which is the identity, or the non-tri vial automorphism cr. Consequently 
the number of conjugacy classes for elements of the fourth type is equal to 

#{K) ~ *(F) qLz_q 
2 2 ’ 

which gives the value in the table. 
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Borel subgroup and induced representations 

We let: 

U = group of unipotent elements 

B = Borel subgroup = UA = AU. 

Then #(B) = q(q - l)2 = (q — 1 )(q2 - q). We shall construct representations 
of G by inducing characters from B, and eventually we shall construct all irre¬ 
ducible representations of G by combining the induced representations in a suitable 
way. We shall deal with four types of characters. Except in the first type, which 
is 1-dimensional and therefore obviously simple, we shall prove that the other 
types are simple by computing induced characters. In one case we need to subtract 
a one-dimensional character. In the other cases, the induced character will turn 
out to be simple. The procedure will be systematic. We shall give a table of 
values for each type. We verify in each case that for the character x which we 
want to prove simple we have 

2 I*03)|2 = #(G), 
/3eG 

and then apply Theorem 5.17(a) to get the simplicity. Once we have done this 
for all four types, from the tables of values we see that they are distinct. Finally, 
the total number of distinct characters which we have exhibited will be equal to 
the number of conjugacy classes, whence we conclude that we have exhibited 
all simple characters. 

We now carry out this program. I myself learned the simple characters of 
GL2(F) from a one-page handout by Tate in a course at Harvard, giving the 
subsequent tables and the values of the characters on conjugacy classes. I filled 
out the proofs in the following pages. 

First type 

: F* —> C* denotes a homomorphism. Then we obtain the character 

H ° det: G —> C*, 

which is 1-dimensional. Its values on representatives of the conjugacy classes 
are given in the following table. 

Table 12.5(1) 

(a 0\ (a 1\ (a 0\ 
X 

\0 a) VO a) Vo did * a 
a E C — F* 

o Q
- 

fD
 

H(a)2 ix(a)2 li(ad) fJL ° det(a) 
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The stated values are by definition. The last value can also be written 

)it(det a) = i(NKIF(a)), 

viewing a as an element of /f*, because the reader should know from field theory 
that the determinant gives the norm. 

A character of G will be said to be of first type if it is equal to n ° det for 
some fJL. There are q - 1 characters of first type, because #(F*) = q - 1. 

Second type 

Observe that we have B/U = A. A character of A can therefore be viewed 
as a character on B via B/U. We let: 

i/^ = resA(/Lt ° det), and view therefore as a character on B. Thus 

We obtain the induced character 

''!'% = indgt^). 

Then is not simple. It contains /i ° det, as one sees by Frobenius reciprocity: 

<inda^,/todet)c = <$ ,n o det>s = —£ \n °det(/?)|2 = 1. 

Characters ^ ^ — /x ° det will be called of second type. 

The values on the representatives of conjugacy classes are as follows. 

Table 12.5(11) 

Actually, one computes the values of i/^, and one then subtracts the value of 
6 ° det. For this case and the next two cases, we use the formula for the induced 
function: 

indg((p)(a) = ^ <Ptf(j3a/3_1) 

where <pH is the function equal to cp on H and 0 outside H. An element of the 
center commutes with all /3 e G, so for <p= if/^ the value of the induced character 
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on such an element is 

^^/x(a)2 = (q + 1 )fi(a)2. 

which gives the stated value. 

For an element u = ^ the only elements /3 e G such that jSwjS-1 lies 

in B are the elements of B (by direct verification). It is then immediate that 

= 

which yields the stated value for the character x• Using Table 12.4, one finds 

at once that 2 \x(P)\2 ~ #(G), and hence; 

A character x of second type is simple. 

The table of values also shows that there are q - 1 characters of second type. 
The next two types deal especially with the Cartan subgroups. 

Third type 

i/f: A —> C* denotes a homomorphism. 

As mentioned following Proposition 12.3, the representative w = wA = w-1 for 
N(A)/A is such that 

Thus conjugation by w is an automorphism of order 2 on A. Let be the 
conjugate character; that is, ([w]i/0(a) = i//(ivaw) = for a e A. Then 
[w\(p o det) = p o det. The characters p o det on A are precisely those which are 
invariant under [w\. The others can be written in the form 

with distinct characters , fa: F* —> C*. In light of the isomorphism 
B/U ~ A, we view ifr has a character on B. Then we form the induced character 

ij/G = ind= ind^([w]fa. 

With ij/ such that [w]ifj =£ i/>, the characters x = *AG will be said to be of the 
third type. Here is their table of values. 
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Table 12.5(111) 

* CD n a-(m °) 
VO did ¥= a 

a e C — F* 

\i>G 
l/» =# [w'jt/f (<7 + 1 Ma) 4>(a) (//(a) + t/Ka"') 0 

The first entry on central elements is immediate. For the second, we have already 
seen that if /3 e G is such that conjugating 

P r1 efl, 

then )3eB, and so the formula 

immediately gives the value of ifP on unipotent elements. For an element of A 

with a ± d, there is the additional possibility of the normalizer of A with the 
elements w, and the value in the table then drops out from the formula. For 
elements of the non-split Cartan group, there is no element of G which conjugates 
them to elements of B, so the value in the last column is 0. 

We claim that a character \ = \\fi of third type is simple. 

The proof again uses the test for simplicity, i.e. thatX \x(P)\2 = #(G). Observe 
that two elements a, cl e A are in the same conjugacy class in G if and only if 
a = a or a' = [w]a. This is verified by brute force. Therefore, writing the 
sum X | ifrG(p)\2 for j8 in the various conjugacy classes, and using Table 12.4, 
we find: 

2 I •AW = (q + 1 )\q - 1) 
/3 eG 

+ (q - 1 )(<?2 - 1) + (q2 + q) 2 |«A(«) + <A(«M)I 2- 
ae(/l-F*)/w 

The third term can be written 

\(q2 + q) 2 + + 
^ a&A-F* 

= \{q2 + q) 2 (1 + 1 + il/(a'~w) + tA(a*v~1)). 
^ a^A-F* 

We write the sum over a e A — F* as a sum for a e A minus the sum for 
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a e F*. If a e F* then ax~w = a"-1 = 1. By assumption on i/f, the character 

a i-> i//(a1-vv) for a e A 

is non-trivial, and therefore the sum over a e A is equal to 0. Therefore, putting 
these remarks together, we find that the third term is equal to 

\{q2 + q)[2(q - l)2 - 2(q - 1) - 2(q - 1)] = q(q2 - 1 )(q - 3). 

Hence finally 

2 | ^03)|2 = (q + l)(q2 ~ 1) + (q - 1 )(q2 ~ 1) + q(q2 - 1 )(q - 3) 
/3 eG 

= 9(9 - D(<?2 " 1) = #(G), 

thus proving that ij/G is simple. 
Finally we observe that there are \ (q — 1 )(q - 2) characters of third type. 

This is the number of characters i/> such that [w]i/> =£ i/j, divided by 2 because 
each pair i/f and [w]i/f yields the same induced character i/fG. The table of values 
shows that up to this coincidence, the induced characters are distinct. 

Fourth type 

0 : K* —> C* denotes a homomorphism, which is viewed as a character on 
C = C*. 

By Proposition 12.3, there is an element w e N(C) but w £ C, w = w~l. Then 

a i-» waw = [w]a 

is an automorphism of C, but jc »-» wxw is also a field automorphism of 
F[C] ~ K over F. Since [K : F] = 2, it follows that conjugation by w is the auto¬ 
morphism a i-> a9. As a result we obtain the conjugate character [w]0 such that 

(lw]6)(a) = 0([w)a) = 0(0, 

and we get the induced character 

0G = indg(0) = indg([w]0). 

Let /jl : F* —> C* denote a homomorphism as in the first type. Let: 

A : F+ —> C* be a non-trivial homomorphism. 

(/Lt, A) = the character on ZU such that 

< D)=Mawx)’ 
(jtt, A)g = ind^C/tt, A). 
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A routine computation of the same nature that we have had previously gives the 
following values for the induced characters 0G and (/x, A)G. 

X CD CD (• °) 
VO did * a 

a e C — F* 

eG (q2 - q)O(a) 0 0 0(a) + 0(aw) 

(/*, A)G (q2 - l)/x(a) -fi(a) 0 0 

These are intermediate steps. Note that a direct computation using Frobenius 
reciprocity shows that 6G occurs in the character (res 0, A)G, where the restriction 
res# is to the group F*, so res# is one of our characters p. Thus we define: 

O' = (res0, A)G - 0G = ([w]6)\ 

which is an effective character. A character O' is said to be of fourth type if 0 

is such that 0 =£ [w]0. These are the characters we are looking for. Using the 
intermediate table of values, one then finds the table of values for those characters 
of fourth type. 

Table 12.5(IV) 

X CD CD (“ °) 
\0 d/d a 

a e C — F* 

O' 

6 + [w]0 (q - l)0(fl) -0(a) 0 -0(a) - 6(aw) 

We claim that the characters O' of fourth type are simple. 

To prove this, we evaluate 

2 | 6*'0)I 2 = (q - 1 )\q - 1 ) + (q- D(q2 ~ D 
/3eG 

+ \(q2 - q) 2 I 0(a) + 0(a")| 2. 

We use the same type of expansion as for characters of third type, and the final 
value does turn out to be #(G), thus proving that O' is simple. 

The table also shows that there are|#(C - F*) ~ q) distinct characters 
of fourth type. We thus come to the end result of our computations. 



722 REPRESENTATIONS OF FINITE GROUPS XVIII, Ex 

Theorem 12.6. The irreducible characters of G = GL2(F) are as follows. 

type 
number of 
that type 

dimension 

i 

I /x ° det q - 1 1 

II det q - 1 <1 

n \{q - 1)0? - 2) q + 1 

IV 6' from pairs 0 4= [w]d \{q ~ 1)<7 q - 1 

Proof We have exhibited characters of four types. In each case it is imme¬ 
diate from our construction that we get the stated number of distinct characters 
of the given type. The dimensions as stated are immediately computed from the 
dimensions of induced characters as the index of the subgroup from which we 
induce, and on two occasions we have to subtract something which was needed 
to make the character of given type simple. The end result is the one given in 
the above table. The total number of listed characters is precisely equal to the 
number of classes in Table 12.4, and therefore we have found all the simple 
characters, thus proving the theorem. 

EXERCISES 

1. The group S3. Let S3 be the symmetric group on 3 elements, 
(a) Show that there are three conjugacy classes. 
(b) There are two characters of dimension 1, on S3/A3. 
(c) Let dt (i = 1, 2, 3) be the dimensions of the irreducible characters. Since 

= 6, the third irreducible character has dimension 2. Show that 
the third representation can be realized by considering a cubic equation 
X3 -I- aX -I- b = 0, whose Galois group is S3 over a field k. Let V be the k- 
vector space generated by the roots. Show that this space is 2-dimensional 

and gives the desired representation, which remains irreducible after tensoring 
with ka. 

(d) Let G = S3. Write down an idempotent for each one of the simple components 
of C[G]. What is the multiplicity of each irreducible representation of G in 
the regular representation on C[G]? 
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2. The groups S4 and A4. Let S4 be the symmetric group on 4 elements. 
(a) Show that there are 5 conjugacy classes. 

(b) Show that A4 has a unique subgroup of order 4, which is not cyclic, and 
which is normal in S4. Show that the factor group is isomorphic to 53, so 
the representations of Exercise 1 give rise to representations of S4. 

(c) Using the relation 2 dj = #(S4) = 24, conclude that there are only two other 
irreducible characters of S4, each of dimension 3. 

(d) Let X4 + a2X2 4- a{X 4- a0 be an irreducible polynomial over a field k, with 
Galois group S4. Show that the roots generate a 3-dimensional vector space 
V over k, and that the representation of S4 on this space is irreducible, so 
we obtain one of the two missing representations. 

(e) Let p be the representation of (d). Define p' by 

p'(a) = p(o) if o is even; 

p\o) = — p(a) if a is odd. 

Show that p' is also irreducible, remains irreducible after tensoring with &a, 
and is non-isomorphic to p. This concludes the description of all irreducible 
representations of S4. 

(f) Show that the 3-dimensional irreducible representations of S4 provide an 
irreducible representation of A4. 

(g) Show that all irreducible representations of A4 are given by the representations 
in (f) and three others which are one-dimensional. 

3. The quaternion group. Let Q = {±1, ±x, ±y, ±z} be the quaternion group, with 
x2 = y2 = z2 = —1 and xy = —yx, xz = —zx, yz = — zy. 

(a) Show that Q has 5 conjugacy classes. 
Let A = {± 1}. Then Q/A is of type (2,2), and hence has 4 simple characters, 
which can be viewed as simple characters of Q. 

(b) Show that there is only one more simple character of Q, of dimension 2. 
Show that the corresponding representation can be given by a matrix rep¬ 
resentation such that 

(c) Let H be the quaternion field, i.e. the algebra over R having dimension 4, 
with basis {1, jc, y, z} as in Exercise 3, and the corresponding relations as 
above. Show that C ® RH =» Mat2(C) (2x2 complex matrices). Relate this 
to (b). 

4. Let S be a normal subgroup of G. Let be a simple character of S over C. Show 
that ind^i^) is simple if and only if i// = [cr]i// for all a E 5. 

5. Let G be a finite group and 5 a normal subgroup. Let p be an irreducible representation 
of G over C. Prove that either the restriction of p to S has all its irreducible components 
5-isomorphic to each other, or there exists a proper subgroup H of G containing S 
and an irreducible representation 6 of H such that p ~ indg(0)- 

6. Dihedral group Z)2n. There is a group of order In (n even integer ^ 2) generated 
by two elements cr, t such that 
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an = 1, t2 = 1, and tot = <r 1. 

It is called the dihedral group. 
(a) Show that there are four representations of dimension 1, obtained by the four 

possible values ±1 for a and r. 
(b) Let C„ be the cyclic subgroup of Dln generated by a. For each integer 

r = 0,. .., n — 1 let i//r be the character of Cn such that 

il/r(cr) = C (C = prim, n-th root of unity) 

Let Xr ^ the induced character. Show that \r = Xn-r■ 
(c) Show that for 0 < r < nil the induced character \r 1S simple, of dimension 

2, and that one gets thereby ^ - 1^ distinct characters of dimension 2. 

(d) Prove that the simple characters of (a) and (c) give all simple characters of 

D2 n- 

7. Let G be a finite group, semidirect product of A, H where A is commutative and 
normal. Let AA = Hom(A, C*) be the dual group. Let G operate by conjugation on 

characters, so that for a e G, a 6 A, we have 

[cr]ij/(a) = 

Let ipr be representatives of the orbits of H in AA, and let Ht(i — 1,. . . , r) 

be the isotropy group of i/r,. Let G, = AHr 
(a) For a E A and h E //,, define <^-(ah) = <^(a). Show that fa is thus extended 

to a character on Gt. 
Let 6 be a simple representation of //, (on a vector space over C). From 
Hi = G,/A, view 0 as a simple representation of Gr Let 

Pi,e = indg/i/r, ® 6). 

(b) Show that e is simple. 
(c) Show that p, d ~ pi e> implies i = i' and 6 ~ 0'. 
(d) Show that every irreducible representation of G is isomorphic to some p t e 

8. Let G be a finite group operating on a finite set S. Let C[S] be the vector space 
generated by S over C. Let ijj be the character of the corresponding representation 

of G on C[5]. 
(a) Let <j £ G. Show that if/(cr) = number of fixed points of cr in S. 
(b) Show that (i/j, 1G)G is the number of G-orbits in S. 

9. Let A be a commutative subgroup of a finite group G. Show that every irreducible 
representation of G over C has dimension ^ (G : A). 

10. Let F be a finite field and let G = SL2(F). Let B be the subgroup of G consisting of 
all matrices 

E SL2(F), so d = a~x. 

Let p, : F* —» C* be a homomorphism and let ^ : B —> C* be the homomorphism 
such that iAM(a) = p(a). Show that the induced character ind£(^M) is simple if 
p? ± 1. 
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11. Determine all simple characters of SL2{F), giving a table for the number of such 
characters, representatives for the conjugacy classes, as was done in the text for GL2, 
over the complex numbers. 

12. Observe that As ~ SL2(F4) ~ PSL2{F5). As a result, verify that there are 5 conjugacy 
classes, whose elements have orders 1, 2, 3, 5, 5 respectively, and write down 
explicitly the character table for A5 as was done in the text for GL2. 

13. Let G be a p-group and let G —> Aut(V) be a representation on a finite dimensional 
vector space over a field of characteristic p. Assume that the representation is irre¬ 
ducible. Show that the representation is trivial, i.e. G acts as the identity on V. 

14. Let G be a finite group and let C be a conjugacy class. Prove that the following two 
conditions are equivalent. They define what it means for the class to be rational. 

RAT 1. For all characters * of G, *(<r) E Q for a E C. 

RAT 2. For all a E C, and j prime to the order of cr, we have crJ E C. 

15. Let G be a group and let //,, H2 be subgroups of finite index. Let p,, p2 be repre¬ 
sentations of Hj, H2 on /^-modules Fx, F2 respectively. Let MG(FX, F2) be the R- 
module of functions /: G —> Hom^/^, F2) such that 

f(hxah2) = f)2(h2)f(a)pl(hl) 

for all a E G, ht E //, (i = 1, 2). Establish an /^-module isomorphism 

HornR(Ff,FG)^MG(FuF2). 

By Ff we have abbreviated indg(Ft). 

16. (a) Let Gx, G2 be two finite groups with representations on C-spaces Ex, E2. Let 
Ex ® E2 be the usual tensor product over C, but now prove that there is an action 
of Gx x G2 on this tensor product such that 

cr2)(x ® y) = axx 0 a2y for crx E Gj, cr2 E G2. 

This action is called the tensor product of the other two. If px, p2 are the 
representations of Gx, G2 on Ex, E2 respectively, then their tensor product is 
denoted by px ® p2. Prove: If px, p2 are irreducible then p2 ® p2 is also irreducible. 
[Hint: Use Theorem 5.17.] 

(b) Let xu Xi be the characters of px, p2 respectively. Show that \\ ® Xi 1S the 
character of the tensor product. By definition, 

Xi 0 Xii^u <*2) = X\(<7\) Xiivi)- 

17. With the same notation as in Exercise 16, show that every irreducible representation 
of Gx x G2 over C is isomorphic to a tensor product representation as in Exercise 
16. [Hint: Prove that if a character is orthogonal to all the products \\ 0 Xi °f 
Exercise 16(b) then the character is 0.] 

Tensor product representations 

18. Let P be the non-commutative polynomial algebra over a field /c, in n variables. Let 
Xj,..., xr be distinct elements of Px (i.e. linear expressions in the variables tx,...,tn) 
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and let au ..., are k. If 

a{x\ 4- • • ■ 4- arxvr = 0 

for all integers v = 1,..., r show that ax = 0 for i = 1,..., r. [Hint : Take the 
homomorphism on the commutative polynomial algebra and argue there.] 

19. Let G be a finite set of endomorphisms of a finite-dimensional vector space £ over the 
field k. For each a e G, let ca be an element of k. Show that if 

Xc.7TO = 0 
a e G 

for all integers r ^ 1, then ca = 0 for all a e G. [Hint: Use the preceding exercise, and 
Proposition 7.2 of Chapter XVI.] 

20. (Steinberg). Let G be a finite monoid, and &[G] the monoid algebra over a field k. Let 
G -*■ End*(£) be a faithful representation (i.e. injective), so that we identify G with a 
multiplicative subset of Endfc(£). Show that Tr induces a representation of G on Tr(£), 
whence a representation of /c[G] on Tr(£) by linearity. If a e /c[G] and if Tr(a) = 0 for 
all integers r ^ 1, show that a = 0. [Hint: Apply the preceding exercise.] 

21. (Burnside). Deduce from Exercise 20 the following theorem of Burnside: Let G be 
a finite group, k a field of characteristic prime to the order of G, and £ a finite 
dimensional (G, k)-space such that the representation of G is faithful. Then every 
irreducible representation of G appears with multiplicity ^ 1 in some tensor power 
Tr(E). 

22. Let X(G) be the character ring of a finite group G, generated over Z by the simple 
characters over C. Show that an element/ 6 X(G) is an effective irreducible character 
if and only if (/, f)G = 1 and /(1) ^ 0. 

23. In this exercise, we assume the next chapter on alternating products. Let p be an 
irreducible representation of G on a vector space £ over C. Then by functoriality we 
have the corresponding representations Sr(p) and /\r(p) on the r-th symmetric power 

and r-th alternating power of £ over C. If x is the character of p, we let Sr(x) and 

/\r(x) be the characters of Sr(p) and /\r(p) respectively, on Sr(£) and Ar(^)- Let t 
be a variable and let 

v,(X) = 2 Sr(x)tr, A,(*) = S Ar(X)‘r- 
r=0 r*=0 

(a) Comparing with Exercise 24 of Chapter XIV, prove that for x E G we have 

<*,(*)(*) = det(/ - p(x)t)-' and A,(*)(*) = det(/ + p(x)t). 

(b) For a function /on G define &"(/) by Vn(f)(x) = f(xn). Show that 

-jlog <T,(x) = E Vn(x)tn and -^log A_,(*) = E W'ix)’"- 
III n = 1 ill n= 1 

(c) Show that 

n 00 

nSn(X) = 2 'f'r(x)Sn~r(x) and n/\"(X) = 2 (-1)""?^"'^). 
r=1 r= 1 
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24. Let x be a simple character of G. Prove that V'ix) is also simple. (The characters 
are over C.) 

25. We now assume that you know §3 of Chapter XX. 
(a) Prove that the Grothendieck ring defined there for Modc(G) is naturally 

isomorphic to the character ring X(G). 
(b) Relate the above formulas with Theorem 3.12 of Chapter XX. 
(c) Read Fulton-Lang’s Riemann-Roch Algebra, Chapter I, especially §6, and 

show that X(G) is a A-ring, with V/n as the Adams operations. 

Note. For further connections with homology and the cohomology of groups, see 
Chapter XX, §3, and the references given at the end of Chapter XX, §3. 

26. The following formalism is the analogue of Artin’s formalism of L-series in number 
theory. Cf. Artin’s “Zur Theorie der L-Reihen mit allgemeinen Gruppenchar- 
akteren”, Collected papers, and also S. Lang, “L-series of a covering”, Proc. Nat. 
Acad. Sc. USA (1956). For the Artin formalism in a context of analysis, see J. Jor¬ 
genson and S. Lang, “Artin formalism and heat kernels”, J. reine angew. Math. 447 
(1994) pp. 165-200. 

We consider a category with objects {U}. As usual, we say that a finite group G 
operates on U if we are given a homomorphism p: G -► Aut(G). We then say that V is a 
G-object, and also that p is a representation of G in V. We say that G operates trivially 
if p(G) = id. For simplicity, we omit the p from the notation. By a G-morphism 
f:U->V between G-objects, one means a morphism such that / o <7 = a °/for all aeG. 

We shall assume that for each G-object U there exists an object U/G on which G 
operates trivially, and a G-morphism nU G: U -> U/G having the following universal 
property: If/: U -> U' is a G-morphism, then there exists a unique morphism 

f/G : U/G - U'/G 

making the following diagram commutative: 

U -S—* U' 

U/GU'/G 

In particular, if if is a normal subgroup of G, show that G/H operates in a natural way 
on U/H. 

Let k be an algebraically closed field of characteristic 0. We assume given a functor 
E from our category to the category of finite dimensional k-spaces. If U is an object in 
our category, and f:U-*U’ is a morphism, then we get a homomorphism 

E(f)=f*:E(U)^E(Uf). 

(The reader may keep in mind the special case when we deal with the category of 
reasonable topological spaces, and E is the homology functor in a given dimension.) 

If G operates on U, then we get an operation of G on E(U) by functoriality. 
Let U be a G-object, and F \ U -+ U a G-morphism. If PF(t) = ]”[ (* ~ a.) 

characteristic polynomial of the linear map F* : E(U) -+ E(U), we define 

zF(t)=n a -«,»), 
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and call this the zeta function of F. If F is the identity, then ZF(t) = (1 — t)B{U) where 
we define B(U) to be dim* £(10- 

Let x be a simple character of G. Let dx be the dimension of the simple representation 
of G belonging to and n = ord(G). We define a linear map on E(U) by letting 

et = 7 
” oeG 

Show that e\ = ex, and that for any positive integer \i we have (ex ° FtY = ex ° . 
ifp,(o=n (t — Pj(x)) is the characteristic polynomial of ex ° F*, define 

LF(t,x,u/G) = Y\(i - pjw). 

Show that the logarithmic derivative of this function is equal to 

lx***nr-1- 
ti= i 

Define LF(t, *, U/G) for any character x by linearity. If we write V = U/G by abuse of 
notation, then we also write LF(t, x, U/V). Then for any x> / we have by definition, 

ML X + X\ U/V) = LF(t, x, l//K)ML G/F). 

We make one additional assumption on the situation: 
Assume that the characteristic polynomial of 

is equal to the characteristic polynomial of F/G on E(U/G). Prove the following statement: 
(a) IfG = {1} then 

Ml 1, U/U) = zF(t). 

(b) Let V = U/G. Then 

Ml i, u/v) = zF(t). 

(c) Let H be a subgroup of G and let \j/ be a character of H. Let W = U/H, and let 
ijjG be the induced character from H to G. Then 

ML </L tf/W) = ML G/F). 

(d) Let H be normal in G. Then G/H operates on U/H = W. Let i// be a character 
of G/if, and let x be the character of G obtained by composing \j/ with the 
canonical map G G/H. Let <p = F/H be the morphism induced on 

U/H = W. 

Then 

Ml </l W = Ml x, g/f). 

(e) If F = LT/G and £(F) = dim* £(F), show that (1 - r)B(K) divides (1 - 0B(t/)- 
Use the regular character to determine a factorization of (1 - 0B(t/)- 
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27. Do this exercise after you have read some of Chapter VII. The point is that for fields 
of characteristic not dividing the order of the group, the representations can be obtained 
by “reducing modulo a prime”. Let G be a finite group and let p be a prime not 
dividing the order of G. Let F be a finite extension of the rationals with ring of 
algebraic integers oF. Suppose that F is sufficiently large so that all F-irreducible 
representations of G remain irreducible when tensored with Qa = Fa. Let p be a 
prime of oF lying above p, and let op be the corresponding local ring. 

(a) Show that an irreducible (G, F)-space V can be obtained from a (G,op)- 
module E free over op, by extending the base from op to F, i.e. by tensoring 
so that V = E <8) F (tensor product over op). 

(b) Show that the reduction mod p of E is an irreducible representation of G in 
characteristicp. In other words, let k = o/p = op/mp where mp is the maximal 
ideal of op. Let F(p) = E ® k (tensor product over op). Show that G operates 
on F(p) in a natural way, and that this representation is irreducible. In fact, 

if x is the character of G on V, show that \ is also the character on F, and 

that x mocl mp is the character on F(p). 
(c) Show that all irreducible characters of G in characteristic p are obtained as 

in (b). 





CHAPTER XIX_ 
The Alternating Product 

The alternating product has applications throughout mathematics. In differ¬ 
ential geometry, one takes the maximal alternating product of the tangent space 
to get a canonical line bundle over a manifold. Intermediate alternating products 
give rise to differential forms (sections of these products over the manifold). In 
this chapter, we give the algebraic background for these constructions. 

For a reasonably self-contained treatment of the action of various groups of 
automorphisms of bilinear forms on tensor and alternating algebras, together 
with numerous classical examples, I refer to: 

R. Howe, Remarks on classical invariant theory, Trans. AMS 313 (1989), 
pp. 539-569 

§1 DEFINITION AND BASIC PROPERTIES 

Consider the category of modules over a commutative ring R. 

We recall that an r-multilinear map /: E{r) -> F is said to be alternating 
if /(xj,..., xr) = 0 whenever x, = Xj for some i / j. 

Let ar be the submodule of the tensor product Tr(E) generated by all elements 
of type 

Xj (g) • • • ® xr 

where x, = Xj for some i # j. We define 

A '(£) = T'(E)/ar. 

Then we have an r-multilinear map E{r) -> f\r(E) (called canonical) obtained 

731 
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from the composition 

E(r) - T\E) - Tr(E)/ar = /\r(E). 

It is clear that our map is alternating. Furthermore, it is universal with respect 

to r-multilinear alternating maps on E. In other words, if /: E(r) -> F is such a 
map, there exists a unique linear map /* : /\r(E) -> F such that the following 
diagram is commutative: 

Ar(£) 

Our map /* exists because we can first get an induced map Tr(E) -► F making 
the following diagram commutative: 

Tr(E) 

F 

and this induced map vanishes on ar, hence inducing our /*. 
The image of an element (xl9..., xr) e Eir) in the canonical map into 

/\r(E) will be denoted by xx a • • • a xr. It is also the image of xx (x) • • • (x) xr in 
the factor homomorphism Tr(E) -► f\r(E). 

In this way, Ar becomes a functor, from modules to modules. Indeed, let 
u: E —> F be a homomorphism. Given elements x1?. . ., xr e £, we can map 

C*l, ...,xr)h+ u(Xj) A • • • a u(xr) e Ar(0- 

This map is multilinear alternating, and therefore induces a homomorphism 

Ar(«): Ar(£)^AW- 

The association u i-» Ar(“) is obviously functorial. 

Example. Open any book on differential geometry (complex or real) and 
you will see an application of this construction when E is the tangent space of 
a point on a manifold, or the dual of the tangent space. When taking the dual, 
the construction gives rise to differential forms. 

We let /\(E) be the direct sum 

A(£) = © Ar(£)- 
r—0 
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We shall make /\(E) into a graded /?-algebra and call it the alternating algebra 
of E, or also the exterior algebra, or the Grassmann algebra. We shall first 
discuss the general situation, with arbitrary graded rings. 

Let G be an additive monoid again, and let A = 0) Ar be a G-graded 
reG 

/^-algebra. Suppose given for each Ar a submodule ar, and let a = 0) ar. 
reG 

Assume that a is an ideal of A. Then a is called a homogeneous ideal, and we can 
define a graded structure on ,4/a. Indeed, the bilinear map 

Ar x As -> Ar+S 

sends ar x As into ar + s and similarly, sends Ar x asintoar+s. Thus using repre¬ 
sentatives in Ar, As respectively, we can define a bilinear map 

Aj&r * ^s/as > ^r + s/ar + s» 

and thus a bilinear map A /a x A/a ^ A/a, which obviously makes A/a into a 
graded /^-algebra. 

We apply this to Tr(E) and the modules ar defined previously. If 

Xi = Xj (i / j) 

in a product Xj a • • • a xr, then for any yu ..., ys e E we see that 

X! A • • • A Xr A yx A • - a ys 

lies in ar+s, and similarly for the product on the left. Hence the direct sum 0) ar 
is an ideal of T(E), and we can define an /?-algebra structure on T(E)/a. The 
product on homogeneous elements is given by the formula 

((Xj A • • * A Xr), (}>! A • • • A }>s)) h-> Xi A • • • A Xr A yY A • • ■ A ys. 

We use the symbol a also to denote the product in f\(E). This product is called 
the alternating product or exterior product. If x e E and y e E, then 
x A y = -y A x, as follows from the fact that (x + y) A (x + y) = 0. 

We observe that f\ is a functor from the category of modules to the category 

of graded R-algebras. To each linear map f: E ^ F we obtain a map 

A(/):A(£)-A(0 

which is such that for xl5..., xr 6 E we have 

A(/)(*I A • • • A Xr) = f(Xi) A • • • A f(xr). 

Furthermore, A(/)'s a homomorphism of graded K-algebras. 
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Proposition 1.1. Let E be free of dimension n over R. Ifr>\n then 

/\{E) — 0. Let {vl9... 9 vn} be a basis of E over R. If 1 ^ r g n, then 

/\r(E) is free over R, and the elements 

Vix A A Vir, ir 

form a basis of /\r(E) over k. We have 

dim* f\\E) = 

Proof We shall first prove our assertion when r = n. Every element of E 

can be written in the form £ and hence using the formula x a y = —y ax 

we conclude that v1 a • • • a vn generates /\"(E). On the other hand, we know 
from the theory of determinants that given ae R, there exists a unique multi¬ 
linear alternating form fa on E such that 

ffP = a- 

Consequently, there exists a unique linear map 

An(E) -> R 

taking the value a on vx a ••• a vn. From this it follows at once that 
vx a • • • a vn is a basis of /\n(E) over R. 

We now prove our statement for 1 ^ r ^ n. Suppose that we have a relation 

0 = Y,ad)Vi, A ••• A K 
with /j < • • • < ir and a(i) e R. Select any r-tuple (j) = (jj,. . . , jr) such that 
ji < • • • < jr and let jr+15... Jn be those values of i which do not appear among 
0'i,... Jr). Take the alternating product with vjr+l a • • • a vjn. Then we shall 
have alternating products in the sum with repeated components in all the terms 
except the (/)-term, and thus we obtain 

0 = aU)Vh A • • • A Vjr A • • • A Vjn. 

Reshuffling vjx a • • • a vjn into vx a • • • a vn simply changes the right-hand 

side by a sign. From what we proved at the beginning of this proof, it follows 
that aU) = 0. Hence we have proved our assertion for 1 ^ r ^ n. 

When r = 0, we deal with the empty product, and 1 is a basis for /\°(E) = R 

over R. We leave the case r > n as a trivial exercise to the reader. 
The assertion concerning the dimension is trivial, considering that there is a 

bijection between the set of basis elements, and the subsets of the set of integers 
(l,...,n). 
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Remark. It is possible to give the first part of the proof, for /\n(E\ without 
assuming known the existence of determinants. One must then show that a„ 
admits a 1-dimensional complementary submodule in Tn(E). This can be done 
by simple means, which we leave as an exercise which the reader can look up 
in the more general situation of §4. When R is a field, this exercise is even more 
trivial, since one can verify at once that vx ® ® vn does not lie in an. This 
alternative approach to the theorem then proves the existence of determinants. 

Proposition 1.2. Let 

0 —>£'—»£—»£"—» 0 

be an exact sequence of free R-modules of finite ranks r, n, and s respectively. 

Then there is a natural isomorphism 

ip : ArE' ® A5 f\nE. 

This isomorphism is the unique isomorphism having the following property. For 

elements vx, ..., vr e £' and wx,..., ws e £", let ux,..., us be liftings of 

wx, ..., ws in E. Then 

tp((Vx A • • • A Vr) ® (wx A • • * A Ws)) = Vx A • • * A Vr A Ux A • * * A Us. 

Proof. The proof proceeds in the usual two steps. First one shows the 
existence of a homomorphism cp having the desired effect. The value on the right 
of the above formula is independent of the choice of ux,..., us lifting 
wx,. . ., ws by using the alternating property, so we obtain a homomorphism cp. 

Selecting in particular {vx,.. ., vr} and {wx,..., wj to be bases of £' and £" 
respectively, one then sees that cp is both injective and surjective. We leave the 
details to the reader. 

Given a free module £ of rank n, we define its determinant to be 

det £ = Amax£ = /\nE. 

Then Proposition 1.2 may be reformulated by the isomorphism formula 

det(£') ® det(£") « det(£). 

If R = k is a field, then we may say that det is an Euler-Poincare map on the 
category of finite dimensional vector spaces over k. 

Example. Let V be a finite dimensional vector space over R. By a volume 
on V we mean a norm || || on det V. Since V is finite dimensional, such a norm 
is equivalent to assigning a positive number c to a given basis of det(V). Such 
a basis can be expressed in the form ex a • • • a en, where {ex,. . . , en} is a basis 
of V. Then for a e R we have 

l|o«i A • • • A en\\ = \a\c. 
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In analysis, given a volume as above, one then defines a Haar measure fx on V 
by defining the measure of a set S to be 

fi(S) = | \\ex A • • • A en\\ dxx • • * dxn, 

s 

where x1?. . . , xn are the coordinates on V with respect to the above basis. As 
an exercise, show that the expression on the right is the independent of the choice 
of basis. 

Proposition 1.2 is a special case of the following more general situation. We 
consider again an exact sequence of free /^-modules of finite rank as above. With 
respect to the submodule E' of £, we define 

/\"E = submodule of /\nE generated by all elements 

x\ a • • • a x'i a yi+1 a • * • a yn 

with Xj,..., x'i e E' viewed as submodule of E. 

Then we have a filtration 

= A?+i£- 

Proposition 1.3. There is a natural isomorphism 

Af£' ® -> A?^/A?+1£- 

Proof. Let x'i,..., be elements of E", and lift them to elements 
yl9..., yn-i of E. We consider the map 

(xi, . . . , x'i, x'i, . . . , x"_i) I—► x\ A • • • A Xj A A • • • A 

with the right-hand side taken mod /\"+ Then it is immediate that this map 
factors through 

f\E' ® An_i£" A?£/A?+ iE, 
and picking bases shows that one gets an isomorphism as desired. 

In a similar vein, we have: 

Proposition 1.4. Let E = E' ® E” be a direct sum of finite free modules. 
Then for every positive integer n, we have a module isomorphism 

A n£ * 0 A pe' ® A“E"- 
p + q = n 
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In terms of the alternating algebras, we have an isomorphism 

AE ~ Af' A, Ae". 

w //*£ superproduct of graded algebras. 

Proof. Each natural injection of E' and E" into E induces a natural map on 
the alternating algebras, and so gives the homomorphism 

Ae' ® A£" -*■ A£, 

which is graded, i.e. for p = 0,..., n we have 

f\pE' ® /\n~pE" - /\nE. 

To verify that this yields the desired isomorphism, one can argue by picking 
bases, which we leave to the reader. The anti-commutation rule of the alternating 
product immediately shows that the isomorphism is an algebra isomorphism for 
the super product /\E' AE". 

We end this section with comments on duality. In Exercise 3, you will prove: 

Proposition 1.5. Let E be free of rank n over R. For each positive integer 

r, we have a natural isomorphism 

Ar(£v) - Ar(£)v. 
The isomorphism is explicitly described in that exercise. A more precise property 
than “natural” would be that the isomorphism is functorial with respect to the 
category whose objects are finite free modules over /?, and whose morphisms 
are isomorphisms. 

Examples. Let L be a free module over R of rank 1. We have the dual 
module Lv = Hom^(L, /?), which is also free of the same rank. For a positive 
integer m, we define 

= Lv ® ® Lv (tensor product taken m times). 

Thus we have defined the tensor product of a line with itself for negative integers. 
We define = R. You can easily verify that the rule 

p®P (g) ]j8>q 25= l®(p+q) 

holds for all integers p, q e Z, with a natural isomorphism. In particular, if 
q = —p then we get R itself on the right-hand side. 

Now let E be an exact sequence of free modules: 

E : 0 —> Eq —■> E\ Em —> 0. 
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We define the determinant of this exact sequence to be 

det(E) = 0 det(£/)<g>(~1)‘. 

As an exercise, prove that det(E) has a natural isomorphism with R, functorial 
with respect to isomorphisms of exact sequences. 

Examples. Determinants of vector spaces or free modules occur in several 
branches of mathematics, e.g. complexes of partial differential operators, homol¬ 
ogy theories, the theory of determinant line bundles in algebraic geometry, etc. 
For instance, given a non-singular projective variety V over C, one defines the 
determinant of cohomology of V to be 

det H(V) = (g) det //'(V)®(_, 

where Hl(V) are the cohomology groups. Then det H(V) is a one-dimensional 
vector space over C, but there is no natural identification of this vector space 
with C, because a priori there is no natural choice of a basis. For a notable 
application of the determinant of cohomology, following work of Faltings, see 
Deligne, Le determinant de la cohomologie, in Ribet, K. (ed.), Current Trends 

in Arithmetical Algebraic Geometry, Proc. Areata 1985. (Contemporary Math, vol 
67, AMS (1985), pp. 93-178.) 

§2. FITTING IDEALS 

Certain ideals generated by determinants are coming more and more into 
use, in several branches of algebra and algebraic geometry. Therefore I include 
this section which summarizes some of their properties. For a more extensive 
account, see Northcott’s book Finite Free Resolutions which I have used, as well 
as the appendix of the paper by Mazur-Wiles: “Class Fields of abelian extensions 
of Q,” which they wrote in a self-contained way. (Invent. Math. 76 (1984), pp. 
179-330.) 

Let R be a commutative ring. Let A be a p x q matrix and B a q x 5 matrix 
with coefficients in R. Let r ^ 0 be an integer. We define the determinant ideal 
Ir(A) to be the ideal generated by all determinants of r x r submatrices of A. 

This ideal may also be described as follows. Let Sp be the set of sequences 

J = Ol, • • • Jr) with 1 g j, <j2 < ■ ■ <jrS p■ 

Let A = (aij). Let 1 ^ r ^ min(p, q). Let K = (ku ..., kr) be another element 
of Spr. We define 

lhki aj\k2 ' ' aUK 

lj2k 1 aj2k2 

Or* 1 ajrk2 ‘ ' ' ajrkr 

A(r) — 
hJK — 
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where the vertical bars denote the determinant. With J, K ranging over Sp 

we may view A(J]K as the JK-component of a matrix A(r) which we call the r-th 
exterior power of A. 

One may also describe the matrix as follows. Let {ex,. .. , ep} be a basis of 
RP and {w1?. . . , uq} a basis of Rq. Then the elements 

*h A ••• A eir 0l < jl < <jr) 

form a basis for f\{Rp and similarly for a basis of f\\Rq. We may view A as a 
linear map of Rp into Rq, and the matrix A(r) is then the matrix representing the 
exterior power f\A viewed as a linear map of f\rRp into /\Rq. On the whole, 
this interpretation will not be especially useful for certain computations, but it 
does give a slightly more conceptual context for the exterior power. Just at the 
beginning, this interpretation allows for an immediate proof of Proposition 2.1. 

For r = 0 we define A{0) to be the 1 x 1 matrix whose single entry is the 
unit element of R. We also note that A{1) = A. 

Proposition 2.1. Let A be a p x q matrix and B a q X s matrix. Then 

(AB)(r) = Air)B{r) for r ^ 0. 

If one uses the alternating products as mentioned above, the proof simply 
says that the matrix of the composite of linear maps with respect to fixed bases 
is the product of the matrices. If one does not use the alternating products, then 
one can prove the proposition by a direct computation which will be left to the 
reader. 

We have formed a matrix whose entries are indexed by a finite set Sp. For 
any finite set S and doubly indexed family (cJK) with J, K e S we may also 
define the determinant as 

det(cJK) = Yj e(a)\ 0 cJ,<r(j)] 
<r \J eS / 

where <x ranges over all permutations of the set. 
For r ^ 0 we define the determinant ideal Ir(A) to be the ideal generated by 

all the components of A{r\ or equivalently by all r x r subdeterminants of A. 

We have by definition 

A{0) = R and A{1) = ideal generated by the components of A. 

Furthermore 

and the inclusions 

Ir(A) = 0 for r > min(p, q) 

R = I0(A) => IfA) => I2(A) => • • • 
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By Proposition 10.1, we also have 

(1) IXAB) cz Ir(A) n Ir(B). 

Therefore, if A = UBU' where U, V are square matrices of determinant 1, then 

(2) Ir(A) = Ir(B). 

Next, let E be an R-module. Let xi9...,xq be generators of E. Then we 
may form the matrix of relations (au ..., aq) e Rq such that 

Z aixi = °- 
i= 1 

Suppose first we take only finitely many relations, thus giving rise to a p x q 

matrix A. We form the determinant ideal Ir(A). We let the determinant ideals 
of the family of generators be: 

/r(xj,..., x„) = 7r(x) = ideal generated by Ir(A) for all A. 

Thus we may in fact take the infinite matrix of relations, and say that 7r(x) is 
generated by the determinants of all r x r submatrices. The inclusion relations 
of (1) show that 

R = 70(x) =) Ifx) => I2W =5 ••• 

7r(x) = 0 if r > q. 

Furthermore, it is easy to see that if we form a submatrix M of the matrix of all 
relations by taking only a family of relations which generate the ideal of all 
relations in Rq, then we have 

7r(A7) = 7r(x). 

We leave the verification to the reader. We can take M to be a finite matrix when 
E is finitely presented, which happens if R is Noetherian. 

In terms of this representation of a module as a quotient of Rq, we get the 
following characterization. 

Proposition 2.2. Let Rq —> E —> 0 be a representation of E as a quotient of 

Rq, and let xx, ..., xq be the images of the unit vectors in Rq. Then 7r(x) is the 

ideal generated by all values 

A(wj,..., wr) 

where wl5..., wr e Ker(Rq -> E) and A e Lra(Rq, R). 

Proof. This is immediate from the definition of the determinant ideal. 
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The above proposition can be useful to replace a matrix computation by a 
more conceptual argument with fewer indices. The reader can profitably trans¬ 
late some of the following matrix arguments in these more invariant terms. 

We now change the numbering, and let the Fitting ideals be: 

Fk(x) = Iq-k(x) for O^k^q 

Fk(x) = R when k > q. 

Lemma 2.3. The Fitting ideal Fk(x) does not depend on the choice of 

generators (x). 

Proof. Let yu ..., ys be elements of E. We shall prove that 

7r(x) = 7r+s(x, y). 

The relations of (x, y) constitute a matrix of the form 

By elementary column operations, we can change this to a matrix 

A C 

0 1 

and such operations do not change the determinant ideals by (2). Then we 
conclude that for all r ^ 0 we have 

Ir(A) = Ir+s(W)c:Ir+s(x9 y). 

This proves that /r(x) c= 7r+s(x, y). 

Conversely, let C be a matrix of relations between the generators (x, y). 

We also have a matrix of relations 

By elementary row operations, we can bring this matrix into the same shape 
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as B above, with some matrix of relations A' for (x), namely 

Then 

Ir(Af) = Ir+s(Zf) = Ir+s(Z) => 7r+s(C), 

whence Ir+s(C) c= /r(x). Taking all possible matrices of relations C shows 
that /r+s(x, y) c= 7r(x), which combined with the previous inequality yields 

+ y) 
Now given two families of generators (x) and (y), we simply put them side 

by side (x, y) and use the new numbering for the Fk to conclude the proof of 
the lemma. 

Now let E be a finitely generated R-module with presentation 

0-K-R*-£-0, 

where the sequence is exact and K is defined as the kernel. Then K is generated 
by ^-vectors, and can be viewed as an infinite matrix. The images of the unit 
vectors in Rq are generators (xu.. ., xq). We define the Fitting ideal of the 
module to be 

Fk(E) = F k(x). 

Lemma 2.3 shows that the ideal is independent of the choice of presentation. 
The inclusion relations of a determinant ideal Ir(A) of a matrix now translate 
into reverse inclusion relations for the Fitting ideals, namely: 

Proposition 2.4. 

(i) We have 

FofEJcF^cF^c... 

(ii) If E can be generated by q elements, then 

Fq(E) = R 

(iii) If E is finitely presented then Fk(E) is finitely generated for all k. 

This last statement merely repeats the property that the determinant ideals of a 
matrix can be generated by the determinants associated with a finite submatrix 
if the row space of the matrix is finitely generated. 
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Example. Let E — Rq be the free module of dimension q. Then: 

F>(E) = {° 
if 0 S k <q 

if k ^ q. 

This is immediate from the definitions and the fact that the only relation of a 
basis for E is the trivial one. 

The Fitting ideal £0(£) is called the zero-th or initial Fitting ideal. In some 
applications it is the only one which comes up, in which case it is called ‘"the” 
Fitting ideal £(£) of E. It is the ideal generated by all q x q determinants in 
the matrix of relations of q generators of the module. 

For any module E we let annR(E) be the annihilator of E in R, that is the 
set of elements a e R such that aE = 0. 

Proposition 2.5. Suppose that E can be generated by q elements. Then 

(annR(E))q a £(£) c= annK(£). 

In particular, if E can be generated by one element, then 

F(E) = ann *(£). 

Proof. Let xl9...9xqbt generators of E. Let ai9...9aq be elements of R 

annihilating E. Then the diagonal matrix whose diagonal components are 
al9..., aq is a matrix of relations, so the definition of the Fitting ideal shows 
that the determinant of this matrix, which is the product ax • • • aq lies in 
Iq(E) c= £0(£). This proves the inclusion 

ann*(£)« <= F(E). 

Conversely, let A be a q x q matrix of relations between xl9... 9 xq. Then 
det(y4)x, = 0 for all i so det(^l) e annR(E). Since F(E) is generated by such 
determinants, we get the reverse inclusion which proves the proposition. 

Corollary 2.6. Let E = R/a for some ideal a. Then F(E) = a. 

Proof. The module R/a can be generated by one element so the corollary 
is an immediate consequence of the proposition. 

Proposition 2.7. Let 

0 0 

be an exact sequence of finite R-modules. For integers m,n^0we have 

£„(£')£„(£") <= £m+ „(£). 
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In particular for F = F0. 

F(E)F(E) c F(F). 

Proof. We may assume E is a submodule of E. We pick generators 
Xj,..., xp of E and elements yl9..., yq in E such that their images y'[9 ..., y"q 

in E" generate E'. Then (x, y) is a family of generators for E. Suppose first that 
m ^ p and n rg q. Let A be a matrix of relations among y"q with q 

columns. If (ai9..., aq) is such a relation, then 

alyl + ••• + aqyq e E 

so there exist elements bi9..., bpe R such that 

Z fl«y« + Z bjxj = o. 

Thus we can find a matrix B with p columns and the same number of rows as 
A such that (£, /l) is a matrix of relations of (x, y). Let C be a matrix of relations 
of (xl5..., xp). Then 

B A 

C 0 

is a matrix of relations of (x, y). If D" is a (q - n) x (q — n) subdeterminant of 
A and D' is a (p — m) x (p — m) subdeterminant of C then D 'D' is a 

(p + q — m — ri) x (p + q — m — n) 

subdeterminant of the matrix 

and D"D' 6 Fm+n(E). Since Fm(E) is generated by determinants like D' and 
Fn(E") is generated by determinants like D", this proves the proposition in the 
present case. 

Ifm > pandn > ^thenFm+w(£) = Fm(E') = Fn(E") = F so the proposition 
is trivial in this case. 

Say m ^ p and n > ^. Then Fn(F") = R = Fq(E) and hence 

Fm(E)Fn(E) = Fq(E)Fm(E) <= Fp+n(F) c= Fm + rt(£) 

where the inclusion follows from the first case. A similar argument proves 
the remaining case with m > p and n ^ q. This concludes the proof. 

Proposition 2.8. Let E\ E” be finite R-modules. For any integer n ^ 0 we 

have 

F„(E’ © E") = X Fr(E')Fs(E"). 
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Proof. Let xx,... , xp generate El and . . . , yq generate E". Then (.x, y) 

generate E' © E”. By Proposition 2.6 we know the inclusion 

E Fr(E')Fs(E") c Fn(E' 0 E"), 

so we have to prove the converse. If n ^ p + q then we can take r ^ p and 
s ^ q in which case 

Fr(Ef) = F£E") = Fn(E) = R 

and we are done. So we assume n < p + q. A relation between (x, y) in the 
direct sum splits into a relation for (x) and a relation for (y). The matrix of 
relations for (x, y) is therefore of the form 

C = 

where A is the matrix of relations for (x) and A" the matrix of relations for 
(y). Thus 

Fn(E' 0 E") = Y, Ip + q-n(C) 

c 

where the sum is taken over all matrices C as above. Let D be a 

(P + 4 - ") x (p + q - n) 

subdeterminant. Then D has the form 

D = 
B' 0 

0 B" 

where B' is a k' x (p — r) matrix, and B" is a k" x (q — s) matrix with some 
positive integers k', k", r, 5 satisfying 

k' + k" = p + q — n and r H- s = n. 

Then D = 0 unless k’ = p — r and k” = q — s. In that case 

D = det(£')det(£") e Fr(E')Fs(E"), 

which proves the reverse inclusion and concludes the proof of the proposition. 

Corollary 2.9. Let 

£ = 0 R/at 
i= 1 

where af is an ideal. Then F(E) = • • • a5. 

Proof. This is really a corollary of Proposition 2.8 and Corollary 2.6. 
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§3. UNIVERSAL DERIVATIONS 
AND THE DE RHAM COMPLEX 

In this section, all rings R, A, etc. are assumed commutative. 

Let A be an K-algebra and M an /1-module. By a derivation D : A -> M 

(over R) we mean an R-linear map satisfying the usual rules 

D(ab) = aDb + bDa. 

Note that D(l) = 2D(1) so D(l) = 0, whence D(R) = 0. Such derivations form 
an/l-moduleDer^/l, M) in a natural way, where aD is defined by (aD)(b) = aDb. 

By a universal derivation for A over R, we mean an /I-module Q, and a 
derivation 

d:/l-Q 

such that, given a derivation D:A->M there exists a unique /1-homomorphism 
/: Q -► M making the following diagram commutative: 

M 

It is immediate from the definition that a universal derivation (rf, Q) is uniquely 
determined up to a unique isomorphism. By definition, we have a functorial 
isomorphism 

Der*04, M) % Homy4(Q, Af). 

We shall now prove the existence of a universal derivation. 
The following general remark will be useful. Let 

fuf2:A^B 

be two homomorphisms of R-algebras, and let J be an ideal in B such that 
J2 = 0. Assume that fx = f2 mod J; this means that fx(x) = /2(x) mod J for 
all x in A. Then 

D = i 

is a derivation. This fact is immediately verified as follows: 

f2(ab) = f2(a)f2(b) = UM + D(amMb) + D(fc)] 

= fi(ab) + /i(ft)D(fl) + 
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But the ,4-module structure of J is given via /, or f2 (which amount to the same 
thing in light of our assumptions on /,, /2), so the fact is proved. 

Let the tensor product be taken over R. 

Let in^t: A (x) A -> A be the multiplication homomorphism, such that 
mA(a (x) b) = ab. Let J = Ker m^. We define the module of differentials 

nA,R = J/J\ 

as an ideal in (A (x) A)/J2. The ,4-module structure will always be given via the 
embedding on the first factor: 

A -► A ® A by anfl(g) 1. 

Note that we have a direct sum decomposition of ,4-modules 

and therefore 

Let 

A® A = (A <x) 1) 0 J, 

(A ® A)/J2 = (A ® 1) 0 J/J2. 

J: /I -► J/J2 be the R-linear map a h-» 1 (g) a — a (x) 1 mod J2. 

Taking/, h* n (8) 1 and /2:aH 1 ® a, we see that d = f2— f\. Hence d is 
a derivation when viewed as a map into J/J2. 

We note that J is generated by elements of the form 

Z xi dy<- 

Indeed, if Z x, (x) y, e J, then by definition £ x,y, = 0, and hence 

Z ® y,- = Z x/(1 ® ~ y.* ® 
according to the ,4-module structure we have put on A (x) A (operation of A on 
the left factor.) 

Theorem 3.1. The pair (J/J2,d) is universal for derivations of A. This 

means: Given a derivation D: A —> M there exists a unique A-linear map 

f: J/J2 —» M making the following diagram commutative. 

A ——»J/J2 

M 
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Proof. There is a unique R-bilinear map 

f: A (x) A -► M given by x ® y i—► xDy, 

which is y4-linear by our definition of the /1-module structure on /I (x) /l. Then 
by definition, the diagram is commutative on elements of A, when we take / 
restricted to J, because 

/(I ®y ~ y ® 1) = Dy. 

Since J/J2 is generated by elements of the form x dy, the uniqueness of the map 
in the diagram of the theorem is clear. This proves the desired universal 
property. 

We may write the result expressed in the theorem as a formula 

DerR(A, M) % HornA(J/J\ M). 

The reader will find exercises on derivations which give an alternative way of 
constructing the universal derivation, especially useful when dealing with 
finitely generated algebras, which are factors of polynomial rings. 

I insert here without proofs some further fundamental constructions, im¬ 
portant in differential and algebraic geometry. The proofs are easy, and provide 
nice exercises. 

Let R -► A be an R-algebra of commutative rings. For i ^ 0 define 

Q'a/r = A* ^a/r* 

where = A. 

Theorem 3.2. There exists a unique sequence of R-homomorphisms 

di * &A/R ^4//? 

such that for co e Ql and rj e Qj we have 

d(co a rj) = da> a rj + ( — l)‘co a drj. 

Furthermore d ° d = 0. 

The proof will be left as an exercise. 
Recall that a complex of modules is a sequence of homomorphisms 

. . .  ^ jcrz'-l ^ gi £/ +1  ^ 

such that dl ° dl'x = 0. One usually omits the superscript on the maps d. With 
this terminology, we see that the Fl'A/R form a complex, called the De Rham 
complex. 
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Theorem 3.3. Let k be afield of characteristic 0, and let A = k[Xu ..., Xn\ 

be the polynomial ring in n variables. Then the De Rham complex 

0 * k ► A ► Q\/k -►-> QnA/k -> 0 

is exact. 

Again the proof will be left as an exercise. Hint: Use induction and 
integrate formally. 

Other results concerning connections will be found in the exercises below. 

§4. THE CLIFFORD ALGEBRA 

Let k be a field. By an algebra throughout this section, we mean a k-algebra 
given by a ring homomorphism k—> A such that the image of k is in the center 
of A. 

Let £ be a finite dimensional vector space over the field &, and let g be a 
symmetric form on E. We would like to find a universal algebra over k, in which 
we can embed E, and such that the square in the algebra corresponds to the value 
of the quadratic form in E. More precisely, by a Clifford algebra for g, we 
shall mean a ^-algebra C(g), also denoted by Cg(E), and a linear map 
p: E —> C{g) having the following property: If i/j : E —> L is a linear map of E 

into a fc-algebra L such that 

i/Kx)2 = g(x, *) • 1 (1 = unit element of L) 

for all x e £, then there exists a unique algebra-homomorphism 

CM = IK ■ C(9) -*• L 

such that the following diagram is commutative: 

E " * C(g) 

L 

By abstract nonsense, a Clifford algebra for g is uniquely determined, up to a 
unique isomorphism. Furthermore, it is clear that if (C(p), p) exists, then C(g) 

is generated by the image of p, i.e. by p(£), as an algebra over k. 

We shall write p = pg if it is necessary to specify the reference to g explicitly. 
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We have trivially 

for all xeE, and 

p(x)2 = g(x, x) • 1 

p(x)p(y) + p(y)p(x) = 2g(x, y) • 1 

as one sees by replacing x by x + y in the preceding relation. 

Theorem 4.1. Let g be a symmetric bilinear form on a finite dimensional 

vector space E over k. Then the Clifford algebra (C(g), p) exists. The map p 

in injective, and C(g) has dimension 2n over ky if n = dim E. 

Proof. Let T(E) be the tensor algebra as in Chapter XVI, §7. In that algebra, 
we let Ig be the two-sided ideal generated by all elements 

x ® x - g(x, x) • 1 for x e E. 

We define Cg(E) = T(E)/Ig. Observe that E is naturally embedded in T(E) since 

T(E) = *©£©(£<g> £)©•••. 

Then the natural embedding of E in TE followed by the canonical homomorphisms 
of T{E) onto Cg(E) defines our fc-linear map p : £ —» Cg(E). It is immediate from 
the universal property of the tensor product that Cg(E) as just defined satisfies 
the universal property of a Clifford algebra, which therefore exists. The only 
problem is to prove that it has the stated dimension over k. 

We first prove that the dimension is ^ 2n. We give a proof only when 
the characteristic of k is =k 2 and leave characteristic 2 to the reader. Let 
{i>!,. . . , vn} be an orthogonal basis of E as given by Theorem 3.1 of Chapter 
XV. Let et = where (/>:£—»£ is given as in the beginning of the sec¬ 
tion. Let c, = g(vh v{). Then we have the relations 

ej = q, eiej = — ^et for all i =£ j. 

This immediately implies that the subalgebra of L generated by ijj{E) over k is 
generated as a vector space over k by all elements 

ep • • • evnn with vi — 0 or 1 for i = 1,. . . , n. 

Hence the dimension of this subalgebra is ^ 2n. In particular, dim Cg(E) ^ 2n 

as desired. 
There remains to show that there exists at least one ifr. E —> L such that L 

is generated by i/j(E) as an algebra over k, and has dimension 2n\ for in that 
case, the homomorphism t/r* : Cg(E) —» L being surjective, it follows that dim 
Cg{E) ^ 2n and the theorem will be proved. We construct L in the following 
way. We first need some general notions. 

Let M be a module over a commutative ring. Let /, j e Z/2Z. Suppose M 

is a direct sum M = M0 © Mx where 0, 1 are viewed as the elements of Z/2Z. 
We then say that M is Z/2Z-graded. If M is an algebra over the ring, we say 
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it is a Z/2Z-graded algebra if MtMj C Mi+j for all /, j e Z/2Z. We simply 
say graded, omitting the Z/2Z prefix when the reference to Z/2Z is fixed 
throughout a discussion, which will be the case in the rest of this section. 

Let A, B be graded modules as above, with A = A0 © Ax and B = B0 © Bx. 

Then the tensor product A ® B has a direct sum decomposition 

A <g> B = 0 A,, ® Bj. 
ij 

We define a grading on A 0 B by letting (A 0 B)0 consist of the sum over indices 
/, j such that i -f- j = 0 (in Z/2Z), and (A 0 5)j consist of the sum over the 
indices /, j such that i + j = 1. 

Suppose that A, B are graded algebras over the given commutative ring. There 
is a unique bilinear map of A 0 5 into itself such that 

(a 0 0 b') = (-l)W 0 

if a' e A; and b e Bj. Just as in Chapter XVI, §6, one verifies associativity and 
the fact that this product gives rise to a graded algebra, whose product is called 
the super tensor product, or super product. As a matter of notation, when we 
take the super tensor product of A and B, we shall denote the resulting algebra 
by 

A®SUB 

to distinguish it from the ordinary algebra A 0 B of Chapter XVI, §6. 
Next suppose that E has dimension 1 over k. Then the factor polynomial ring 

k[X]/(x2 — cx) is immediately verified to be the Clifford algebra in this case. 
We let tx be the image of X in the factor ring, so Cg(E) = k[t{\ with t\ - cx. 

The vector space E is imbedded as kt} in the direct sum k © ktx. 

In general we now take the super tensor product inductively: 

Cg(E) = *[/,] ®su k[t2] ®su ■ ■ ■ ®su k[t„], with *[/,] = k\X]/{X2 - c,). 

Its dimension is 2n. Then E is embedded in Cg(E) by the map 

a,D, + • • • + anvn a{tx © • • • © antn. 

The desired commutation rules among th tj are immediately verified from the 
definition of the super product, thus concluding the proof of the dimension of 
the Clifford algebra. 

Note that the proof gives an explicit representation of the relations of the 
algebra, which also makes it easy to compute in the algebra. Note further that 
the alternating algebra of a free module is a special case, taking cz = 0 for all 
/. Taking the cz to be algebraically independent shows that the alternating algebra 
is a specialization of the generic Clifford algebra, or that Clifford algebras are 
what one calls perturbations of the alternating algebra. Just as for the alternating 
algebra, we have immediately from the construction: 

Theorem 4.2. Let g, g' by symmetric forms on Ey E' respectively. Then we 
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have an algebra isomorphism 

C(g © g') « C(g) ®suC(gf). 

Examples. Clifford algebras have had increasingly wide applications in 
physics, differential geometry, topology, group representations (finite groups 
and Lie groups), and number theory. First, in topology I refer to Adams [Ad 62] 
and [ABS 64] giving applications of the Clifford algebra to various problems 
in topology, notably a description of the way Clifford algebras over the reals 
are related to the existence of vector fields on spheres. The multiplication in the 
Clifford algebra gives rise to a multiplication on the sphere, whence to vector 
fields. [ABS 64] also gives a number of computations related to the Clifford 
algebra and its applications to topology and physics. For instance, let E = Rn 

and let g be the negative of the standard dot product. Or more invariantly, take 
for E an w-dimensional vector space over R, and let g be a negative definite 

symmetric form on E. Let Cn = C(g). 

The operation 

vx ® • • • ® vr i-» vr ® • • • 0 vx = (i>! ® • • • ® vr)* for vt e E 

induces an endomorphism of Tr(E) for r ^ 0. Since v ® v — g(v, v) • 1 (for 
v E E) is invariant under this operation, there is an induced endomorphism 
* : Cn —> Cn, which is actually an involution, that is jc** = x and (xy)* = y*x* 

for x e Cn. We let Spin(«) be the subgroup of units in Cn generated by the unit 
sphere in E (i.e. the set of elements such that g(v, v) = -1), and lying in the 
even part of Cn. Equivalently, Spin(n) is the group of elements x such that 
xx* = 1. The name dates back to Dirac who used this group in his study of elec¬ 
tron spin. Topologists and others view that group as being the universal cover¬ 
ing group of the special orthogonal group SO(n) = SUn(R). 

An account of some of the results of [Ad 62] and [ABS 64] will also be 
found in [Hu 75], Chapter 11. Second I refer to two works encompassing two 
decades, concerning the heat kernel, Dirac operator, index theorem, and number 
theory, ranging from Atiyah, Bott and Patodi [ABP 73] to Faltings [Fa 91], see 
especially §4, entitled “The local index theorem for Dirac operators”. The vector 
space to which the general theory is applied is mostly the cotangent space at a 
point on a manifold. I recommend the book [BGV 92], Chapter 3. 

Finally, I refer to Brocker and Tom Dieck for applications of the Clifford 
algebra to representation theory, starting with their Chapter I, §6, [BtD 85]. 
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EXERCISES 

1. Let E be a finite dimensional vector space over a field k. Let ..., xp be elements of E 

such that Xj a • • • a xp # 0, and similarly y{ a • • • a yp ^ 0. Keek and 

a * • • a xp = cy, a • • • a 

show that jti,..., xp and yyp generate the same subspace. Thus non-zero 
decomposable vectors in f\pE up to non-zero scalar multiples correspond to 

p-dimensional subspaces of E. 

2. Let £ be a free module of dimension n over the commutative ring R. Let /:£-►£ 
be a linear map. Let ar(/) = tr /\r(/), where /\r(/) is the endomorphism of /\r(£) 
into itself induced by /. We have 

ao(/) = l «i(/) = tr(/), «„(/) = det /, 

and (xr(f) = 0 if r > n. Show that 

det(l + /)= X «,(/)■ 
r 5; 0 

[ifmt: As usual, prove the statement when / is represented by a matrix with variable 

coefficients over the integers.] Interpret the ar(/) in terms of the coefficients of the 
characteristic polynomial of /. 

3. Let £ be a finite dimensional free module over the commutative ring R. Let £v be 
its dual module. For each integer r ^ 1 show that f\rE and /\r£v are dual modules 
to each other, under the bilinear map such that 

(1>1 a • • • a vr9 v\ A • • • a v'r) i-> det ({vh v'j)) 

where (vh Vj) is the value of v] on vh as usual, for E £ and v'j e £v. 

4. Notation being as in the preceding exercise, let £ be another R-module which is free, 
finite dimensional. Let /:£-►£ be a linear map. Relative to the bilinear map of the 
preceding exercise, show that the transpose of /\rf is /\r(f/), i.e. is equal to the r-th 
alternating product of the transpose of /. 

5. Let R be a commutative ring. If £ is an R-module, denote by Lra{E) the module of 
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r-multilinear alternating maps of E into R itself (i.e. the r-multilinear alternating 
forms on E). Let L°(£) = R, and let 

fi(£) = © K(E). 
r = 0 

Show that Q(E) is a graded E-algebra, the multiplication being defined as follows. If 
co e Lra(E) and ip e Lsa(E\ and vu ..., vr+s are elements of £, then 

(CO A .... t>r+s) = £ ■ ■ • > 1). • • • * O. 

the sum being taken over all permutations o of (1,..., r + s) such that crl < •• • < or 

and cr(r + 1) < ♦ • • < <75. 

Derivations 

In the following exercises on derivations, all rings are assumed commutative. Among 
other things, the exercises give another proof of the existence of universal derivations. 

Let R -► A be a E-algebra (of commutative rings, according to our convention). 

We denote the module of universal derivations of A over E by (dA/R,ClA/R\ but we do not 
assume that it necessarily exists. Sometimes we write d instead of dA/R for simplicity 
if the reference to A/R is clear. 

6. Let A = R[XJ be a polynomial ring in variables Xa, where a ranges over some 
indexing set, possibly infinite. Let Q be the free ,4-module on the symbols dXa, and let 

d:A - Q 

be the mapping defined by 

Show that the pair (</, Q) is a universal derivation (dA/R, Qi//?). 

7. Let A B be a homomorphism of E-algebras. Assume that the universal derivations 
for A/R, E/E, and B/A exist. Show that one has a natural exact sequence: 

B ® A &A/R -+ &B/R -* &B/A 0. 

[Hmf: Consider the sequence 

0 - Der^E, M) - Der^(E, M) - DerM) 

which you prove is exact. Use the fact that a sequence of E-modules 

N' - N - N" -> 0 

is exact if and only if its Horn into M is exact for every E-module M. Apply this to the 
sequence of derivations.] 

8. Let E A be an E-algebra, and let / be an ideal of A. Let E = 4//. Suppose that the 
universal derivation of A over E exists. Show that the universal derivation of E over E 
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also exists, and that there is a natural exact sequence 

l/I2 ^ B ®A SllA/R -► Cl'B/R -> 0. 

[Hint: Let M be a R-module. Show that the sequence 

0 - Der*(£, M) - Der*(,4, M) - HomB(///2, M) 

is exact.] 

9. Let R —> B be an R-algebra. Show that the universal derivation of B over R exists 
as follows. Represent B as a quotient of a polynomial ring, possibly in infinitely 
many variables. Apply Exercises 6 and 7. 

10. Let R ^ A be an R-algebra. Let S0 be a multiplicative subset of R, and S a multiplicative 
subset of A such that S0 maps into S. Show that the universal derivation of S~ XA over 
Sq lR is (d, S~ lQlA/R), where 

d(a/s) = (sdA/R(a) - adA/R(s))/s2. 

11. Let B be an R-algebra and M a R-module. On B ® M define a product 

(b, x)(b\ y) = (bb\ by + b'x). 

Show that R ® M is a B-algebra, if we identify an element be B with (b, 0). For any 
R-algebra A, show that the algebra homomorphisms HomAlg//?(/l, B ® M) consist of 
pairs (<p, D), where (p:A->B is an algebra homomorphism, and D:A^M is a 
derivation for the /4-module structure on M induced by cp. 

12. Let A be an R-algebra. Let £: A -> R be an algebra homomorphism, which we call an 

augmentation. Let M be an R-module. Define an /1-module structure on M via £, by 

a • x = s(a)x for ae A and xe M. 

Write Me to denote M with this new module structure. Let: 

Der£(/1, M) = /1-module of derivations for the e-module structure on M 

I = Kere. 

Then Derc(/1, A/) is an /l//-module. Note that there is an R-module direct sum de¬ 
composition A = R ® /. Show that there is a natural /1-module isomorphism 

Qa/r/I^a/r ~ 

and an R-module isomorphism 

Der£(/1, M) % HornK(///2, M). 

In particular, let rj: /I -► 7//2 be the projection of A on I/I2 relative to the direct sum 
decomposition A = R ® /. Then rj is the universal e-derivation. 

Derivations and connections 

13. Let R -► A be a homomorphism of commutative rings, so we view A as an R-algebra. 
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Let E be an /1-module. A connection on £ is a homomorphism of abelian groups 

^: E —► QA/r E 

such that for a e A and xeE we have 

V(ax) = oV(x) + da (x) x, 

where the tensor product is taken over A unless otherwise specified. The kernel of V, 
denoted by £v, is called the submodule of horizontal elements, or the horizontal submodule 

of (£, V). 
(a) For any integer i ^ 1, define 

Q'air — f\l&A/R- 

Show that V can be extended to a homomorphism of E-modules 

S/i:Q?AlR®E^Qi;/i®E 

by 

V;(co (x) x) = dot (x) x + (- l)*co a V(x). 

(b) Define the curvature of the connection to be the map 

K = V, o V : £ a\IR ®A E. 

Show that K is an /1-homomorphism. Show that 

Vj + i° V,(co (x) x) = co a K(x) 

for co e Q?a/r and x e £. 

(c) Let Der(A/R) denote the /I-module of derivations of A into itself, over R. 
Let V be a connection on £. Show that V induces a unique A-linear map 

V: Der(A/R) - End*(£) 

such that 

V(D)(ax) = D(a)x 4- aV(D)(x). 

(d) Prove the formula 

[?(/>*), V(Z)2)] - VflA, Z)2]) = (Z), a Z)2)(X), 

In this formula, the bracket is defined by [/,#] = / ° g — g ° / for two endo- 
morphisms/, # of £. Furthermore, the right-hand side is the composed mapping 

p K p. 2 p D i A D; 

E -*• ® E- ® £ « £. 
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14. (a) For any derivation D of a ring A into itself, prove Leibniz’s rule: 

D*(xy) = t ^D‘(x)D"‘(y). 

(b) Suppose A has characteristic p. Show that Dp is a derivation. 

15. Let A/R be an algebra, and let E be an /l-module with a connection V. Assume that R 
has characteristic p. Define 

by 

ip : Dqt(A/R) - End*(E) 

w>) = (V(D)y - V(Dp). 

Prove that i/^(D) is /1-linear. [Hmf: Use Leibniz’s formula and the definition of a 
connection.] Thus the image of ip is actually in EndA(E). 

Some Clifford exercises 

16. Let Cg(E) be the Clifford algebra as defined in §4. Define Ft(Cg) = (k 4- £)', viewing 
E as embedded in Cg. Define the similar object Ft(/\£) in the alternating algebra. Then 
Fi+l D Ft in both cases, and we define the i-th graded module grt = Show 
that there is a natural (functorial) isomorphism 

gr,(C9(£)) ^ gr,( AE). 

17. Suppose that k = R, so E is a real vector space, which we now assume of even 
dimension 2m. We also assume that g is non-degenerate. We omit the index g since 
the symmetric form is now fixed, and we write C+, C~ for the spaces of degree 0 
and 1 respectively in the Z/2Z-grading. For elements x, y in C+ or C", define their 
supercommutator to be 

{jc, y} — xy — (—l)(degjr)(degy)yjc. 

Show that Flm~\ is generated by supercommutators. 

18. Still assuming g non-degenerate, let J be an automorphism of (£, g) (i.e. 
g(Jx, Jy) = g(x, y) for all x, y E E) such that J2 = -id. Let £c = C ®R£ be the 
extension of scalars from R to C. Then Ec has a direct sum decomposition 

Ec = £c © Ec 

into the eigenspaces of 7, with eigenvalues 1 and -1 respectively. (Proof?) There 

is a representation of Ec on A^c> i-e- a homomorphism Ec —> Endc^c) whereby 
an element of Eq operates by exterior multiplication, and an element of Eq operates 
by inner multiplication, defined as follows. 

For x' E Eq there is a unique C-linear map having the effect 

r 

x'(x, A • • • A Xr) = —2 X (- l)i_l (x\ Xi) Xt A ' ' ' A Xi A • • • A Xr. 
/ = 1 
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Prove that under this operation, you get an isomorphism 

Cg{E)c Endc(A£c)- 

[Hint: Count dimensions.] 

19. Consider the Clifford algebra over R. The standard notation is Cn if E = Rn with 
the negative definite form, and C'n if E = R" with the positive definite form. Thus 
dim Cn = dim C'n = 2". 

(a) Show that 

Cj ~ C C2 ~ H (the division ring of quaternions) 

C[ ~ R x R C2 ~ A/2(R) (2x2 matrices over R) 

20. Establish isomorphisms: 

C 0R C - C x C; C 0R H ~ A#2(C); H 0R H * M4(R) 

where Md(F) = d x d matrices over F. For the third one, with H 0 H, define an 
isomorphism 

/: H 0R H —» HomR(H, H) « M4(R) 

by f(x 0 y)(z) = xzy, where if y = y0 + yxi + y2j + y3k then 

9 = yo~ y\i - yii - y^. 

21. (a) Establish isomorphisms 

Cn+2 ^ C'n 0 C2 and Ch+2 ** Cn 0 C2. 

[Hint: Let {e,,. . ., en+2} be the orthonormalized basis with ef = — 1. Then for 
. the first isomorphism map et h-> ef- 0 e,^2 for i - 1,. . . , n and map en+], ew+2 

on 1 0 ex and 1 0 e2 respectively.] 
(b) Prove that C„+8 « Cn 0 M,6(R) (which is called the periodicity property). 
(c) Conclude that C„ is a semi-simple algebra over R for all n. 

From (c) one can tabulate the simple modules over Cn. See [ABS 64], reproduced 
in Husemoller [Hu 75], Chapter 11, §6. 



_Part Four 
HOMOLOGICAL 

ALGEBRA 

In the forties and fifties (mostly in the works of Cartan, Eilenberg, MacLane, 
and Steenrod, see [CaE 57]), it was realized that there was a systematic way of 
developing certain relations of linear algebra, depending only on fairly general 
constructions which were mostly arrow-theoretic, and were affectionately called 
abstract nonsense by Steenrod. (For a more recent text, see [Ro 79].) The results 
formed a body of algebra, some of it involving homological algebra, which had 
arisen in topology, algebra, partial differential equations, and algebraic geometry. 
In topology, some of these constructions had been used in part to get homology 
and cohomology groups of topological spaces as in Eilenberg-Steenrod [ES 52]. 
In algebra, factor sets and 1 -cocycles had arisen in the theory of group extensions, 
and, for instance, Hilbert’s Theorem 90. More recently, homological algebra 
has entered in the cohomology of groups and the representation theory of groups. 
See for example Curtis-Reiner [CuR 81], and any book on the cohomology of 
groups, e.g. [La 96], [Se 64], and [Sh 72]. Note that [La 96] was written to pro¬ 
vide background for class field theory in [ArT 68]. 

From an entirely different direction, Leray developed a theory of sheaves 
and spectral sequences motivated by partial differential equations. The basic 
theory of sheaves was treated in Godement’s book on the subject [Go 58]. 
Fundamental insights were also given by Grothendieck in homological algebra 
[Gro 57], to be applied by Grothendieck in the theory of sheaves over schemes 
in the fifties and sixties. In Chapter XX, I have included whatever is necessary 
of homological algebra for Hartshorne’s use in [Ha 77]. Both Chapters XX and 
XXI give an appropriate background for the homological algebra used in Griffiths- 
Harris [GrH 78], Chapter 5 (especially §3 and §4), and Gunning [Gu90]. Chapter 
XX carries out the general theory of derived functors. The exercises and Chapter 
XXI may be viewed as providing examples and computations in specific concrete 
instances of more specialized interest. 
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The commutative algebra of Chapter X and the two chapters on homological 
algebra in this fourth part also provide an appropriate background for certain 
topics in algebraic geometry such as Serre’s study of intersection theory [Se 65], 
Grothendieck duality, and Grothendieck’s Riemann-Roch theorem in algebraic 
geometry. See for instance [SGA 6]. 

Finally I want to draw attention to the use of homological algebra in certain 
areas of partial differential equations, as in the papers of Atiyah-Bott-Patodi and 
Atiyah-Singer on complexes of elliptic operators. Readers can trace some of the 
literature from the bibliography given in [ABP 73]. 

The choice of material in this part was to a large extent motivated by all the 
above applications. 

For this chapter, considering the number of references and cross-references 
given, the bibliography for the entire chapter is placed at the end of the chapter. 



CHAPTER XX_ 
General Homology Theory 

To a large extent the present chapter is arrow-theoretic. There is a substantial 
body of linear algebra which can be formalized very systematically, and con¬ 
stitutes what Steenrod called abstract nonsense, but which provides a well-oiled 
machinery applicable to many domains. References will be given along the way. 

Most of what we shall do applies to abelian categories, which were mentioned 
in Chapter III, end of §3. However, in first reading, I recommend that readers 
disregard any allusions to general abelian categories and assume that we are 
dealing with an abelian category of modules over a ring, or other specific abelian 
categories such as complexes of modules over a ring. 

§1. COMPLEXES 

Let A be a ring. By an open complex of ^-modules, one means a sequence 
of modules and homomorphisms {(E\ d')}9 

) ^ ^ £» + *  ► 

where i ranges over all integers and d, maps El into El+1, and such that 

dl o dl~1 = 0 

for all L 
One frequently considers a finite sequence of homomorphisms, say 

E->Er 
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such that the composite of two successive ones is 0, and one can make this 
sequence into a complex by inserting 0 at each end: 

-► 0 -► 0 -► E1 -►-> Er -► 0 -► 0 -► 

Such a complex is called a finite or bounded complex. 

Remark. Complexes can be indexed with a descending sequence of integers, 
namely, 

Eh EAE:. 

When that notation is used systematically, then one uses upper indices for 
complexes which are indexed with an ascending sequence of integers: 

Ei 4 Ei+1 

In this book, I shall deal mostly with ascending indices. 

As stated in the introduction of this chapter, instead of modules over a ring, 
we could have taken objects in an arbitrary abelian category. 

The homomorphisms dl are often called differentials, because some of the 
first complexes which arose in practice were in analysis, with differential operators 
and differential forms. Cf. the examples below. 

We denote a complex as above by (£, d). If the complex is exact, it is often 
useful to insert the kernels and cokernels of the differentials in a diagram as 
follows, letting M, = Ker dl = Im dl~l. 

-> Ei~ 2 -1 ->Ei ->£i+ 1 -> 

A/‘“1 A/1 Mi+l 

Thus by definition, we obtain a family of short exact sequences 

0 ->M‘ ->F ->M‘ +1 ^ 0. 

If the complex is not exact, then of course we have to insert both the image of 
dl~1 and the kernel of d'. The factor 

(Ker </')/(Im dl~l) 

will be studied in the next section. It is called the homology of the complex, 
and measures the deviation from exactness. 
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Let M be a module. By a resolution of M we mean an exact sequence 

£0 —► M —► 0. 

Thus a resolution is an exact complex whose furthest term on the right before 
0 is Af. The resolution is indexed as shown. We usually write EM for the part of 
complex formed only of the E- s, thus: 

Em is. —► En —► En_ j —► • • • —► £0, 

stopping at E0. We then write E for the complex obtained by sticking 0 on 
the right: 

E is: -►£„-► £0 —► 0. 

If the objects £, of the resolution are taken in some family, then the resolution is 
qualified in the same way as the family. For instance, if £, is free for all i ^ 0 
then we say that the resolution is a free resolution. If Et is projective for all 
i ^ 0 then we say that the resolution is projective. And so forth. The same 
terminology is applied to the right, with a resolution 

0 -» M -► £° -► E1 -►-► £""1 -► £" 

also written 

0 -► M -► £m. 

We then write £ for the complex 

0 - £° - E1 - £2 • • •. 

See §5 for injective resolutions. 
A resolution is said to be finite if £t (or £') = 0 for all but a finite number of 

indices i. 

Example. Every module admits a free resolution (on the left). This is a 
simple application of the notion of free module. Indeed, let M be a module, and 
let {xj} be a family of generators, with j in some indexing set J. For each j let 
Rej be a free module over R with a basis consisting of one element ej. Let 

F = 0Ke,. 
jeJ 

be their direct sum. There is a unique epimorphism 

£ -► M -» 0 

sending ej on xj9 Now we let Mx be the kernel, and again represent Mx as the 
quotient of a free module. Inductively, we can construct the desired free 
resolution. 
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Example. The Standard Complex. Let 5 be a set. For i = 0, 1,2,... 
let Et be the free module over Z generated by (/ + l)-tuples (*0, • • • , *,) with 
jc0,. . . , jcz e S. Thus such (/ + l)-tuples form a basis of E{ over Z. There is a 
unique homomorphism 

^z+l • &i+ l 

such that 
/ +1 

4+lC*0> • • • , *,+ l) = 2 (-1)^0. ■■■ xi+l), 
y = 0 

where the symbol Xj means that this term is to be omitted. For i — 0, we define 
d0 : F0 —> Z to be the unique homomorphism such that d0(*o) — 1 • The map d0 
is sometimes called the augmentation, and is also denoted by e. Then we obtain 
a resolution of Z by the complex 

—> Ei+X —> Et —» • • • —> E0 Z 0. 

The formalism of the above maps dt is pervasive in mathematics. See Exercise 
2 for the use of the standard complex in the cohomology theory of groups. For 
still another example of this same formalism, compare with the Koszul complex 
in Chapter XXI, §4. 

Given a module M, one may form Hom^, M) for each /, in which case one 
gets coboundary maps 

8‘: Horn(Eh M) Hom(£/+1, A/), 8(f) = /° di + l, 

obtained by composition of mappings. This procedure will be used to obtain 
derived functors in §6. In Exercises 2 through 6, you will see how this procedure 
is used to develop the cohomology theory of groups. 

Instead of using homomorphisms, one may use a topological version with 
simplices, and continuous maps, in which case the standard complex gives rise to 
the singular homology theory of topological spaces. See [GreH 81], Chapter 9. 

Examples. Finite free resolutions. In Chapter XXI, you will find other 
examples of complexes, especially finite free, constructed in various ways with 
different tools. This subsequent entire chapter may be viewed as providing 
examples for the current chapter. 

Examples with differential forms. In Chapter XIX, §3, we gave the exam¬ 
ple of the de Rham complex in an algebraic setting. In the theory of differential 
manifolds, the de Rham complex has differential maps 

dl: fV+1, 

sending differential forms of degree i to those of degree i + 1, and allows for 
the computation of the homology of the manifold. 

A similar situation occurs in complex differential geometry, when the maps 
dl are given by the Dolbeault ^-operators 

a1: tip'* -> 
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operating on forms of type (p, /). Interested readers can look up for instance 
Gunning’s book [Gu 90] mentioned in the introduction to Part IV,Volume I, E. 
The associated homology of this complex is called the Dolbeault or d-cohom- 
ology of the complex manifold. 

Let us return to the general algebraic aspects of complexes and resolutions. 

It is an interesting problem to discuss which modules admit finite resoutions, 
and variations on this theme. Some conditions are discussed later in this chapter 
and in Chapter XXI. If a resolution 

0 —► En —> £„_! £0 —► M —► 0 

is such that Em = 0 for m > n, then we say that the resolution has length ^ n 
(sometimes we say it has length n by abuse of language). 

A closed complex of ^-modules is a sequence of modules and homomorph- 
isms {(F, d1)} where i ranges over the set of integers mod n for some n ^ 2 
and otherwise satisfying the same properties as above. Thus a closed complex 
looks like this: 

E1 -► E2 -►-► En 

We call n the iength of the closed complex. 
Without fear of confusion, one can omit the index i on dl and write just d. 

We also write (£, d) for the complex {(F, d1)}, or even more briefly, we write 
simply E. 

Let (E, d) and (£', d') be complexes (both open or both closed). Let r be an 
integer. A morphism or homomorphism (of complexes) 

/: (F, d')^(E,d) 

of degree r is a sequence 

fi: F* -► F + r 

of homomorphisms such that for all i the following diagram is commutative: 

£'(l- 1) f i - 1 ) F 1+r 

Just as we write d instead of d\ we shall also write j instead of j\. If the com¬ 
plexes are closed, we define a morphism from one into the other only if they 
have the same length. 

It is clear that complexes form a category. In fact they form an abelian 
category. Indeed, say we deal with complexes indexed by Z for simplicity, and 
morphisms of degree 0. Say we have a morphism of complexes /: C -► C" or 
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putting the indices: 

C„ 

c: 

C„-l 

Q'-i 

We let Cn = Ker(C„ C"). Then the family (C'n) forms a complex, which we 
define to be the kernel of /. We let the reader check the details that this and a 
similar definition for cokernel and finite direct sums make complexes of 
modules into an abelian category. At this point, readers should refer to Chapter 
III, §9, where kernels and cokernels are discussed in this context. The snake 
lemma of that chapter will now become central to the next section. 

It will be useful to have another notion to deal with objects indexed by a 
monoid. Let G be a monoid, which we assume commutative and additive to 
fit the applications we have in mind here. Let {Mi}ieG be a family of modules 
indexed by G. The direct sum 

M = © M; 
i e G 

will be called the G-graded module associated with the family {AfJieG. Let 
{Mi}ieG and {M-}ieG be families indexed by G, and let M, Mf be their asso¬ 
ciated G-graded modules. Let r e G. By a G-graded morphism of 
degree r we shall mean a homomorphism such that / maps M\ into Mi + r for 
each i e G (identifying M{ with the corresponding submodule of the direct 
sum on the i-th component). Thus / is nothing else than a family of homo- 
morphisms f \M\ -► Mi+r. 

If (£, d) is a complex we may view E as a G-graded module (taking the direct 
sum of the components of the complex), and we may view d as a G-graded 
morphism of degree 1, letting G be Z or Z/nZ. The most common case we en¬ 
counter is when G = Z. Then we write the complex as 

£ = ®£*, and d.E^E 

maps E into itself. The differential d is defined as d, on each direct summand 
Eh and has degree 1. 

Conversely, if G is Z or Z/nZ, one may view a G-graded module as a com¬ 
plex, by defining d to be the zero map. 

For simplicity, we shall often omit the prefix “ G-graded ” in front of the word 
“morphism”, when dealing with G-graded morphisms. 
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§2. HOMOLOGY SEQUENCE 

Let (£, d) be a complex. We let 

Z\E) = Ker dl 

and call Z\E) the module of /-cycles. We let 

B\E) = lmdi~i 

and call B\E) the module of /-boundaries. We frequently write Z* and Bl 
instead of Z\E) and B\E\ respectively. We let 

H\E) = Zi/Bi = Ker dl/Im d{~ \ 

and call H\E) the i-th homology group of the complex. The graded module 
associated with the family {//*} will be denoted by //(£), and will be called the 
homology of E. One sometimes writes H*(E) instead of H(E). 

If /:£'-►£ is a morphism of complexes, say of degree 0, then we get an 

induced canonical homomorphism 

H\f) : /£(£') ^ H\E) 

on each homology group. Indeed, from the commutative diagram defining a 
morphism of complexes, one sees at once that/maps Z'{E') into Z\E) and Bl(E') 
intoi?z(£), whence the induced homomorphism//'(/). Compare with the begin¬ 
ning remarks of Chapter III, §9. One often writes this induced homomorphism 
as /•* rather than ////), and if H(E) denotes the graded module of homology as 
above, then we write 

H(f) =f*:H(E’)^H(E). 

We call //(/) the map induced by /on homology. If //*(/) is an isomorphism 
for all /, then we say that/ is a homology isomorphism. 

Note that if/: E' —> E and g: E —> E" are morphisms of complexes, then it 
is immediately verified that 

H(g) o //(/) = H(g of) and //(id) = id. 

Thus H is a functor from the category of complexes to the category of graded 
modules. 

We shall consider short exact sequences of complexes with morphisms of 
degree 0: 

0 ->• £' 4 E 4 E" 0, 
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which written out in full look like this: 

0->E,(i~l)-> E'~1-► E"{i~l)-> 0 

One can define a morphism 

S : //(£") - H(E') 

of degree 1, in other words, a family of homomorphisms 

<5* ://"* -► H'ii+1) 

by the snake lemma. 

Theorem 2.1. Let 

0 - E 4 E 4 E" - 0 

be an exact sequence of complexes withfi g of degree 0. Then the sequence 

———* H(E') 

H(E") 

is exact. 

This theorem is merely a special application of the snake lemma. 

If one writes out in full the homology sequence in the theorem, then it looks 
like this: 
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It is clear that our map 5 is functorial (in an obvious sense), and hence that 
our whole structure (H, S) is a functor from the category of short exact sequences 
of complexes into the category of complexes. 

§3. EULER CHARACTERISTIC AND THE 
GROTHENDIECK GROUP 

This section may be viewed as a continuation of Chapter III, §8, on Euler- 
Poincare maps. Consider complexes of A-modules, for simplicity. 

Let E be a complex such that almost all homology groups Hl are equal to 0. 
Assume that E is an open complex. As in Chapter III, §8, let cp be an Euler- 
Poincare mapping on the category of modules (i.e. A-modules). We define the 
Euler-Poincare characteristic Xq>(E) (or more briefly the Euler characteristic) 
with respect to <p, to be 

*,(£) = £(- i)V(tf') 

provided q>(Hl) is defined for all H\ in which case we say that is defined for the 
complex E. 

If E is a closed complex, we select a definite order (E1,..., En) for the integers 
mod n and define the Euler characteristic by the formula 

*„(£)= Z(-DW 
i = 1 

provided again all (p(H') are defined. 
For an example, the reader may refer to Exercise 28 of Chapter I. 
One may view H as a complex, defining d to be the zero map. In that case, 

we see that xJfH) is the alternating sum given above. More generally: 

Theorem 3.1. Let F be a complex, which is of even length if it is closed. 
Assume that (p(Fl) is defined for all i, (p(Fl) = 0 for almost all /, and H\F) = 0 
for almost all i. Then XqfJF) is defined, and 

x,(f) = K- i)V(f')- 
i 

Proof Let Zl and B1 be the groups of /-cycles and /-boundaries in Fl 
respectively. We have an exact sequence 

0 -► Zl -► Fl -► Bi+l 0. 

Hence x<p(F) is defined, and 

<p(F‘) = <p{Z') + cp(Bi + >). 
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Taking the alternating sum, our conclusion follows at once. 

A complex whose homology is trivial is called acyclic. 

Corollary 3.2. Let F be an acyclic complex, such that cp(Fl) is defined for 

all i, and equal to 0 for almost all i. If F is closed, we assume that F has even 

length. Then 

UE) = 0. 

In many applications, an open complex F is such that Fl = 0 for almost 
all i, and one can then treat this complex as a closed complex by defining an 
additional map going from a zero on the far right to a zero on the far left. Thus 
in this case, the study of such an open complex is reduced to the study of a 
closed complex. 

Theorem 3.3. Let 

0 -► £' -> E -► £" - 0 

be an exact sequence of complexes, with morphisms of degree 0. If the com¬ 

plexes are closed, assume that their length is even. Let cp be an Euler-Poincare 

mapping on the category of modules. If x<p Is defined for two of the above 

three complexes, then it is defined for the third, and we have 

xjle) = ue>) + uE"y 

Proof. We have an exact homology sequence 

- //"<*-1) _> Hfi - Hl - Hni -* H,(i+1) - 

This homology sequence is nothing but a complex whose homology is trivial. 
Furthermore, each homology group belonging say to E is between homology 
groups of E' and E". Hence if Xq> is defined for E' and E" it is defined for E. 

Similarly for the other two possibilities. If our complexes are closed of even 
length n, then this homology sequence has even length 3n. We can therefore 
apply the corollary of Theorem 3.1 to get what we want. 

For certain applications, it is convenient to construct a universal Euler 
mapping. Let (2 be the set of isomorphism classes of certain modules. If £ is a 
module, let [£] denote its isomorphism class. We require that (2 satisfy the 

Euler-Poincare condition, i.e. if we have an exact sequence 

0 —► E' —► E —► E” —► 0, 

then [£] is in (2 if and only if [£'] and [£"] are in (2. Furthermore, the zero 
module is in (2. 
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Theorem 3.4. Assume that (2 satisfies the Euler-Poincare condition. Then 

there is a map 

y:(2- K((2) 

of (2 into an abelian group K((2) having the universal property with respect to 

Euler-Poincare maps defined on (2. 

To construct this, let Fab((2) be the free abelian group generated by the set of 
such [F]. Let B be the subgroup generated by all elements of type 

[£] - [F] - [£"], 

where 

0 -► F -► F -► F -► 0 

is an exact sequence whose members are in (2. We let K(G) be the factor group 
Fab(&)/B, and let y: (2 -► K(G) be the natural map. It is clear that y has the 
universal property. 

We observe the similarity of construction with the Grothendieck group of a 
monoid. In fact, the present group is known as the Euler-Grothendieck group 
of (2, with Euler usually left out. 

The reader should observe that the above arguments are valid in abelian 
categories, although we still used the word module. Just as with the elementary 
isomorphism theorems for groups, we have the analogue of the Jordan-Holder 
theorem for modules. Of course in the case of modules, we don’t have to worry 
about the normality of submodules. 

We now go a little deeper into K-theory. Let (2 be an abelian category. In 
first reading, one may wish to limit attention to an abelian category of modules 
over a ring. Let G be a family of objects in (2. We shall say that G is a K-family 
if it satisfies the following conditions. 

K 1. G is closed under taking finite direct sums, and 0 is in C. 
K 2. Given an object E in (2 there exists an epimorphism 

L-F-0 

with L in G. 
K 3. Let E be an object admitting a finite resolution of length n 

0 —► Ln Lq —► E —► 0 

with L( e G for all i. If 

is a resolution with N in (2 and F0,..., F„_ x in G, then N is also in C. 
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We note that it follows from these axioms that if F is in G and F' is iso¬ 
morphic to F, then F' is also in 6, as one sees by looking at the resolution 

0-F'->F-0->0 

and applying K 3. Furthermore, given an exact sequence 

0 - F -► F - F" - 0 

with F and F" in C, then F' is in C, again by applying K 3. 

Example. One may take for (2 the category of modules over a commutative 
ring, and for G the family of projective modules. Later we shall also consider 
Noetherian rings, in which case one may take finite modules, and finite pro¬ 
jective modules instead. Condition K 2 will be discussed in §8. 

From now on we assume that G is a K-family. For each object E in (2, we 
let [F] denote its isomorphism class. An object E of (2 will be said to have 
finite C-dimension if it admits a finite resolution with elements of G. We let 
(2(C) be the family of objects in & which are of finite C-dimension. We may 
then form the 

K(<2(C» = Z ia(G)]/R(d(G)) 

where R(d(G)) is the group generated by all elements [F] — [F'] - [F"] 
arising from an exact sequence 

0 - F' - F -► F" - 0 

in <jt(<3). Similarly we define 

K(C) = Z[(C)]/F(C), 

where R(G) is the group of relations generated as above, but taking F', F, F" 
in G itself. 

There are natural maps 

WG(C)- K(d(e» and ye: 6 - K(C), 

which to each object associate its class in the corresponding Grothendieck 
group. There is also a natural homomorphism 

6:K(C)-K((2(e» 

since an exact sequence of objects of G can also be viewed as an exact sequence 
of objects of (2(C). 
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Theorem 3.5. Let M e Q(G) and suppose we have two resolutions 

Lm > M > 0 and L'M -► M -► 0, 

by finite complexes LM and LM in G. Then 

K-D'Vea^K-D'VeW). 

Proo/. Take first the special case when there is an epimorphism L'M -► LM, 
with kernel E illustrated on the following commutative and exact diagram. 

0 * E ► Lm * Lm * 0 

M ——► M 
id 

0 0 

The kernel is a complex 

0 En_ t E0 —> 0 

which is exact because we have the homology sequence 

Hp(E) -+ Hp(L') -+ Hp(L) ^ Hp_ ,(E) 

For p ^ 1 we have Hp(L) = Hp(L') = 0 by definition, so tfp(£) = 0 for p ^ 1. 
And for p = 0 we consider the exact sequence 

- H0(E) -+ H0(L) -+ H0(L) 

Now we have Hr(L) = 0, and H0(L') -► //0(L) corresponds to the identity 
morphisms on Af so is an isomorphism. It follows that H0(E) = 0 also. 

By definition of K-family, the objects Ep are in G. Then taking the Euler 
characteristic in K(C) we find 

X(L') - X(L) = x(E) = 0 

which proves our assertion in the special case. 

The general case follows by showing that given two resolutions of M in G 

we can always find a third one which tops both of them. The pattern of our 
construction will be given by a lemma. 



774 GENERAL HOMOLOGY THEORY XX, §3 

Lemma 3.6. Given two epimorphisms u : M -► N and v: M' -► N in <2, 
there exist epimorphisms F -> M and F -> Af' with F in C making the following 

diagram commutative. 

Proof Let E — M xN Afthat is E is the kernel of the morphism 

Af x M' -► N 

given by (x, y) h-> ux — vy. (Elements are not really used here, and we could 
write formally u — v instead.) There is some F in G and an epimorphism 
F -> E -► 0. The composition of this epimorphism with the natural projections 
of E on each factor gives us what we want. 

We construct a complex giving a resolution of M with a commutative 
and exact diagram: 

0 

Lm->Af->0 

id 

L"m->M-♦ 0 

id 

L'm-*M-*0 

0 

The construction is done inductively, so we put indices: 

U--► 

L"-> l;_ ,-♦ 

Li *Lj_ j * 
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Suppose that we have constructed up to L"_ x with the desired epimorphisms on 
L,_j and L;_j. We want to construct L". Let B{ = Ker(Li-l -► L,_2) and 
similarly for B\ and B[. We obtain the commutative diagram: 

Li ► B( * L,_ j ► 2 

B-->L'l-x->l;-2 

Li > Bi * Li - x * Li - 2 

If B” -► Bi or B" B\ are not epimorphisms, then we replace L|'_ { by 

L'l-1 © L; © L\. 

We let the boundary map to L"-2 be 0 on the new summands, and similarly 
define the maps to L,_ x and L\-x to be 0 on L\ and Lf_ { respectively. 

Without loss of generality we may now assume that 

B^ - Bi and - B\ 

are epimorphisms. We then use the construction of the preceding lemma. 
We let 

£, = L, @B, B" and E\ = B"®b; Li- 

Then both £, and E\ have natural epimorphisms on B". Then we let 

Nt = £,@flr £' 

and we find an object L" in G with an epimorphism L" -► N(. This gives us the 
inductive construction of L" up to the very end. To stop the process, we use 
K 3 and take the kernel of the last constructed L" to conclude the proof. 

Theorem 3.7. The natural map 

£:K(G)- K(fl(e)) 

is an isomorphism. 

Proof. The map is surjective because given a resolution 

0—►Fn►Fo->M->0 

with Fi e G for all i, the element 
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maps on yQie)(M) under e. Conversely, Theorem 3.5 shows that the association 

is a well-defined mapping. Since for any LeG we have a short exact sequence 
0 —► L —► L —► 0, it follows that this mapping following e is the identity on K(C), 
so 6 is a monomorphism. Hence e is an isomorphism, as was to be shown. 

It may be helpful to the reader actually to see the next lemma which makes 
the additivity of the inverse more explicit. 

Lemma 3.8. Given an exact sequence in Q(G) 

0 - M' -+ M -► M" -► 0 

there exists a commutative and exact diagram 

0 > Lm> * Lm > Lm« ► 0 

0-> M'-> M-> Af"-> 0 

0 0 0 

with finite resolutions LMLM, LM> in G. 

Proof. We first show that we can find L', L, L" in G to fit an exact and 
commutative diagram 

0-» L'-> L -> L"-> 0 

0->M'-► M->M"-►0 

0 0 0 

We first select an epimorphism L" -► M" with L" in G. By Lemma 3.6 there 
exists Lj e G and epimorphisms Lj -> Af, Ll -> L" making the diagram com¬ 
mutative. Then let L2 -► M' be an epimorphism with L2e6, and finally define 
L = Lj ® L2. Then we get morphisms L M and L -> U in the obvious 
way. Let L' be the kernel of L -> L". Then L2 c= L so we get an epimorphism 
L' -► M'. 
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This now allows us to construct resolutions inductively until we hit the 
n-th step, where n is some integer such that Af, Af" admit resolutions of length 
n in G. The last horizontal exact sequence that we obtain is 

0^L'n^Ln^L';^0 

and L" can be chosen to be the kernel of L"_, -► L"_2. By K 3 we know that 
L" lies in G, and the sequence 

0 L'n -> L! 

is exact. This implies that in the next inductive step, we can take L"+ { = 0. 
Then 

0 L'n+! -► Ln+1 * 0 ► 0 

is exact, and at the next step we just take the kernels of the vertical arrows to 
complete the desired finite resolutions in G. This concludes the proof of the 
lemma. 

Remark. The argument in the proof of Lemma 3.8 in fact shows: 

If 
0 - Af' - Af - Af" - 0 

is an exact sequence in G, and if Af, Af" have finite G-dimension, then so does 

Af'. 

In the category of modules, one has a more precise statement: 

Theorem 3.9. Let d he the category of modules over a ring. Let (P be the 

family of projective modules. Given an exact sequence of modules 

0 E - E - E " -+ 0 

if any two of E\ E, E" admit finite resolutions in (P then the third does also. 

Proofs in a more subtle case will be given in Chapter XXI, Theorem 2.7. 
Next we shall use the tensor product to investigate a ring structure on the 

Grothendieck group. We suppose for simplicity that we deal with an abelian 
category of modules over a commutative ring, denoted by d, together with a K- 
family G as above, but we now assume that (2 is closed under the tensor product. 
The only properties we shall actually use for the next results are the following 
ones, denoted by TG (for “tensor” and “Grothendieck” respectively): 

TG 1. There is a bifunctorial isomorphism giving commutativity 

Af (x) jV « N (x) Af 

for all Af, N in (2; and similarly for distributivity over direct sums, 
and associativity. 
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TG 2. For all L in G the functor M i—► L ® M is exact. 

TG 3. If L, L' are in (2 then L (g) L' is in 0. 

Then we may give K(C) the structure of an algebra by defining 

cle(L) cle(Lf) = cle(L ® L'). 

Condition TG 1 implies that this algebra is commutative, and we call it the 
Grothendieck algebra. In practice, there is a unit element, but if we want one in 
the present axiomatization, we have to make it an explicit assumption: 

TG 4. There is an object R in G such that R ® M % M for all M in (2. 

Then cle(R) is the unit element. 
Similarly, condition TG 2 shows that we can define a module structure on 

K(<2) over K(C) by the same formula 

cle(L) clQ(Af) = cla(L ® Af), 

and similarly K(G(C)) is a module over K(C), where we recall that G(C) is the 
family of objects in (2 which admit finite resolutions by objects in G. 

Since we know from Theorem 3.7 that K(C) ~ K(G(C)), we also have a 
ring structure on K(G(<2)) via this isomorphism. We then can make the product 
more explicit as follows. 

Proposition 3.10. Let M e G(C) and let N e(2. Let 

0 —► Ln Lq —► A1 —► 0 

be a finite resolution of M by objects in Q. Then 

cle(M) cla(N) = X (“ ® N). 

= Z(-0£ Cl*(//;(£)) 

wftere K is the complex 

0->>L„®iV->-->Lo(g)iV->M(x)jV->0 

nnrf Hi(K) is the i-th homology of this complex. 

Proof. The formulas are immediate consequences of the definitions, and of 
Theorem 3.1. 

Example. Let (2 be the abelian category of modules over a commutative 
ring. Let G be the family of projective modules. From §6 on derived functors 
the reader will know that the homology of the complex K in Proposition 3.10 
is just Tor(M, N). Therefore the formula in that proposition can also be written 

clc(M) c\a(N) = I ( - O' cla(Tor,(M, JV)). 
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Example. Let A be a field. Let G be a group. By a (G, AO-module, we shall 
mean a pair (£, p), consisting of a A-space £ and a homomorphism 

p: G -> Aut *(£). 

Such a homomorphism is also called a representation of G in E. By abuse of 
language, we also say that the A-space £ is a G-module. The group G operates 
on £, and we write ax instead of p(a)x. The field k will be kept fixed in what 
follows. 

Let Modk(G) denote the category whose objects are (G, A)-modules. A mor¬ 
phism in Mod*(G) is what we call a G-homomorphism, that is a A-linear map 
/:£—»£ such that f(ax) = cr/(x) for all cr e G. The group of morphisms in 
Mod*(G) is denoted by HomG. 

If £ is a G-module, and a e G, then we have by definition a A-automorphism 
a: £ -► £. Since Tr is a functor, we have an induced automorphism 

T\a): Tr(E) - Tr(£) 

for each r, and thus Tr(E) is also a G-module. Taking the direct sum, we see 
that T(E) is a G-module, and hence that T is a functor from the category of 
G-modules to the category of graded G-modules. Similarly for /\r, Sr, and /\> S. 

It is clear that the kernel of a G-homomorphism is a G-submodule, and that 
the factor module of a G-module by a G-submodule is again a G-module so the 
category of G-modules is an abelian category. 

We can now apply the general considerations on the Grothendieck group 
which we write 

K(G) = K(Mod*(G)) 

for simplicity in the present case. We have the canonical map 

cl: Mod*(G) K(G). 

which to each G-module associates its class in K(G). 
If £, £ are G-modules, then their tensor product over A, £ (x) £, is also a 

G-module. Here again, the operation of G on £ ® £ is given functorially. If 
a e G, there exists a unique A-linear map £ ® F E (x) £ such that for x £ £, 
y £ £ we have x (x) y i—► (crx) (x) (try). The tensor product induces a law of 

composition on Mod*(G) because the tensor products of G-isomorphic modules 
are G-isomorphic. 

Furthermore all the conditions TG 1 through TG 4 are satisfied. Since A is a 
field, we find also that tensoring an exact sequence of G-modules over A with any 
G-module over A preserves the exactness, so TG 2 is satisfied for all (G, A)- 
modules. Thus the Grothendieck group K(G) is in fact the Grothendieck ring, 
or the Grothendieck algebra over A. 
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By Proposition 2.1 and Theorem 2.3 of Chapter XVIII, we also see: 

The Grothendieck ring of a finite group G consisting of isomorphism classes of 

finite dimensional (G, k)-spaces over a field k of characteristic 0 is naturally 

isomorphic to the character ring XZ(G). 

We can axiomatize this a little more. We consider an abelian category of 
modules over a commutative ring R, which we denote by (2 for simplicity. For 
two modules M, N in <2 we let Mor(M, N) as usual be the morphisms in (2, but 
Mor(M, N) is an abelian subgroup of HornR(M, N). For example, we could take 
d to be the category of (G, /c)-modules as in the example we have just discussed, 
in which case Mor(Af, N) - HornG(M, N). 

We let G be the family of finite free modules in (2. We assume that G satisfies 

TG 1, TG 2, TG 3, TG 4, and also that G is closed under taking alternating pro¬ 

ducts,, tensor products and symmetric products. We let K = K(C). As we have 
seen, K is itself a commutative ring. We abbreviate cle = cl. 

We shall define non-linear maps 

A : K - K 

using the alternating product. If E is finite free, we let 

A‘(£) = cl(/V'£). 

Proposition 1.1 of Chapter XIX can now be formulated for the K-ring as follows. 

Proposition 3.11. Let 

0 - E - E - E" - 0 

be an exact sequence offinite free modules in d. Then for every integer n ^ 0 
we have 

A"(£)= £A‘(F)A" 
; = o 

As a result of the proposition, we can define a map 

A,: K -► 1 + fK[[f]] 

of K into the multiplicative group of formal power series with coefficients in K, 
and with constant term 1, by letting 

00 

A,(x) = X 
« = 0 
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Proposition 1.4 of Chapter XIX can be formulated by saying that: 

The map 

Xt: K -> 1 + rK[[r]] 

is a homomorphism. 

We note that if L is free of rank 1, then 

X°(L) = ground ring; 

Xl(L) = cl(L); 

X\L) = 0 for i > 1. 

This can be summarized by writing 

Xt(L) = 1 + cl(L)r. 

Next we can do a similar construction with the symmetric product instead of 
the alternating product. If £ is a finite free module in C we let as usual: 

S(E) = symmetric algebra of £; 

Sl(E) = homogeneous component of degree i in S(£). 

We define 

o\E) = cl (S‘(£)) 

and the corresponding power series 

at(E) = X a\E)t‘. 

Theorem 3.12. Let E be a finite free module in Ct, of rank r. Then for all 

integers n ^ 1 we have 

Z( - l)'A'(£)crn_,(£) = 0, 
1=0 

where by definition o\E) = 0 for j < 0. Furthermore 

ot(E)X_t(E) = 1, 

so the power series vt(E) and X_t(E) are inverse to each other. 

Proof. The first formula depends on the analogue for the symmetric product 
and the alternating product of the formula given in Proposition 1.1 of Chapter 
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XIX. It could be proved directly now, but the reader will find a proof as a special 
case of the theory of Koszul complexes in Chapter XXI, Corollary 4.14. The 
power series relation is essentially a reformulation of the first formula. 

From the above formalism, it is possible to define other maps besides Az and 
a1. 

Example. Assume that the group G is trivial, and just write K for the 
Grothendieck ring instead of K(l). For x e K define 

d 
<M*) = -tjt log \'(x) = -t A, (*)/A,(*). 

Show that ilj-t is an additive and multiplicative homomorphism. Show that 

$t(E) = 1 4- cl(E)t + c\(E)2t2 4 • • • . 

This kind of construction with the logarithmic derivative leads to the Adams 
operations t/,z in topology and algebraic geometry. See Exercise 22 of Chapter 
XVIII. 

Remark. If it happens in Theorem 3.12 that E admits a decomposition into 
1-dimensional free modules in the K-group, then the proof trivializes by using 
the fact that At(L) = 1 4 cl(L)r if L is 1-dimensional. But in the example of 
(G, £)-spaces when k is a field, this is in general not possible, and it is also not 
possible in other examples arising naturally in topology and algebraic geometry. 
However, by “changing the base,” one can sometimes achieve this simpler 
situation, but Theorem 3.12 is then used in establishing the basic properties. Cf. 

Grothendieck [SGA 6], mentioned in the introduction to Part IV, and other works 
mentioned in the bibliography at the end, namely [Ma 69], [At 61], [At 67], 
[Ba 68], [Bo 62]. The lectures by Atiyah and Bott emphasize the topological 
aspects as distinguished from the algebraic-geometric aspects. Grothendieck 
[Gr 68] actually shows how the formalism of Chern classes from algebraic 
geometry and topology also enters the theory of representations of linear groups. 
See also the exposition in [FuL 85], especially the formalism of Chapter I, §6. 
For special emphasis on applications to representation theory, see B rocker-tom 
Dieck [BtD 85], especially Chapter II, §7, concerning compact Lie groups. 

§4. INJECTIVE MODULES 

In Chapter III, §4, we defined projective modules, which have a natural 
relation to free modules. By reversing the arrows, we can define a module Q to 
be injective if it satisfies any one of the following conditions which are equivalent: 

11. Given any module M and a submodule M', and a homomorphism 
/:M' -► 0, there exists an extension of this homomorphism to M, 
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that is there exists h: M -> Q making the following diagram commuta¬ 
tive: 

0-► Af'-► Af 

f 

Q 

12. The functor Af i—► Hom^Af, Q) is exact. 

13. Every exact sequence 0 Af -► Af" -► 0 splits. 

We prove the equivalence. General considerations on homomorphisms as in 
Proposition 2.1, show that exactness of the homed sequence may fail only at 
one point, namely given 

0 -► Af' -► Af -► Af" 0, 

the question is whether 

HomA(M, Q) -+ HornA(M\ 0^0 

is exact. But this is precisely the hypothesis as formulated in 11, so 11 implies 
12 is essentially a matter of linguistic reformulation, and in fact 11 is equivalent 
to 12. 

Assume I 2 or 11, which we know are equivalent. To get 13 is immediate, by 
applying 11 to the diagram: 

0->Q->M 

To prove the converse, we need the notion of push-out (cf. Exercise 52 of 
Chapter I). Given an exact diagram 

0-► M'-► M 

we form the push-out: 

Af 

Q 

M 

Q N = Q®M. 
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Since AT -> M is a monomorphism, it is immediately verified from the construc¬ 
tion of the push-out that Q -> N is also a monomorphism. By I 3, the sequence 

O^Q^N 

splits, and we can now compose the splitting map N -► Q with the push-out map 
M -> N to get the desired h: M -► Q, thus proving 11. 

We saw easily that every module is a homomorphic image of a free module. 
There is no equally direct construction for the dual fact: 

Theorem 4.1. Every module is a submodule of an injective module. 

The proof will be given by dualizing the situation, with some lemmas. We 
first look at the situation in the category of abelian groups. If M is an abelian 
group, let its dual group be MA = Hom(A/, Q/Z). If F is a free abelian group, 
it is reasonable to expect, and in fact it is easily proved that its dual FA is an 
injective module, since injectivity is the dual notion of projectivity. Furthermore, 
M has a natural map into the double dual MAA, which is shown to be a mono¬ 
morphism. Now represent MA as a quotient of a free abelian group, 

F —> Af A —> 0. 

Dualizing this sequence yields a monomorphism 

0 —> MAA F\ 

and since Af is embedded naturally as a subgroup of MAA, we get the desired 
embedding of M as a subgroup of FA. 

This proof also works in general, but there are details to be filled in. First 
we have to prove that the dual of a free module is injective, and second we have 
to be careful when passing from the category of abelian groups to the category 
of modules over an arbitrary ring. We now carry out the details. 

We say that an abelian group T is divisible if for every integer m, the homo¬ 
morphism 

mT: x i—► mx 

is surjective. 

Lemma 4.2. If T is divisible, then T is injective in the category of abelian 
groups. 

Proof Let AT c M be a subgroup of an abelian group, and let f:M'->T 

be a homomorphism. Let x £ AT We want first to extend / to the module 
(AT, x) generated by AT and x. If x is free over AT, then we select any value 
t e 7\ and it is immediately verified that/extends to (AT, x) by giving the value 
/(x) = t. Suppose that x is torsion with respect to Af', that is there is a 
positive integer m such that mx £ AT. Let d be the period of x mod Af', so 
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dx e Af', and d is the least positive integer such that dx e M'. By hypothesis, 
there exists an element ueT such that du = / (dx). For any integer n, and zeM' 

define 

f(z + nx) =f(z) + nu. 

By the definition of d, and the fact that Z is principal, one sees that this value 
for /is independent of the representation of an element of (M', x) in the form 
z + nx, and then it follows at once that this extended definition of / is a 
homomorphism. Thus we have extended / to (Af', x). 

The rest of the proof is merely an application of Zorn’s lemma. We consider 
pairs (Ny g) consisting of submodules of M containing Af, and an extension g 

of / to N. We say that (N, g) ^ (Nu gt) if N cz Nx and the restriction of gx 

to N is g. Then such pairs are inductively ordered. Let (N, g) be a maximal 
element. If N ^ M then there is some xeM, x$ N and we can apply the first 
part of the proof to extend the homomorphism to (N, x), which contradicts 
the maximality, and concludes the proof of the lemma. 

Example. The abelian groups Q/Z and R/Z are divisible, and hence are 
injective in the category of abelian groups. 

We can prove Theorem 4.1 in the category of abelian groups following the 
pattern described above. If F is a free abelian group, then the dual FA is a direct 
product of groups isomorphic to Q/Z, and is therefore injective in the category 
of abelian groups by Lemma 4.2. This concludes the proof. 

Next we must make the necessary remarks to extend the system to modules. 
Let A be a ring and let T be an abelian group. We make Homz(^, T) into an 
4-module as follows. Let f:A -► T be an abelian group homomorphism. For 
as A we define the operation 

(afm — f (ba). 

The rules for an operation are then immediately verified. Then for any 4-module 
X we have a natural isomorphism of abelian groups: 

Homz(X, T) —» HomA(X, Homz(4, T)). 

Indeed, let ^ : X -> T be a Z-homomorphism. We associate with \jj the homo¬ 
morphism 

/:X -► Homz(4, T) 

such that 

/(x)(fl) = <Kax). 



786 GENERAL HOMOLOGY THEORY XX, §4 

The definition of the ,4-module structure on Homz(A, T) shows that / is an 
^-homomorphism, so we get an arrow from Homz(X, T) to 

Hom^X, Homz(A, T)). 

Conversely, let/:X -► Homz(A, T) be an ^-homomorphism. We define the 
corresponding \j/ by 

i//(x)=f(x)(l). 

It is then immediately verified that these maps are inverse to each other. 
We shall apply this when T is any divisible group, although we think of T 

as being Q/Z, and we think of the homomorphisms into T as representing the 
dual group according to the pattern described previously. 

Lemma 4.3. IfT is a divisible abelian group, then Homz(A, T) is injective in 
the category of A-modules. 

Proof It suffices to prove that if 0 X -► Y is exact in the category of 
,4-modules, then the dual sequence obtained by taking A-homomorphisms into 
Homz(A, T) is exact, that is the top map in the following diagram is surjective. 

Hom^Y, Homz(A, T))-► Hom^X, Homz(A, T))—1—0 

HornZ(Y, T) -► Homz(X, T) ->0 

But we have the isomorphisms described before the lemma, given by the vertical 
arrows of the diagram, which is commutative. The bottom map is surjective 
because T is an injective module in the category of abelian groups. Therefore 
the top map is surjective, thus proving the lemma. 

Now we prove Theorem 4.1 for A-modules. Let M be an A-module. We can 
embed M in a divisible abelian group T, 

/ 
0 -► M 4 T. 

Then we get an A-homomorphism 

M - Homz(A, T) 

by x i—► fx9 where fx(a) = f(ax). One verifies at once that x i—>fx gives an em¬ 

bedding of M in Homz(A, T), which is an injective module by Lemma 4.3. This 
concludes the proof of Theorem 4.1. 
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§5. HOMOTOPIES OF MORPHISMS OF 
COMPLEXES 

The purpose of this section is to describe a condition under which homo- 
morphisms of complexes induce the same map on the homology and to show 
that this condition is satisfied in an important case, from which we derive 
applications in the next section. 

The arguments are applicable to any abelian category. The reader may pre¬ 
fer to think of modules, but we use a language which applies to both, and is no 
more complicated than if we insisted on dealing only with modules. 

Let E = {(En, dn)} and E' = {(£'", dfn)} be two complexes. Let 

fg\E->E 

be two morphisms of complexes (of degree 0). We say that /is homotopic to g 

if there exists a sequence of homomorphisms 

hn:En 

such that 

fn-gn = d'«-l% + hn+ldn. 

Lemma 5.1. Iff g are homotopic, then f g induce the same homomorphism 

on the homology H(E), that is 

H(fn) = H(gn) :H\E) ^ H\E'\ 

Proof The lemma is immediate, because /„ — gn vanishes on the cycles, 
which are the kernel of dn, and the homotopy condition shows that the image of 
/„ — gn is contained in the boundaries, that is, in the image of d'{n~1}. 

Remark. The terminology of homotopy is used because the notion and 
formalism first arose in the context of topology. Cf. [ES 52] and [GreH 81]. 

We apply Lemma 5.1 to injective objects. Note that as usual the definition 
of an injective module applies without change to define an injective object in 
any abelian category. Instead of a submodule in I 1, we use a subobject, or 
equivalently a monomorphism. The proofs of the equivalence of the three con¬ 
ditions defining an injective module depended only on arrow-theoretic juggling, 
and apply in the general case of abelian categories. 

We say that an abelian category has enough injectives if given any object M 

there exists a monomorphism 

0-M-/ 



788 GENERAL HOMOLOGY THEORY XX, §5 

into an injective object. We proved in §4 that the category of modules over a 
ring has enough injectives. We now assume that the abelian category we work 

with has enough injectives. 

By an injective resolution of an object Af one means an exact sequence 

0-Af ^7°-W1 -72 ^ 

such that each /„ (n ^ 0) is injective. Given Af, such a resolution exists. Indeed, 
the monomorphism 

0 - Af - 7° 

exists by hypothesis. Let Af 0 be its image. Again by assumption, there exists a 
monomorphism 

0 - 7°/M° -► 71, 

and the corresponding homomorphism 7° -> 71 has kernel Af°. So we have 
constructed the first step of the resolution, and the next steps proceed in the 
same fashion. 

An injective resolution is of course not unique, but it has some uniqueness 
which we now formulate. 

Lemma 5.2. Consider two complexes: 

0-► Af--> E1->E2-> 

0-► Af'-* 7°-► 71 -► 72->... 

Suppose that the top row is exact, and that each 7" (n ^ 0) is injective. Let 

cp:M M' be a given homomorphism. Then there exists a morphism f of 

complexes such that f_l = cp; and any two such are homotopic. 

Proof. By definition of an injective, the homomorphism M -> 7° via Af' 
extends to a homomorphism 

fo'-E° i°. 
which makes the first square commute: 

Af 

<p 

E0 

fo 

M'->/° 
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Next we must construct fx. We write the second square in the form 

0-* E°/M-> E1 

fo 

7° -► 71 

with the exact top row as shown. Again because 71 is injective, we can apply the 
same argument and find fx to make the second square commute. And so on, 
thus constructing the morphism of complexes f 

Suppose /, g are two such morphisms. We define h0: E° -► M' to be 0. 
Then the condition for a homotopy is satisfied in the first instance, when 

/-i = 9-1 =<P- 

Next let d~1: M -» £° be the embedding of M in E°. Since 7° is injective, 
we can extend 

d° : £°/Im d~1 - Ex 

to a homomorphism h: : El -► 7°. Then the homotopy condition is verified for 
f0 — g0. Since h0 = 0 we actually have in this case 

fo~ Go = hid0, 

but this simplification is misleading for the inductive step which follows. We 
assume constructed the map hn + 1, and we wish to show the existence of hn + 2 

satisfying 

fn+1 -01,+1 = dmhn+1 + hn+2dn+l. 

Since Im dn = Ker dn+\ we have a monomorphism En+ l/lm dn -► En + 2. By 
the definition of an injective object, which in this case is 7”+ \ it suffices to prove 
that 

/„+1 — gn+1 - d'nhn +1 vanishes on the image of dn, 

and to use the exact diagram: 

0-> En +1 /Im -► En + 2 

fn + 1 ~9n+ 1 

7"+1 

to get the existence of hn+2:£"+2 -*• 7"+1 extending /n+1 - 0„+1. But we 
have: 

(/.+i -g„+l-d"'h„+l)dn 

= (/n+i -gn+l)dn-d'nhn+1dn 
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= (/„+! - gn+ x)dn - d'\fn -gn- d'*-1%) by induction 

= (fn+1-gn+ ,)dn - d’n(fn - gn) because d'd’ = 0 

= 0 because f g are 
homomorphisms of 
complexes. 

This concludes the proof of Lemma 5.2. 

Remark. Dually, let PM> M' -► 0 be a complex with P‘ projective for 
i ^ 0,andlet£M -► M -► 0 be a resolution. Let<p: M' -> M be a homomorphism. 
Then <p extends to a homomorphism of complex P -*• E. The proof is obtained 
by reversing arrows in Lemma 5.2. The books on homological algebra that I 
know of in fact carry out the projective case, and leave the injective case to the 
reader. However, one of my motivations is to do here what is needed, for 
instance in [Ha 77], Chapter III, on derived functors, as a preliminary to the 
cohomology of sheaves. For an example of projective resolutions using free 
modules, see Exercises 2-7, concerning the cohomology of groups. 

§6. DERIVED FUNCTORS 

We continue to work in an abelian category. A covariant additive functor 

F : a -►« 

is said to be left exact if it transforms an exact sequence 

0 - Af' - M - Af" 

into an exact sequence 0 -► F(M') -► F(M) -> F(M"). We remind the reader 
that F is called additive if the map 

Hom04', A) - Hom(ivl', FA) 
is additive. 

We assume throughout that F is left exact unless otherwise specified, and 

additive. We continue to assume that our abelian category has enough in- 
jectives. 

Given an object A/, let 

O-M-/0-/1 -72- 

be an injective resolution, which we abbreviate by 

0 —► M —► /M, 

where IM is the complex 7° -► I1 -► I2 We let / be the complex 

0 -► 7° -► 71 -► I2 -► 
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We define the right-derived functor RnF by 

RnF(M) = H\F(I)), 

in other words, the n-th homology of the complex 

0-► F(/°)-► FC/1)-► F(/2)-► 

Directly from the definitions and the monomorphism M -> I0, we see that there 
is an isomorphism 

R°F(M) = F(M). 

This isomorphism seems at first to depend on the injective resolution, and so 
do the functors RnF(M) for other n. However, from Lemmas 5.1 and 5.2 we 
see that given two injective resolutions of Af, there is a homomorphism between 
them, and that any two homomorphisms are homotopic. If we apply the functor 
F to these homomorphisms and to the homotopy, then we see that the homology 
of the complex F(/) is in fact determined up to a unique isomorphism. One 
therefore omits the resolution from the notation and from the language. 

Example 1. Let R be a ring and let d = Mod(F) be the category of R- 

modules. Fix a module A. The functor M i-> Hom(A, Af) is left exact, i.e. given 
an exact sequence 0 —> Af' —> M —> A/", the sequence 

0 —> Hom(A, AT) —» Hom(A, M) —> Horn (A, Af") 

is exact. Its right derived functors are denoted by Extn(A, Af) for Af variable. 
Similarly, for a fixed module B, the functor X »-> Horn (X, B) is right exact, 
and it gives rise to its left derived functors. For the explicit mirror image of 
the terminology, see the end of this section. In any case, we may consider A as 
variable. In §8 we shall go more deeply into this aspect of the formalism, by 
dealing with bifunctors. It will turn out that Extn (A, B) has a dual interpretation 
as a left derived functor of the first variable and right derived functor of the 
second variable. See Corollary 8.5. 

In the exercises, you will prove that Ext1 (A, M) is in bijection with iso¬ 
morphism classes of extensions, of Af by A, that is, isomorphism classes of exact 
sequences 

0—»A—»Af—>0. 

The name Ext comes from this interpretation in dimension 1. 
For the computation of Ext* in certain important cases, see Chapter XXI, 

Theorems 4.6 and 4.11, which serve as examples for the general theory. 

Example 2. Let R be commutative. The functor M i—» A ® Af is right exact, 
in other words, the sequence 

A®A/'—»A®A/—»A®Af"—>0 

is exact. Its left derived functors are denoted by Torn(A, Af) for Af variable. 
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Example 3. Let G be a group and let R = Z[G] be the group ring. Let Gfc 
be the category of G-modules, i.e. G = Mod(/?), also denoted by Mod(G). For 
a G-module A, let AG be the submodule (abelian group) consisting of those 
elements v such that xv = v for all * e G. Then A i-» AG is a left exact functor 
from Mod(R) into the category of abelian groups. Its left derived functors give 
rise to the cohomology of groups. Some results from this special cohomology 
will be carried out in the exercises, as further examples of the general theory. 

Example 4. Let X be a topological space (we assume the reader knows 
what this is). By a sheaf 5 of abelian groups on X, we mean the data: 

(a) For every open set U of X there is given an abelian group JF(G). 

(b) For every inclusion V C U of open sets there is given a homomorphism 

rtsy : £F(£/) —> JF(V), 

called the restriction from U to V, subject to the following conditions: 

SH 1. JF(empty set) = 0. 

SH 2. res£; is the identity 5(U) —> 5(U). 

SH 3. If W C V C U are open sets, then res{^ ° res^ = res(£. 

SH 4. Let U be an open set and {V"} be an open covering of U. Let 
s e 5(U). If the restriction of s to each V- is 0, then s = 0. 

SH 5. Let U be an open set and let {VJ} be an open covering of U. Suppose 
given st e <F(VJ) for each /, such that given i, j the restrictions of s( 

and Sj to Vt f! Vj are equal. Then there exists a unique s e5(U) whose 
restriction to Vt is st for all i. 

Elements of 5(U) are called sections of over U. Elements of (X) are called 
global sections. Just as for abelian groups, it is possible to define the notion of 
homomorphisms of sheaves, kernels, cokernels, and exact sequences. The asso¬ 
ciation (X) (global sections functor) is a functor from the category of 
sheaves of abelian groups to abelian groups, and this functor is left exact. Its 
right derived functors are the basis of cohomology theory in topology and algebraic 
geometry (among other fields of mathematics). The reader will find a self- 
contained brief definition of the basic properties in [Ha 77], Chapter II, §1, as 
well as a proof that these form an abelian category. For a more extensive treatment 
I recommend Gunning’s [Gu 91], mentioned in the introduction to Part IV, 
notably Volume III, dealing with the cohomology of sheaves. 

We now return to the general theory of derived functors. The general theory 
tells us that these derived functors do not depend on the resolution by projectives 
or injectives according to the variance. As we shall also see in §8, one can even 
use other special types of objects such as acyclic or exact (to be defined), which 
gives even more flexibility in the ways one has to compute homology. Through 
certain explicit resolutions, we obtain means of computing the derived functors 
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explicitly. For example, in Exercise 16, you will see that the cohomology of 
finite cyclic groups can be computed immediately by exhibiting a specific free 
resolution of Z adapted to such groups. Chapter XXI will contain several other 
examples which show how to construct explicit finite free resolutions, which 
allow the determination of derived functors in various contexts. 

The next theorem summarizes the basic properties of derived functors. 

Theorem 6.1. Let Q. be an abelian category with enough invectives, and let 

F: d ->(B be a covariant additive left exact functor to another abelian cate¬ 

gory \(B. Then: 

(i) For each n ^ 0, RnF as defined above is an additive functor from Q 

to (B. Furthermore, it is independent, up to a unique isomorphism of 

functors, of the choices of resolutions made. 

(ii) There is a natural isomorphism F « R°F. 

(iii) For each short exact sequence 

0 -► M' -► M -► Af" -► 0 

and for each n ^ 0 there is a natural homomorphism 

Sn: RnF(M") Rn+ lF(M) 

such that we obtain a long exact sequence: 

- RnF(M') -> RnF(M) - RnF(M") ^ Rn+ lF{M') 

(iv) Given a morphism of short exact sequences 

0-> M'-*• M-*M"--0 

0-*N'-*N->N”-»0 

the S's give a commutative diagram: 

RnF(M") —► Rn+ ‘F(M') 

R"F(N") ———► Rn+ lF(N') 

(v) For each injective object I of A and for each n > Owe have RnF(I) = 0. 

Properties (i), (ii), (iii), and (iv) essentially say that RnF is a delta-functor in a 
sense which will be expanded in the next section. The last property (v) will be 
discussed after we deal with the delta-functor part of the theorem. 
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We now describe how to construct the <5-homomorphisms. Given a short 
exact sequence, we can find an injective resolution of Af', Af, Af" separately, but 
they don’t necessarily fit in an exact sequence of complexes. So we must achieve 
this to apply the considerations of §1. Consider the diagram: 

0 0 0 

0-► Af'-> Af-»Af "-> 0 

o-> r°-> x-> r°-> o. 
We give monomorphisms Af' -> 1° and Af" -► 7"° into injectives, and we want to 
find X injective with a monomorphism Af -► X such that the diagram is exact. 
We take X to be the direct sum 

x = r° © /"°. 
Since I'° is injective, the monomorphism Af' -► 7'° can be extended to a homo¬ 
morphism Af -► 7'°. We take the homomorphism of Af into 7'° © 7"° which 
comes from this extension on the first factor I'°, and is the composite map 

Af -> Afw -> 7"° 

on the second factor. Then Af -► X is a monomorphism. Furthermore 7'° -► X 

is the monomorphism on the first factor, and X -► 7"° is the projection on the 
second factor. So we have constructed the diagram we wanted, giving the 
beginning of the compatible resolutions. 

Now we take the quotient homomorphism, defining the third row, to get an 
exact diagram: 

0 0 0 

0-► M-► Af-► Af"-> 0 

0-► 7'°-> 7°-► 7"°-> 0 

0-> N'-> N-> N"-> 0 

0 0 0 
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where we let 7° = X9 and AT, TV, N" are the cokernels of the vertical maps by 
definition. The exactness of the ^-sequence is left as an exercise to the reader. 
We then repeat the construction with the A-sequence, and by induction construct 
injective resolutions 

0 0 0 

0-> M'-> M-» M"-> 0 

0 > lM> ► IM ► I'm" * 0 

of the Af-sequence such that the diagram of the resolutions is exact. 
We now apply the functor F to this diagram. We obtain a short sequence of 

complexes: 

0 - F(I') - F(I) - F(7") - 0, 

which is exact because I = /' © /" is a direct sum and F is left exact, so F com¬ 
mutes with direct sums. We are now in a position to apply the construction of 
§1 to get the coboundary operator in the homology sequence: 

RnF(M') -v RnF(M) -► RnF(M") ^ Rn+ lF(M'). 

This is legitimate because the right derived functor is independent of the chosen 
resolutions. 

So far, we have proved (i), (ii), and (iii). To prove (iv), that is the naturality of 
the delta homomorphisms, it is necessary to go through a three-dimensional 
commutative diagram. At this point, I feel it is best to leave this to the reader, 
since it is just more of the same routine. 

Finally, the last property (v) is obvious, for if I is injective, then we can 
use the resolution 

0-/-/-0 

to compute the derived functors, from which it is clear that RnF = 0 forn > 0. 
This concludes the proof of Theorem 6.1. 

In applications, it is useful to determine the derived functors by means of 
other resolutions besides injective ones (which are useful for theoretical 
purposes, but not for computational ones). Let again F be a left exact additive 
functor. An object X is called F-acyclic if RnF(X) = 0 for all n > 0. 
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Theorem 6.2. Let 

0 -► M -► X° -► X1 -► X2 -► • • • 

be a resolution of M by F-acyclics. Let 

O-M-/0-/1 -/2- • 

be an injective resolution. T hen there exists a morphism of complexes XM -> IM 

extending the identity on Af, and this morphism induces an isomorphism 

HnF(X) x HnF(I) = RnF(M) for all n ^ 0. 

Proof The existence of the morphism of complexes extending the identity 
on M is merely Lemma 5.2. The usual proof of the theorem via spectral se¬ 
quences can be formulated independently in the following manner, shown to 
me by David Benson. We need a lemma. 

Lemma 6.3. Let Yl (i ^ 0) be F-acyclic, and suppose the sequence 

0 - y°- y1 - y2-... 

is exact. Then 

0 - F(Y°) - FiY1) - F(Y2) • • • 

is exact. 

Proof. Since F is left exact, we have an exact sequence 

o ->F(y°)->F(y1)->F(y2). 

We want to show exactness at the next joint. We draw the cokernels: 

0->Y°-►T1->Y2-► Y3 

So Zj = Coker(Y° -► Y1); Z2 = Coker( Y1 -► Y2); etc. Applying F we have 
an exact sequence 

0 - F(Y°) - F( Y1) - F(Zl) - RlF(Y°) = 0. 
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So F(Zj) = Coker(F(Y°) -> F(T *)). We now consider the exact sequence 

0^Zl^Y2^Y3 

giving the exact sequence 

0 ^ F(Zl) ^ F(Y2) ^ F(Y3) 

by the left-exactness of F, and proving what we wanted. But we can now 
continue by induction because Z{ is F-acyclic, by the exact sequence 

0 - RnF(Yl) - RnF(Zl) - Rn+ lF(Y°) = 0. 

This concludes the proof of Lemma 6.3. 

We return to the proof of Theorem 6.2. The injective resolution 

0 - M - /M 

can be chosen such that the homomorphisms Xn -> /„ are monomorphisms for 
n ^ 0, because the derived functor is independent of the choice of injective 
resolution. Thus we may assume without loss of generality that we have an 
exact diagram: 

0 0 0 

0->M->X°-->X2 

+ + + + 
0->M-♦ 1° -» I1 -» I2 

o-► y°-* Yl-► Y2 

0 0 0 

defining Y" as the appropriate cokernel of the vertical map. 
Since X" and I" are acyclic, so is Yn from the exact sequence 

RkF(In) - RkF(Yn) ->Rk+ lF(X"). 

Applying F we obtain a short exact sequence of complexes 

0 -» ^ F(I) -> F(Y) -> 0. 
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whence the corresponding homology sequence 

Hn~ 1F(Y) - HnF(X) - HnF(I) - HnF(Y). 

Both extremes are 0 by Lemma 6.3, so we get an isomorphism in the middle, 
which by definition is the isomorphism 

HnF(X) * RnF(M\ 

thus proving the theorem. 

Left derived functors 

We conclude this section by a summary of the properties of left derived 
functors. 

We consider complexes going the other way, 

-► X2 - X, - X0 - M - 0 

which we abbreviate by 

X m —► Af —► 0. 

We call such a complex a resolution of M if the sequence is exact. We call it a 
projective resolution if Xn is projective for all n ^ 0. 

Given projective resolutions XM, YM> and a homomorphism 

(p: M -+ M' 

there always exists a homomorphism XM -► YM> extending <p, and any two 

such are homotopic. 

In fact, one need only assume that XM is a projective resolution, and that 
Yiif' is a resolution, not necessarily projective, for the proof to go through. 

Let T be a covariant additive functor. Fix a projective resolution of an ob¬ 
ject M, 

PM - M - 0. 

We define the left derived functor Ln T by 

LnT(M) = Hn(T(P)), 

where T(P) is the complex 

- T(Pn) T(P2) - TCP,) T(P0) 0. 

The existence of homotopies shows that Ln T(M) is uniquely determined up 
to a unique isomorphism if one changes the projective resolution. 

We define T to be right exact if an exact sequence 

AF -► M - AT -► 0 
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yields an exact sequence 

T(M') - T(M) - T(M") -> 0. 

IfT is right exact, then we have immediately from the definitions 

L0 T(M) « M. 

Theorems 6.1 and 6.2 then go over to this case with similar proofs. One 
has to replace “injectives” by “projectives” throughout, and in Theorem 6.1, 
the last condition states that for n > 0, 

Ln T(P) = 0 if P is projective. 

Otherwise, it is just a question of reversing certain arrows in the proofs. For 
an example of such left derived functors, see Exercises 2-7 concerning the 
cohomology of groups. 

§7. DELTA-FUNCTORS 

In this section, we axiomatize the properties stated in Theorem 6.1 following 
Grothendieck. 

Let (2, (B be abelian categories. A (covariant) ^-functor from (2 to (B is a 
family of additive functors F = {Fn}n^0, and to each short exact sequence 

0 -> AT' -► M -► M" -► 0 

an associated family of morphisms 

5n: F\M") Fn+ l(M') 

with n ^ 0, satisfying the following conditions: 

DELI. For each short exact sequence as above, there is a long exact 
sequence 

0 - F°(Af') - F°(M) - F°(M") - F\M’) - • • • 

- F"(M') - F\M) - F"(M") - F"+ l(M') - 

DEL 2. For each morphism of one short exact sequence as above into 
another 0 -► N' -> N -> N” -► 0, the ^’s give a commutative 
diagram: 

F"(M")—d—*Fn+1(M’) 

F"(N") —^—*Fn+l(N'). 
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Before going any further, it is useful to give another definition. Many proofs 
in homology theory are given by induction from one index to the next. It turns 
out that the only relevant data for going up by one index is given in two succes¬ 
sive dimensions, and that the other indices are irrelevant. Therefore we general¬ 
ize the notion of 5-functor as follows. 

A 5-functor defined in degrees 0, 1 is a pair of functors (F0, Fl) and to 
each short exact sequence 

0A' -* A -+ A" -+0 

an associated morphism 

5: F°(A") -► F\A") 

satisfying the two conditions as before, but putting n = 0, n + 1 = 1, and for¬ 
getting about all other integers n. We could also use any two consecutive posi¬ 
tive integers to index the 5-functor, or any sequence of consecutive integers 
^ 0. In practice, only the case of all integers ^ 0 occurs, but for proofs, it is 
useful to have the flexibility provided by using only two indices, say 0, 1. 

The 5-functor F is said to be universal, if given any other 5-functor G of d 

into (B, and given any morphism of functors 

fo: F° G°, 

there exists a unique sequence of morphisms 

fn * F*1 ► Gn 

for all n ^ 0, which commute with the 5" for each short exact sequence. 
By the definition of universality, a 5-functor G such that G° = F° is uniquely 

determined up to a unique isomorphism of functors. We shall give a condition 
for a functor to be universal. 

An additive functor F of d into (B is called erasable if to each object A there 
exists a monomorphism u : A -> M for some M such that F(u) = 0. In practice, 
it even happens that F(M) = 0, but we don’t need it in the axiomatization. 

Linguistic note. Grothendieck originally called the notion “effaceable” in 
French. The dictionary translation is “erasable,” as I have used above. Ap¬ 
parently people who did not know French have used the French word in English, 
but there is no need for this, since the English word is equally meaningful and 
convenient. 

We say the functor is erasable by injectives if in addition M can be taken to 
be injective. 
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Example. Of course, a right derived functor is erasable by injectives, and 
a left derived functor by projectives. However, there are many cases when one 
wants erasability by other types of objects. In Exercises 9 and 14, dealing with 
the cohomology of groups, you will see how one erases the cohomology functor 
with induced modules, or regular modules when G is finite. In the category of 
coherent sheaves in algebraic geometry, one erases the cohomology with locally 
free sheaves of finite rank. 

Theorem 7.1. Let F = {Fn} be a covariant 3-functor from Ct into (B. IfFn is 

erasable for each n > 0, then F is universal. 

Proof Given an object A, we erase it with a monomorphism u, and get a 
short exact sequence: 

O^A^M^X^O. 

Let G be another ^-functor with given f0: F° -► G°. We have an exact com¬ 
mutative diagram 

F°(M)-*F°(X) —> F\A)-»0 

/ 0 

G°(M) 

f 0 /l’ 

G°! X) 
<5g 

G\A) 

We get the 0 on the top right because of the erasability assumption that 

F\cp) = 0. 

We want to construct 

ffA)-F\A)^G\A) 

which makes the diagram commutative, is functorial in A, and also commutes 
with the 3. Commutativity in the left square shows that Ker SF is contained in 
the kernel of 8G°f0. Hence there exists a unique homomorphism 

ffA)'F\A)->G\A) 

which makes the right square commutative. We are going to show that/^/l) 
satisfies the desired conditions. The rest of the proof then proceeds by induction 
following the same pattern. 

We first prove the functoriality in A. 

Let u : A -► B be a morphism. We form the push-out P in the diagram 

A —-—> M 

B P 
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Since q> is a monomorphism, it follows that B P is a monomorphism also. 
Then we let P -> N be a monomorphism which erases Fv This yields a com¬ 
mutative diagram 

0->A-► M-->0 

U V w 

0->B-*N-* Y->0 

where B -* N is the composite B -* P -* N, and Y is defined to be the cokernel 
of B->N. 

Functoriality in A means that the following diagram is commutative. 

fXiA)\ 
G\A) 

FHu) 
>Gl 

B) 

fi(B) 

B) 

This square is the right-hand side of the following cube: 

All the faces of the cube are commutative except possibly the right-hand face. 
It is then a general fact that if the top maps here denoted by SF are epimorphisms, 
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then the right-hand side is commutative also. This can be seen as follows. We 
start with fl(B)Fl(u)SF. We then use commutativity on the top of the cube, 
then the front face, then the left face, then the bottom, and finally the back face. 
This yields 

fi(B)Fl(u)SF = Gi(u)fl(A)SF. 

Since SF is an epimorphism, we can cancel 5F to get what we want. 

Second, we have to show that commutes with <5. Let 

0->A'-+A-+A"^>0 

be a short exact sequence. The same push-out argument as before shows that 
there exists an erasing monomorphism 0 -► A' -► M and morphisms v, w 
making the following diagram commutative: 

Here X is defined as the appropriate cokernel of the bottom row. We now 
consider the following diagram: 

F°(A”) 

Our purpose is to prove that the right-hand face is commutative. The triangles 
on top and bottom are commutative by the definition of a ^-functor. The 
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left-hand square is commutative by the hypothesis that f0 is a morphism 
of functors. The front square is commutative by the definition of fx(A'). 
Therefore we find: 

/i (A')dF =UA')SfF°( w) 

= SPf0F°(w) 

= <5f G°(w)/0 

= ^f/o 

(top triangle) 

(front square) 

(left square) 

(bottom triangle). 

This concludes the proof of Theorem 7.1, since instead of the pair of indices 
(0, 1) we could have used (n, n + 1). 

Remark. The morphism fx constructed in Theorem 7.1 depends functori- 
ally on f0 in the following sense. Suppose we have three delta functors F, G, H 
defined in degrees 0, 1. Suppose given morphisms 

/0:F°-G° and g0:G°-^H0. 

Suppose that the erasing monomorphisms erase both F and G. Then we can 
construct/j and gx by applying the theorem. On the other hand, the composite 

g0fo = h0:F°-+H0 

is also a morphism of functors, and the theorem yields the existence of a morph¬ 
ism 

hl:F1 -Z/1 

such that (h0,hx) is a ^-morphism. By uniqueness, we therefore have 

hi = gJv 

This is what we mean by the functorial dependence as mentioned above. 

Corollary 7.2. Assume that d has enough injectives. Then for any left exact 
Junctor F : & -+ £B, the derived functors RnF with n ^ 0 form a universal 
5-functor with F « F°F, which is erasable by injectives. Conversely, if 
G = {G"}„^o is a universal 5-functor, then G° is left exact, and the G" are 
isomorphic to RnG° for each n ^ 0. 

Proof. If F is a left exact functor, then the {RnF}n^0 form a ^-functor 
by Theorem 6.1. Furthermore, for any object A, let u: A -► I be a monomor¬ 
phism of A into an injective. Then RnF(I) = 0 for n > 0 by Theorem 
6.1(iv), so RnF(u) = 0. Hence RnF is erasable for all n > 0, and we can apply 
Theorem 7.1. 

Remark. As usual, Theorem 7.1 applies to functors with different variance. 
Suppose {F"} is a family of contra variant additive functors, with n ranging over 
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a sequence of consecutive integers, say for simplicity n ^ 0. We say that F is a 
contravariant 5-functor if given an exact sequence 

0 -4 Af' -► Af -► Af" -► 0 

then there is an associated family of morphisms 

5": Fn(M') -► Fn+l(M') 

satisfying DEL 1 and DEL 2 with Af' interchanged with Af" and AT inter¬ 
changed with AT. We say that F is coerasable if to each object A there exists an 
epimorphism u: Af -► A such that F(u) = 0. We say that F is universal if 
given any other 5-functor G of (2 into (B and given a morphism of functors 

fo'-F°-G0 

there exists a unique sequence of morphisms 

for all n ^ 0 which commute with 5 for each short exact sequence. 

Theorem 7.1'. Let F = {Fn} (n ranging over a consecutive sequence of 

integers ^ 0) be a contravariant 5functor from <2 into (B, and assume that 

Fn is coerasable for n ^ 1. Then F is universal. 

Examples of 5-functors with the variances as in Theorems 7.1 and IX will 
be given in the next section in connection with bifunctors. 

Dimension shifting 

Let F = {Fn} be a contravariant delta functor with n ^ 0. Let 8 be a 
family of objects which erases Fn for all n ^ 1, that is Fn(E) = 0 for n ^ 1 and 
E 6 8. Then such a family allows us to do what is called dimension shifting as 
follows. Given an exact sequence 

0-e-£-Af-0 

with E 6 8, we get for n ^ 1 an exact sequence 

0 = F\E) - F\Q) - Fn+ \M) - Fn+ \E) = 0, 

and therefore an isomorphism 

F"(0^F"+1(Af), 

which exhibits a shift of dimensions by one. More generally: 

Proposition 7.3. Let 

0 —► Q —► En _ i —► • • —► Eq —► Af —► 0 
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be an exact sequence, such that F, e 8. Then we have an isomorphism 

FP(Q) % Fp+n(M) for p^l. 

Proof Let (2 = (?„• Also without loss of generality, take p — 1. We may 
insert kernels and cokernels at each step as follows: 

Qn Qn- 1 Qn-2 Q1 

Then shifting dimension with respect to each short exact sequence, we find 
isomorphisms 

F\Qn)KF\Qn_l)*-.*Fn+\M). 

This concludes the proof. 

One says that M has F- dimension ^ d if F"(M) = 0 for n ^ d + 1. By 
dimension shifting, we see that if M has F-dimension ^ d, then Q has F- 
dimension ^ d - n in Proposition 7.3. In particular, if M has F-dimension n, 
then Q has F-dimension 0. 

The reader should rewrite all this formalism by changing notation, using for 
F the standard functors arising from Horn in the first variable, on the category 
of modules over a ring, which has enough projectives to erase the left derived 
functors of 

A !—► Hom(/l, B\ 

for B fixed. We shall study this situation, suitably axiomatized, in the next sec¬ 
tion. 

§8. BIFUNCTORS 

In an abelian category one often deals with Horn, which can be viewed as a 
functor in two variables; and also the tensor product, which is a functor in two 
variables, but their variance is different. In any case, these examples lead to the 
notion of bifunctor. This is an association 

(A, B) T(A9 B) 
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where A, B are objects of abelian categories (2 and ® respectively, with values 
in some abelian category. This means that T is functorial in each variable, with 
the appropriate variance (there are four possibilities, with covariance and con¬ 
tra variance in all possible combinations); and if, say, T is covariant in all 
variables, we also require that for homomorphisms A' -> A and B' -> B there 
is a commutative diagram 

T(A\ B )-► T(A\ B) 

T(A, B')-► T(A9 B). 

If the variances are shuffled, then the arrows in the diagram are to be reversed in 
the appropriate manner. Finally, we require that as a functor in each variable, 
T is additive. 

Note that Horn is a bifunctor, contravariant in the first variable and covari¬ 
ant in the second. The tensor product is covariant in each variable. 

The Horn functor is a bifunctor T satisfying the following properties: 

HOM1. T is contravariant and left exact in the first variable. 

HOM 2. T is covariant and left exact in the second variable. 

HOM 3. For any injective object J the functor 

A i—► T(/4, J) 

is exact. 

They are the only properties which will enter into consideration in this 
section. There is a possible fourth one which might come in other times: 

HOM 4. For any projective object Q the functor 

B*-+T(Q, B) 

is exact. 

But we shall deal non-symmetrically, and view T as a functor of the second 

variable, keeping the first one fixed, in order to get derived functors of the second 

variable. On the other hand, we shall also obtain a 5-functor of the first variable 
by using the bifunctor, even though this 5-functor is not a derived functor. 

If ® has enough injectives, then we may form the right derived functors with 
respect to the second variable 

B i—► RnT(A, B\ also denoted by RnTA(B\ 
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fixing A, and viewing B as variable. If 7 = Horn, then this right derived functor 
is called Ext, so we have by definition 

Extn(A, X) = Rn Hom(/l, X). 

We shall now give a criterion to compute the right derived functors in terms 
of the other (first) variable. We say that an object A is 7-exact if the functor 
B i—► T(A, B) is exact. By a 7-exact resolution of an object A, we mean a resolu¬ 
tion 

—► M j —► M0 -► A -» 0 

where Mn is T-exact for all n ^ 0. 

Examples. Let <2 and (B be the categories of modules over a commutative 
ring. Let T = Horn. Then a T-exact object is by definition a projective module. 
Now let the transpose of T be given by 

'T(A9 B) = 7XB, A). 

Then a 'T-exact object is by definition an injective module. 
If T is the tensor product, such that T(A, B) = A ® B, then a T-exact object 

is called flat. 

Remark. In the category of modules over a ring, there are enough pro- 
jectives and injectives. But there are other situations when this is not the case. 
Readers who want to see all this abstract nonsense in action may consult 
[GriH 78], [Ha 77], not to speak of [SGA 6] and Grothendieck’s collected works. 
It may genuinely happen in practice that (B has enough injectives but (2 does not 
have enough projectives, so the situation is not all symmetric. Thus the functor 
A i-> RnT(A, B) for fixed B is not a derived functor in the variable A. In the 
above references, we may take for (2 the category of coherent sheaves on a 
variety, and for (B the category of all sheaves. We let T = Horn. The locally 
free sheaves of finite rank are 7-exact, and there are enough of them in (2. There 
are enough injectives in (B. And so it goes. The balancing act between 7-exacts 
on one side, and injectives on the other is inherent to the situation. 

Lemma 8.1. Let T be a bifunctor satisfying HOM 1, HOM 2. Let A e (2, 
and let MA -> A -> 0, that is 

► M j —► A/q —► A —► 0 

be a T-exact resolution of A. Let Fn(B) = Hn(T(M, B)) for Be (B. Then F 

is a 6-functor and F°(B) = T(A, B). If in addition T satisfies HOM 3, 
then Fn(J) = 0 for J injective and n ^ 1. 
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Proof. Given an exact sequence 

0 0 

we get an exact sequence of complexes 

0 - T(M, B') - T(M, B) - T(Af, £") - 0, 

whence a cohomology sequence which makes F into a 5-functor. For n = 0 
we get F°(£) = T(,4, £) because X t—► T(Ar, £) is contravariant and left exact 
for X g d. If £ is injective, then Fn(B) = 0 for n ^ 1 by HOM 3, because 
X i—► T(X, £) is exact. This proves the lemma. 

Proposition 8.2. Let T be a bifunctor satisfying HOM 1, HOM 2, HOM 3. 
Assume that (B has enough injectives. Let A e Ct. Let 

Ma -► A -► 0 

be a T-exact resolution of A. Then the two 5-functors 

B i—► RnT(A, B) and B\-+ Hn(T(M, £)) 

are isomorphic as universal 5-functors vanishing on injectives, for n ^ 1, and 

such that 

R°T(A, £) = £) = 7(4, £). 

Proo/. This comes merely from the universality of a 5-functor erasable 
by injectives. 

We now look at the functoriality in A. 

Lemma 8.3. Let T satisfy HOM 1, HOM 2, and HOM 3. Assume that 

(B has enough injectives. Let 

0 -► A -> A - A" -► 0 

be a short exact sequence. Then for fixed £, we have a long exact sequence 

0 - T(A\ B) - T(A, B) - T(A\ £) - 

- RlT(A\ B) - RlT(A, £) - £) - 

such that the association 

A^RnT(A,B) 

is a 5-functor. 
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Proof. Let 0 —► B —► IB be an injective resolution of B. From the exactness 
of the functor A t—► T(A, J\ for J injective we get a short exact sequence of 
complexes 

0 - T(A\ IB) - T(A, IB) T(A\ 1B) - 0. 

Taking the associated long exact sequence of homology groups of these com¬ 
plexes yields the sequence of the proposition. (The functorality is left to 
the readers.) 

If T = Horn, then the exact sequence looks like 

0 -> Hom04", B) -► Hom(/l, B) -> Hom(,4', B) -> 

- Ext1 (/l", B) - Ext1 (/l, B) - Ext'04', B) - 

and so forth. 
We shall say that G has enough T-exacts if given an object A in Q. there is a 

T-exact M and an epimorphism 

M - A - 0. 

Proposition 8.4. Let T satisfy HOM 1, HOM 2, HOM 3. Assume that (B 
has enough injectives. Fix BeCB. Then the association 

A v->RnT(A, B) 

is a contravariant S-functor on (2 which vanishes on T-exacts, for n ^ 1. If 
Ofc has enough T-exacts, then this functor is universal, coerasable by T-exacts, 
with value 

K°T(/1, £) = T(A, £). 

Pr<?o/ By Lemma 8.3 we know that the association is a 5-functor, and it 
vanishes on T-exacts by Lemma 8.1. The last statement is then merely an 
application of the universality of erasable 5-functors. 

Corollary 8.5. Let Ofc = (B be the category of modules over a ring. For fixed 
£, let extn(A, B) be the left derived functor of A Hom(^, B), obtained by 
means of projective resolutions of A. Then 

ext"(/4, B) = Ext"(/1, B). 

Proof. Immediate from Proposition 8.4. 

The following proposition characterizes T-exacts cohomologically. 
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Proposition 8.6. Let T be a bifunctor satisfying HOM 1, HOM 2, HOM 3. 
Assume that © has enough injectives. Then the following conditions are 

equivalent: 

TE1. A is T-exact. 

TE 2. For every B and every integer n ^ 1, we have RnT(A, B) = 0. 

TE 3. For every B we have R1 T(A, B) = 0. 

Proof Let 

0 -B-/0-/1 - 

be an injective resolution of B. By definition, RnT(A, B) is the n-th homology of 
the sequence 

0 - T(A, 7°) - T(A, 71) - T(A912) - 

If A is T-exact, then this sequence is exact for n ^ 1, so the homology is 0 and 
TE 1 implies TE 2. Trivially, TE 2 implies TE 3. Finally assume TE 3. Given 
an exact sequence 

0 0, 

we have the homology sequence 

0 - TC4, B ) - T(A, B) - T(A9 B") - R1 T(A, B ) -. 

If R1T(A, B') = 0, then by definition >1 is T-exact, thus proving the proposition. 
We shall say that an object T has T-dimension ^ d if 

RnT(A, B) = 0 for n > d and all B. 

Then the proposition states in particular that A is T-exact if and only if A has 

T-dimension 0. 

Proposition 8.7. Let T satisfy HOM 1, HOM 2, HOM 3. Assume that © 
has enough injectives. Suppose that an object A admits a resolution 

0 —► Erf —► Erf _ i Eq —► ^4 —► 0 

where £0, ..., Ed are T-exact. Then A has T-dimension ^ d. Assume this 

is the case. Let 

0 —► Q —► Lfl _ j —►•••—► Lq —► A —► 0 

be a resolution where L0,..., Ld_ t are T-exact. Then Q is T-exact also. 

Proof. By dimension shifting we conclude that Q has T-dimension 0, 
whence Q is T-exact by Proposition 8.6. 
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Proposition 8.7, like others, is used in the context of modules over a ring. 
In that case, we can take 7 = Horn, and 

RnT(A, B) = Extn(y4, B). 

For A to have 7-dimension ^ d means that 

Ext "(A, B) = 0 for n > d and all B. 

Instead of 7-exact, one can then read projective in the proposition. 
Let us formulate the analogous result for a bifunctor that will apply to the 

tensor product. Consider the following properties. 

TEN 1. 7 is covariant and right exact in the first variable. 

TEN 2. 7 is covariant and right exact in the second variable. 

TEN 3. For any projective object P the functor 

A T(A, P) 

is exact. 

As for Horn, there is a possible fourth property which will play no role in this 
section: 

TEN 4. For any projective object Q the functor 

B^T(Q, B) 

is exact. 

Proposition 8.2'. Let 7 be a bifunctor satisfying TEN 1, TEN 2, TEN 3. 
Assume that (B has enough projectives. Let Aed. Let 

M A -► A —► 0 

be a T-exact resolution of A. Then the two d-functors 

B\-^Ln T(A, B) and B^Hn(T(M,B)) 

are isomorphic as universal d-functors vanishing on projectives, and such that 

L0T(A, B) = H0(7(M), B) = T(A, B). 

Lemma 8.3'. Assume that 7 satisfies TEN 1, TEN 2, TEN 3. Assume that 

(B has enough projectives. Let 

0 - A - A - A" - 0 



XX, §8 BIFUNCTORS 813 

be a short exact sequence. Then for fixed B, we have a long exact sequence: 

- Lx T(A\ B) -> Lj T(A, B) - T(A\ B) - 

- TU', B) - T(/4, B) - 7X4", B) - 0 

which makes the association A\—>Ln T(A, B) a S-functor. 

Proposition 8.4'. Let T satisfy TEN 1, TEN 2, TEN 3. /Isswme t/iat (B has 

enough projectives. Fix Be(R. Then the association 

A^Ln T(/4, B) 

is a contravariant S-functor on d which vanishes on T-exacts for n ^ 1. If d 

has enough T-exacts, then this functor is universal, coerasable by T-exacts, 

with the value 

L0 T(A, B) = T(A, B). 

Corollary 8.8. If there is a bifunctorial isomorphism T(A, B) % T(B, /l), 
flm/ if B is T-exact, t/ie/t for all A, LnT(A, B) = 0 for n ^ 1. In short, 
T-exact implies acyclic. 

Proof Let = PA be a projective resolution in Proposition 8.2'. By 
hypotheses, X\-+T(X,B) is exact so Hn(T(P, B)) = 0 for 1; so the 
corollary is a consequence of the proposition. 

The above corollary is formulated so as to apply to the tensor product. 

Proposition 8.6'. Let T be a bifunctor satisfying TEN 1, TEN 2, TEN 3. 
Assume that (B has enough projectives. Then the following conditions are 

equivalent: 

TE1. A is T-exact. 

TE 2. For every B and every integer n ^ 1 we have Ln T(A, B) = 0. 

TE3. For every B, we have LiT(A, B) = 0. 

Proof We repeat the proof of 8.6 so the reader can see the arrows pointing 
in different ways. 

Let 

-► Qi —► Qo —5► B —s► 0 

be a projective resolution of B. By definition, Ln T(A, B) is the n-th homology 
of the sequence 

7X4, Qx) - 7X4, Q0) - 0. 
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If A is 7-ex act, then this sequence is exact for n ^ 1, so the homology is 0, and 
TE 1 implies TE 2. Trivially, TE 2 implies TE 3. Finally, assume TE 3. Given 
an exact sequence 

0 -► B' - B -> B" - 0 

we have the homology sequence 

-> Lj T(A, B") -+ T(A, B ) T(i4, B) - T(/4, £") -> 0. 

If LXT(A, £") is 0, then by definition, >4 is T-exact, thus proving the proposition. 

§9. SPECTRAL SEQUENCES 

This section is included for convenience of reference, and has two purposes: 
first, to draw attention to an algebraic gadget which has wide applications in 
topology, differential geometry, and algebraic geometry, see Griffiths-Harris, 
[GrH 78]; second, to show that the basic description of this gadget in the context 
in which it occurs most frequently can be done in just a few pages. 

In the applications mentioned above, one deals with a filtered complex 
(which we shall define later), and a complex may be viewed as a graded object, 
with a differential d of degree 1. To simplify the notation at first, we shall deal 
with filtered objects and omit the grading index from the notation. This index 
is irrelevant for the construction of the spectral sequence, for which we follow 
Godement. 

So let F be an object with a differential (i.e. endomorphism) d such that 
d2 — 0. We assume that F is filtered, that is that we have a sequence 

F = F° 3 F1 3 F2 => • • • id Fn zd Fn+1 = {0}, 

and that dFp a Fp. This data is called a filtered differential object. (We assume 
that the filtration ends with 0 after a finite number of steps for convenience.) 

One defines the associated graded object 

Gr F = 0 Gr* F where Gr*> F = Fp/Fp+ K 
o 

In fact, Gr F is a complex, with a differential of degree 0 induced by d itself, and 
we have the homology H(Gvp F). 

The filtration {Fp} also induces a filtration on the homology H(F, d) = H(F); 
namely we let 

H(F)P = image of H(FP) in H(F). 
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Since d maps Fp into itself, H(FP) is the homology of Fp with respect to the 
restriction of d to Fp, and it has a natural image in H(F) which yields this filtra¬ 
tion. In particular, we then obtain a graded object associated with the filtered 
homology, namely 

Gr H(F) = @ Gvp H(F). 

A spectral sequence is a sequence {Er9 dr} (r ^ 0) of graded objects 

Er = © E’ 
p^O 

together with homomorphisms (also cal led differentials) of degree r, 

dr:Ep^Ep+r 

satisfying d2r = 0, and such that the homology of Er is Er+l9 that is 

H(Er) = Er+l. 

In practice, one usually has Er = Er+1 = • • • for r ^ r0. This limit object is 
called E^, and one says that the spectral sequence abuts to E00. Actually, to be 
perfectly strict, instead of equalities one should really be given isomorphisms, 
but for simplicity, we use equalities. 

Proposition 9.1. Let F be a filtered differential object. Then there exists a 

spectral sequence {Er} with: 

Ep = Fp/Fp+ 1; Epx= H(Grp F); E^ = Grp H(F). 

Proof. Define 

Zp = {xe Fp such that dx e Fp+r} 

Ep = Zp/ldZp:[r~l) + Zpl\\ 

The definition of Ep makes sense, since Zp is immediately verified to contain 
dZpZ[r~l) + Zp±fi Furthermore, d maps Zp into Zp+r9 and hence includes a 
homomorphism 

dr:Ep^Ep+r. 

We shall now compute the homology and show that it is what we want. 
First, for the cycles: An element xe Zp represents a cycle of degree p in Er 

if and only if dx e dZpr+\ + Zpf[+X, in other words 

with y e ZP1 \ and z e Z*1 [+1. dx = dy + z, 
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Write x = y + u, so du = z. Then usFp and du e Fp+r+ \ that is u e Zp+ P It 
follows that 

p-cycles of Er = (Zp+1 + Zp+})/(dZpI[+ 1 + Zrp_+/). 

On the other hand, the p-boundaries in Er are represented by elements of 
dZp~\ which contains dZpI[+ l. Hence 

p-boundaries of Er = (dZp~r + Zp+})/(dZp:[+1 + Zp_+/). 

Therefore 

Hp(Er) = (z?+1 + zp:i)i{dzrr + zci) 

= Zpr+J{Zpr+x n (dZ'"' + Z£i')). 

Since 

Zrp+! z> dZp~r and Zrp+ x n Zpt\ = Zp+1, 

it follows that 

Hp(Er) = zpr+l/(dzrr + zr1) = £?+i, 

thus proving the property of a spectral sequence. 

Remarks. It is sometimes useful in applications to note the relation 

dZ?r}r"1J + Zpt\ = Zp n (dFp~r+ 1 + Fp+1). 

The verification is immediate, but Griffiths-Harris use the expression on the 
right in defining the spectral sequence, whereas Godement uses the expression 
on the left as we have done above. Thus the spectral sequence may also be 
defined by 

Ep = Zp mod(dFp-r +1 + Fp+ 

This is to be interpreted in the sense that Z mod S means 

(Z + S)/S or Z/(Z n S). 

The term £g is Fp/Fp+l immediately from the definitions, and by the 
general property already proved, we get E{ = H(FP/FP+1). As to Ep09 for 
r large we have Zp = Zp = cycles in Fp, and 

£p = Zp/(Zp+1 + (dF° n Fp)) 



XX, §9 SPECTRAL SEQUENCES 817 

which is independent of r, and is precisely Grp H(F), namely the p-graded 
component of H(F\ thus proving the theorem. 

The differential dx can be specified as follows. 

Proposition 9.2. The homomorphism 

dx: Epx -► F?+1 

is the coboundary operator arising from the exact sequence 

0 _► fp+1 /fp+2 _► fp/pp+2 -► Fp/Fp+1 -> 0 

viewing each term as a complex with differential induced by d. 

Proof Indeed, the coboundary 

S :Epx = H(Fp/Fp+l)^ H(FP+1/FP+2) = Epx + 1 

is defined on a representative cycle z by dz, which is the same way that we de¬ 
fined dx. 

In most applications, the filtered differential object is itself graded, because 
it arises from the following situation. Let K be a complex, K = (Kp, d) with 
p ^ 0 and d of degree 1. By a filtration FK, also called a filtered complex, we 
mean a decreasing sequence of subcomplexes 

K = F°K 3 FlK => F2K =>•••=) FnK =5 Fn+ lK = {0}. 

Observe that a short exact sequence of complexes 

0 - K' - K - K" - 0 

gives rise to a filtration K => K' => {0}, viewing K' as a subcomplex. 
To each filtered complex FK we associated the complex 

Gr FK = Gr X = 0 Grp X, 
p^O 

where 

Gr'K = FpK/Fp+1K, 

and the differential is the obvious one. The filtration FPK on K also induces a 
filtration FPH(K) on the cohomology, by 

FpHq(K) = FpZq/FpBq. 
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The associated graded homology is 

Gr H(K) = 0 Grp H\K\ 

where 

Grp Hq(K) = FpHq(K)/Fp+ lHq(K). 

A spectral sequence is a sequence {Lr, dr} (r ^ 0) of bigraded objects 

Er = © Er 
p,q^0 

together with homomorphisms (called differentials) 

dr: Ep'q - Ep+r'q~r+1 satisfying d2r = 0, 

and such that the homology of Er is Er+15 that is 

H(Er) = Er+l. 

A spectral sequence is usually represented by the following picture: 

-r + 1) 

In practice, one usually has Er = Er+l = • • • for r ^ r0. This limit object 
is called and one says that the spectral sequence abuts to E00. 

Proposition 9.3. Let FK be a filtered complex. Then there exists a spectral 
sequence {Er} with: 

J7P,q _ ppfcP + qjFP+ lj£P + q. 

Ep'q = Hp+q(Gvp K); 

Ep^q = Gvp (Hp+q(K)). 

The last relation is usually written 

Er=>H(K\ 

and we say that the spectral sequence abuts to H(K). 
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The statement of Proposition 9.3 is merely a special case of Proposition 9.1, 
taking into account the extra graduation. 

One of the main examples is the spectral sequence associated with a double 
complex 

K = © Kp'q 
p,q^O 

which is a bigraded object, together with differentials 

d’:Kp-q -» Kp+1’9 and d": Kp'q -► Kp’q+1 

satisfying 

d’1 = d"2 = 0 and d’d" + d"d’ = 0. 

We denote the double complex by (K, d\ d"). The associated single complex 
(Tot(K), D) (Tot for total complex), abbreviated K*, is defined by 

K" = 0 Kp’q and D = d‘ + d". 
p + q = n 

There are two filtrations on (K*, D) given by 

'FpKn= © Kp,'q 
p' + q = n 

P'^P 

"FqK" = 0 Kp q". 
p + q'=n 

There are two spectral sequences {'£,,} and {"Er}, both abutting to 

For applications, see [GrH 78], Chapter 3, §5; and also, for instance, [FuL 85], 
Chapter V. There are many situations when dealing with a double complex directly 
is a useful substitute for using spectral sequences, which are derived from double 
complexes anyhow. 

We shall now derive the existence of a spectral sequence in one of the most 
important cases, the Grothendieck spectral sequence associated with the com¬ 
posite of two functors. We assume that our abelian category has enough injectives. 

Let C = © Cp be a complex, and suppose Cp = 0 if p < 0 for simplicity. 
We define injective resolution of C to be a resolution 

0 -► C -► 7° -► 71 -► I2 -► • • • 

written briefly 

0 - C - Ic 

such that each Ij is a complex, Ij = © I1 p, with differentials 

p: jj< p jj> p +1 
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and such that Ij'p is an injective object. Then in particular, for each p we get 
an injective resolution of Cp, namely: 

0->Cp->/°’p->/1’p->-* 

We let: 

Zj,p = Ker dj,p = cycles in degree p 

Bjp = Im dj,p~1 = boundaries in degree p 

JHj'p = Zj'p/Bj,p = homology in degree p. 

We then get complexes 

0 -► ZP(C) -► z0,p -► z1,p -► 

0 BP(C)^> B0 p Bl p 

0 ^ Hp(C)-> H0 p ^ Hl p 

We say that the resolution 0 -► C -► /c is fully injective if these three com¬ 
plexes are injective resolutions of ZP(C), BP(C) and HP(C) respectively. 

Lemma 9.4. Let 

0 -► AT -► M -► Af" -► 0 

he a short exact sequence. Let 

0 -► M' lM and 0 -► M" -► lM > 

be injective resolutions of M’ and M". Then there exists an injective resolution 

0 —► Af —► /M 

o/ M and morphisms which make the following diagram exact and commutative: 

0 ► IM> ► /m > I\f " ^ 0 

0-► Mr-►Af-► Af"-►O 

0 0 0 

Proo/. The proof is the same as at the beginning of the proof of Theorem 
6.1. 
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Lemma 9.5. Given a complex C there exists a jully injective resolution of C. 

Proof We insert the kernels and cokernels in C, giving rise to the short 
exact sequences with boundaries Bp and cycles Zp\ 

0 -> Bp - Zp - Hp - 0 

0 -► Zp_ 1 -► Cp~ 1 -+BP^> 0. 

We proceed inductively. We start with an injective resolution of 

0 -► Zp~ 1 -► Cp~1 -► -► 0 

using Lemma 9.4. Next let 

0 - - lHP 

be an injective resolution of Hp. By Lemma 9.4 there exists an injective resolu¬ 
tion 

0 -> Z' - IZp 

which fits in the middle of the injective resolutions we already have for Bp and 
Hp. This establishes the inductive step, and concludes the proof. 

Given a left exact functor G on an abelian category with enough injectives, 
we say that an object X is G-acyclic if RPG(X) = 0 for p ^ 1. Of course, 

R°G(X) = G(X). 

Theorem 9.6. (Grothendieck spectral sequence). Let 

T:<2->(B and G:CB-► e 

be covariant left exact functors such that if I is injective in (2, then T(7) is 

G-acyclic. Then for each A in G there is a spectral sequence {Er(A)}> such that 

Ep2'q(A) = RpG(RqT(A)) 

and Ep q abuts (with respect to p) to Rp+q(GT)(A\ where q is the grading 

index. 

Proof Let A be an object of (2, and let 0 A -► CA be an injective resolu¬ 
tion. We apply T to get a complex 

TC\ 0 -► TC° -► TC1 -► TC2 -> 

By Lemma 9.5 there exists a fully injective resolution 

0 —► TC ► Ijc 

which has the 2-dimensional representation: 
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o-►Z0’1-*Ili-♦ I2,1 

q _^ jO, 0 _^ j 1,0 _^ j2,0 

0-► TC°-► TCl-♦ TC2 

0 0 0 

Then G7 is a double complex. Let Tot(G7) be the associated single complex. 
We now consider each of the two possible spectral sequences in succession, 
which we denote by xEp'q and 2Ep,q. 

The first one is the easiest. For fixed p, we have an injective resolution 

0 - TCP - 7£c 

where we write 7fc instead of ITCP. This is the p-th column in the diagram. By 
definition of derived functors, GIP is a complex whose homology is RqG, in 
other words, taking homology with respect to d" we have 

"Hp,q(GI) = Hq{GIp) = (RqG)(TCp). 

By hypothesis, Cp injective implies that (RqG)(TCp) = 0 for q > 0. Since G 

is left exact, we have R°G(TCP) = TCP. Hence we get 

"Hpq{Gl) 
GT(Cp) if q = 0 

0 if <7 > 0.’ 

Hence the non-zero terms are on the p-axis, which looks like 

0 - GT(C°) - GT(Cl) - GT(C2) - 

Taking rHp we get 

i£P,HA) = mGT)(A) if q — 0 

2 10 if <7 > 0 

This yields 

Hn(Tot(G/)) % Rn(GT)(A). 
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The second one will use the full strength of Lemma 9.5, which had not been 
used in the first part of the proof, so it is now important that the resolution 
ITC is fully injective. We therefore have injective resolutions 

0 -► ZP(TC) -> lZ0tP -► lZUp -+ lZ2'p -► 

0 -> BP(TC) -► 1B0,P -► lBl p -► 1B2’p -► 

0 - HP(TC) - lH°'p - xHUp - lH2 p - 

and the exact sequences 

0 -► lZq'p^> lq'p -► xBq+ l,p 0 

0 _► 1Bq p -► 1Z*1' -► lHq p -► 0 

split because of the injectivity of the terms. We denote by /(p) the p-th row of the 
double complex / = {Iq,p}. Then we find: 

fHq p(GI) = Hq(GIip)) = GlZq p/GlBq'p by the first split sequence 

= G' Hq p(I) by the second split sequence 

because applying the functor G to a split exact sequence yields a split exact 
sequence. 

Then 

2Ep« = "//p('//^p(G/) = Hp(GlHq'p(I)). 

By the full injectivity of the resolutions, the complex 'Hq p(I) with p ^ 0 is an 
injective resolution of 

H\TC) = (RqT)(A). 

Furthermore, we have 

Hp(G’Hqp) = RpG(RqT(A)), 

since a derived functor is the homology of an injective resolution. This proves 
that (RpG)RqT(A)) abuts to Rn(GT)(A\ and concludes the proof of the theorem. 

Just to see the spectral sequence at work, we give one application relating 
it to the Euler characteristic discussed in §3. 

Let <2 have enough injectives, and let 

T: G - ffi 

be a covariant left exact functor. Let 5a be a family of objects in (2 giving rise 
to a K-group. More precisely, in a short exact sequence in G, if two of the objects 
lie in 5a > then so does the third. We also assume that the objects of 5a have 
finite AT-dimension, which means by definition that if A e 5a then RlT(A) = 0 
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for all i sufficiently large. We could take ga in fact to be the family of all objects 
in (2 which have finite RT-dimension. 

We define the Euler characteristic associated with T on K(ga) to be 

Xt(A)= f (-l)' cl(RT(A)). 
i = 0 

The cl denotes the class in the K-group K(ga) associated with some family 
ga of objects in (B, and such that R'T(A) e g^ for all A e ga. This is the mini¬ 
mum required for the formula to make sense. 

Lemma 9.7. The map %T extends to a homomorphism 

K(ga)-K(gJ. 

Proof. Let 

0 - A' - A - A" - 0 

be an exact sequence in g. Then we have the cohomology sequence 

- R*T(A') - RT(A) - RT(A") - Ri+1T(A') - 

in which all but a finite number of terms are 0. Taking the alternating sum in the 
K-group shows that %T is an Euler-Poincare map, and concludes the proof. 

Note that we have merely repeated something from §3, in a jazzed up context. 
In the next theorem, we have another functor 

G: (B - C, 

and we also have a family ge giving rise to a K-group K(gc). We suppose that 
we can perform the above procedure at each step, and also need some condition 
so that we can apply the spectral sequence. So, precisely, we assume: 

CHARI. For all i, RlT maps ga into gffl, RlG maps g* into ge, and 
Rl(GT) maps ga into ge. 

CHAR 2. Each subobject of an element of ga lies in ga and has finite 
RT- and R(G7>dimension; each subobject of an element of 
g* lies in g* and has finite RG-dimension. 

Theorem 9.8. Assume that T : (2 -► ® and G : ® -► C satisfy the conditions 
CHAR 1 and CHAR 2. Also assume that T maps injectives to G-acyclics. 
Then 

Xg° Xt — Xgt• 
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Proof. By Theorem 9.6, the Grothendieck spectral sequence of the com¬ 
posite functor implies the existence of a filtration 

•.. c FpRn(GT)(A) c Fp+ lRn(GT)(A) c--- 

of Rn(GT)(A\ such that 

Fp+l/Fp » E p 

Then 

Zcr(^) = £(-l)"cl(R"(GT)U)) 
n = 0 

n = 0 p = 0 

= f (-l)"cl(0 
n = 0 

On the other hand, 

XrM)= K-iycl^TM)) 
q=0 

and so 

XG°Xr(^) = I(-1),Zg(«,T(^)) 
, = 0 

00 00 

= I(-l)9I(-l)pcl(R'’G(R’T(^)) 
q=0 p=0 

= Z (— 1)" Z cl(RpG(R"~pT(A)) 
n=0 p=0 

= £(-l)"cl(ES). 
n = 0 

Since Er+l is the homology of Er, we get 

Z(-l)"cl(£"2)= I(-1)"c1(£"3) 
n = 0 n = 0 

£(-iy ci(E"j. 
n = 0 

This concludes the proof of the theorem. 
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EXERCISES 

1. Prove that the example of the standard complex given in §1 is actually a complex, 
and is exact, so it gives a resolution of Z. [Hint: To show that the sequence of the 
standard complex is exact, choose an element z E S and define h : El—> Ei+1 by letting 

h(xo, ...,*,■) = (z, Xq,..., Xi). 

Prove that dh 4- hd = id, and that dd = 0. Exactness follows at once.] 

Cohomology of groups 

2. Let G be a group. Use G as the set S in the standard complex. Define an action of 
G on the standard complex E by letting 

x(x0, ...,X/) = (xx0,. .., xxt). 

Prove that each £, is a free module over the group ring Z[G]. Thus if we let 
R = Z[G] be the group ring, and consider the category Mod(G) of G-modules, then 
the standard complex gives a free resolution of Z in this category. 

3. The standard complex E was written in homogeneous form, so the boundary maps 
have a certain symmetry. There is another complex which exhibits useful features 
as follows. Let Fl be the free Z[G]-module having for basis /-tuples (rather than 
(/ -I- l)-tuples) (xj,. .., x^. For i - 0 we take F0 = Z[G] itself. Define the boundary 
operator by the formula 

i-i 
d(Xu...,Xi) =Xi(*2,...,Xf) + £(“1 )J(xl,...,XjXj+l,...,xi) 

j= i 

+ (-l),+1(^i,.. -,Xi). 

Show that E ^ F (as complexes of G-modules) via the association 

(*!, (1, xxx2t . . . , xxx2 • • • xf)9 

and that the operator d given for F corresponds to the operator d given for E under 
this isomorphism. 

4. If A is a G-module, let AG be the submodule consisting of all elements v E A such 
that xv = v for all x E G. Thus AG has trivial G-action. (This notation is convenient, 
but is not the same as for the induced module of Chapter XVIII.) 

(a) Show that if Hq{G, A) denotes the g-th homology of the complex 
HomG(£, A), then //°(G, A) = AG. Thus the left derived functors of A IAG 
are the homology groups of the complex HomG(£, A), or for that matter, 
of the complex Hom(F, A), where F is as in Exercise 3. 

(b) Show that the group of 1-cycles Z!(G, A) consists of those functions 
/: G —» A satisfying 

f(x) + xf(y) = f{xy) for all *, y e G. 

Show that the subgroup of coboundaries Bl(G, A) consists of those functions 
/for which there exists an element a E A such that f(x) = xa - a. The factor 
group is then Hl(G, A). See Chapter VI, §10 for the determination of a special 
case. 
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(c) Show that the group of 2-cocycles Z2(G, A) consists of those functions 
/: G —> A satisfying 

xf(y, z) - /(.ry, z) 4- f(x, yz) - /(*, y) = 0. 

Such 2-cocycles are also called factor sets, and they can be used to describe 
isomorphism classes of group extensions, as follows. 

5. Group extensions. Let W be a group and A a normal subgroup, written multipli- 

catively. Let G = W/A be the factor group. Let F: G —> W be a choice of coset 

representatives. Define 

fix, y) = F(x)F(y)F(xy)-'. 

(a) Prove that /is A-valued, and that /: G x G —» A is a 2-cocycle. 
(b) Given a group G and an abelian group A, we view an extension W as an 

exact sequence 

1 —» A —» G —> 1. 

Show that if two such extensions are isomorphic then the 2-cocycles associated 
to these extensions as in (a) define the same class in HX(G, A). 

(c) Prove that the map which we obtained above from isomorphism classes of 
group extensions to H2(G, A) is a bijection. 

6. Morphisms of the cohomology functor. Let A : G' —> G be a group homomorphism. 
Then A gives rise to an exact functor 

0>A : Mod(G) -> Mod(G'), 

because every G-module can be viewed as a G'-module by defining the operation of 
cr' E G' to be a'a — Thus we obtain a cohomology functor HG' ° <I>A. 

Let G' be a subgroup of G. In dimension 0, we have a morphism of functors 

A* : H% —> H%- ° <I>A given by the inclusion AGci> AG' = <I>a(A)g'. 

(a) Show that there is a unique morphism of 5-functors 

A* : Hg —> Hg. o <Da 

which has the above effect on H%. We have the following important special 

cases. 
Restriction. Let H be a subgroup of G. Let A be a G-module. A function 

from G into A restricts to a function from H into A. In this way, we get a 
natural homomorphism called the restriction 

res: Hq(G, A) //«(//, A). 

Inflation. Suppose that H is normal in G. Let AH be the subgroup of A 
consisting of those elements fixed by H. Then it is immediately verified that 
AH is stable under G, and so is a G/H-module. The inclusion AH^ A induces 
a homomorphism 

H%(u) = k, : //*(G, A") W{A). 

Define the inflation 

infg/tf : Hq(G/H, AH) //*(G, A) 
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as the composite of the functorial morphism Hq{G/H, AH) —> Hq(G, AH) 
followed by the induced homomorphism uq — H^(u) as above. 

In dimension 0, the inflation gives the identity (AH)G/H — AG. 
(b) Show that the inflation can be expressed on the standard cochain complex 

by the natural map which to a function of G/H in AH associates a function 
of G into AH C A. 

(c) Prove that the following sequence is exact. 

0 -> H'(G/H, AH) “ H\G, A) ™ H'(H, A). 

(d) Describe how one gets an operation of G on the cohomology functor HG “by 

conjugation” and functoriality. 
(e) In (c), show that the image of restriction on the right actually lies in 

Hl(H, A)G (the fixed subgroup under G). 
Remark. There is an analogous result for higher cohomology groups, 

whose proof needs a spectral sequence of Hochschild-Serre. See [La 96], 
Chapter VI, §2, Theorem 2. It is actually this version for H2 which is applied 
to //2(G, A'*), when A is a Galois extension, and is used in class field theory 

[ArT 67]. 

7. Let G be a group, B an abelian group and MG(B) = M(G, B) the set of mappings 
from G into B. For x E G and / E M(G, B) define (M/)(y) = f(yx). 

(a) Show that B h-> MG(B) is a covariant, additive, exact functor from Mod(Z) 
(category of abelian groups) into Mod(G). 

(b) Let G' be a subgroup of G and G = UjtyG' a coset decomposition. For 
/ E M(G, B) let fj be the function in M(G\ B) such that fj(y) = f{Xjy). 

Show that the map 

f'-Rfj 
j 

is a G'-isomorphism from M(G, B) to Yl M(G\ B). 
j 

8. For each G-module A E Mod(G), define eA: A —> M(G, A) by the condition 
eA(a) = the function fa such that /z(cr) = era for a E G. Show that a i-» fa is a 
G-module embedding, and that the exact sequence 

0 —» A M(G, A) -> XA = coker eA 0 

splits over Z. (In fact, the map/1-> f(e) splits the left side arrow.) 

9. Let B E Mod(Z). Let Hq be the left derived functor of A h-» AG. 
(a) Show that Hq(G, MG{B)) = 0 for all q > 0. [Hint : use a contracting homotopy 

s: Cr(G, Mg(B)) —» Cr~l(G, MG(B)) by (4%, ,Jx) = fx^ >Jtr(l). 

Show that / = sdf + dsf.] Thus MG erases the cohomology functor. 
(b) Also show that for all subgroups G' of G one has Hq(G', MG(B)) = 0 for 

q > 0. 

10. Let G be a group and S a subgroup. Show that the bifunctors 

(A, B) h* HomG(A, M^(5)) and (A, B) l-> Hom5(A, B) 

on Mod(G) x Mod(S) with value in Mod(Z) are isomorphic. The isomorphism is 
given by the maps 

<p (-> (a h-> ga), for <p e Homs(A, B), where gja) = <p(<ra), ga e Msa(B). 
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The inverse mapping is given by 

/1^/(1) with/E HomG(i4, Msg(B)). 

Recall that M^(B) was defined in Chapter XVIII, §7 for the induced representation. 
Basically you should already know the above isomorphism. 

11. Let G be a group and 5 a subgroup. Show that the map 

Hq(G, Mq (B)) -* Hq(S, B) for B E Mod(5), 

obtained by composing the restriction res£ with the 5-homomorphism/ l-» /(1), is 
an isomorphism for q > 0. [Hint: Use the uniqueness theorem for cohomology 
functors.] 

12. Let G be a group. Let e : Z[G] —> Z be the homomorphism such that n(x)x) = 
2 n(x). Let Iq be its kernel. Prove that IG is an ideal of Z[G] and that there is an 
isomorphism of functors (on the category of groups) 

G/Gc - IG//G, by xGc I-* (x - 1) + ll. 

13. Lei A E Mod(G) and a E Hl(G, A). Let be a standard 1-cocycle representing 
a. Show that there exists a G-homomorphism/: /G —> A such that f(x - 1) = a(x), 
so/E (Hom(/G, A))G. Show that the sequence 

0 —> A = Hom(Z, A) Hom(Z[G], A) Hom(/G, A) -> 0 

is exact, and that if 8 is the coboundary for the cohomology sequence, then 
8(f) = -a. 

Finite groups 

We now turn to the case of finite groups G. For such groups and a G-module A we 
have the trace 

Tg: A —> A defined by TG(a) = X 
ffeC 

We define a module A to be G-regular if there exists a Z-endomorphism u : A —> A such 
that id^ = Tg(m). Recall that the operation of G on End(A) is given by 

[er]/(a) = crf((T~'a) for <r 6 C. 

14. (a) Show that a projective object in Mod(G) is G-regular. 
(b) Let R be a commutative ring and let A be in Mod^(G) (the category of (G, R)- 

modules). Show that A is R[G]-projective if and only if A is R-projective and 
/?[G]-regular, meaning that id^ = TG(u) for some R-homomorphism u : A —> A. 

15. Consider the exact sequences: 

(1) 0—* /G—» Z[G] -4 Z-* 0 

(2) 0^Z4 Z[G] 7C-^ 0 

where the first one defines /G, and the second is defined by the embedding 

ef : Z —> Z[G] such that e\n) = w(2 cr), 

i.e. on the “diagonal”. The cokernel of e' is JG by definition. 

(a) Prove that both sequences (1) and (2) split in Mod(G). 
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(b) Define MG(A) = Z [G] (tensor product over Z) for A E Mod(G). Show 
that Mq(A) is G-regular, and that one gets exact sequences (1^) and (2^) by 
tensoring (1) and (2) with A. As a result one gets an embedding 

e'A — s' 0 id : A = Z 0 A —> Z[G] (8) A. 

16. Cyclic groups. Let G be a finite cyclic group of order n. Let cr be a generator of G. 
Let K‘ = Z[G] for / > 0. Let e : K° —> Z be the augmentation as before. For i odd 
^ 1, let d‘ : Kl —> F/-1 be multiplication by 1 - cr. For i even ^ 2, let d‘ be 
multiplication by 1 + cr +••• + an~l. Prove that K is a resolution of Z. Conclude 

that: 
For i odd: /F(G, A) = AG/TGA where rG:fll->(l + cr+-* + 
For i even ^ 2: //f(G, A) = Ar/(1 - <r)A, where Ar is the kernel of TG in A. 

17. Let G be a finite group. Show that there exists a 5-functor H from Mod(G) to 

Mod (Z) such that: 
(1) H° is (isomorphic to) the functor A AG/TGA. 
(2) H^(A) = 0 if A is injective and q > 0, and H^(A) = 0 if A is projective and q 

is arbitrary. 
(3) H is erased by G-regular modules. In particular, H is erased by MG. 

The 5-functor of Exercise 17 is called the special cohomology functor. It differs 

from the other one only in dimension 0. 

18. Let H = Hg be the special cohomology functor for a finite group G. Show that: 

H°(/g) = 0; H°(Z) * H‘(/) * Z/wZ where n = #(G); 

H°(G/Z) = H \Z) = H2(/) = 0 

H\Q/Z) - H2(Z) * H3(7) « GA = Hom(G, Q/Z) by definition. 

Injectives 

19. (a) Show that if an abelian group T is injective in the category of abelian groups, then 
it is divisible. 

(b) Let A be a principal entire ring. Define the notion of divisibility by elements of A for 
modules in a manner analogous to that for abelian groups. Show that an A- 
module is injective if and only if it is A-divisible. [The proof for Z should work 
in exactly the same way.] 

20. Let S be a multiplicative subset of the commutative Noetherian ring A. If I is an 
injective A-module, show that S~ lI is an injective S~1 A-module. 

21. (a) Show that a direct sum of projective modules is projective. 
(b) Show that a direct product of injective modules is injective. 

22. Show that a factor module, direct summand, direct product, and direct sum of divisible 
modules are divisible. 

23. Let Q be a module over a commutative ring A. Assume that for every left ideal J of 
A, every homomorphism <p : J —> Q can be extended to a homomorphism of A into 
Q. Show that Q is injective. [Hint: Given M' C M and / : M' —> Q, let x0 E M 
and x0 £ M'. Let J be the left ideal of elements a E A such that ax0 E M'. Let 

<p(a) ~ f(ax0) and extend <p to A, as can be done by hypothesis. Then show that 
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one can extend / to M by the formula 

/(■*' + bxo) =/(*') + (p(b), 

for x' EM and b E A. Then use Zorn’s lemma. This is the same pattern of proof as 
the proof of Lemma 4.2.] 

24. Let 

O-Zi -/2-/3-0 

be an exact sequence of modules. Assume that 7ls I2 are injective. 
(a) Show that the sequence splits. 
(b) Show that /3 is injective. 
(c) If / is injective and / = M © N, show that M is injective. 

25. (Do this exercise after you have read about Noetherian rings.) Let A be a Noetherian 
commutative ring, and let Q be an injective /1-module. Let a be an ideal of A, and let 
Q(a) be the subset of elements xsQ such that a"x = 0 for some n, depending on x. 
Show that Q(a) is injective. [Hint: Use Exercise 23.] 

26. Let A be a commutative ring. Let E be an A-module, and let EA = Homz(£, Q/Z) 
be the dual module. Prove the following statements. 

(a) A sequence 

0-N-M-E-0 

is exact if and only if the dual sequence 

0 —> EA —> MA —> NA —> 0 

is exact. 

(b) Let F be flat and / injective in the category of A-modules. Show that 

Hom^(E, /) is injective. 
(c) E is flat if and only if EA is injective. 

27. Extensions of modules. Let M, N be modules over a ring. By an extension of M 

by N we mean an exact sequence 

(*) 0-*AT-*£-^M-* 0. 

We shall now define a map from such extensions to Ext‘(M, N). Let P be projective, 
with a surjective homomorphism onto M, so we get an exact sequence 

(**) 

where K is defined to be the kernel. Since P is projective, there exists a homomorphism 
u : P —> £, and depending on u a unique homomorphism v: K —> N making the 

diagram commutative: 

0-» K -> P —► M ->0 

v u id 

0-* N -» E-♦ M ->-0 



832 GENERAL HOMOLOGY THEORY XX, Ex 

On the other hand, we have the exact sequence 

(***) o -* Hom(M, AO Hom(P, AO Horn(K, AO Ext l(M, N) -* 0, 

with the last term on the right being equal to 0 because Ext‘(P, N) = 0. To the 
extension (*) we associate the image of v in Ext l(M, N). 

Prove that this association is a bijection between isomorphism classes of extensions 
(i.e. isomorphism classes of exact sequences as in (*)), and ExtX(M, N). [Hint: 
Construct an inverse as follows. Given an element e of Extl(M, N), using an exact 
sequence (**), there is some element v e Hom(A\ AO which maps on e in (***). Let 
E be the push-out of v and w. In other words, let J be the submodule of N © P 
consisting of all elements (u(jc), -w(x)) with x E K, and let E = (N © P)/J. Show 
that the map y h-> (y, 0) mod J gives an injection of N into E. Show that the map 
N 0 P —» M vanishes on 7, and so gives a surjective homomorphism £ M —» 0. 
Thus we obtain an exact sequence (*); that is, an extension of M by N. Thus to each 
element of Ext X(M, N) we have associated an isomorphism class of extensions of M 
by N. Show that the maps we have defined are inverse to each other between iso¬ 
morphism classes of extensions and elements of Ext *(M, AO.] 

28. Let R be a principal entire ring. Let a E R. For every /^-module N, prove: 

(a) Ext l(R/aR, N) = N/aN. 
(b) For b E R we have Ext l(R/aR, R/bR) - R/(a, b), where (a, b) is the g.c.d 

of a and b, assuming ab ^ 0. 

Tensor product of complexes. 

29. Let K = 0Xp and L = @Lfl be two complexes indexed by the integers, and with 
boundary maps lower indices by 1. Define K 0 L to be the direct sum of the modules 
(K (x) L)„, where 

(K®L\= ®K„®Lq. 
p + q = n 

Show that there exist unique homomorphisms 

d = dn:(K®L)n-+(K®L)n_l 

such that 

d(x ® y) = d(x) ® y + (- l)px ® d(y). 

Show that K® L with these homomorphisms is a complex, that is d ° d = 0. 

30. Let K, L be double complexes. We write Kt and L, for the ordinary column complexes 
of K and L respectively. Let ip: K —> L be a homomorphism of double complexes. 
Assume that each homomorphism 

W Ki -» U 

is a homology isomorphism. 
(a) Prove that Tot(<p): Tot(^T) —> Tot(L) is a homology isomorphism. (If you 

want to see this worked out, cf. [FuL 85], Chapter V, Lemma 5.4.) 
(b) Prove Theorem 9.8 using (a) instead of spectral sequences. 
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CHAPTER XXI_ 
Finite Free Resolutions 

This chapter puts together specific computations of complexes and homology. 
Partly these provide examples for the general theory of Chapter XX, and partly 
they provide concrete results which have occupied algebraists for a century. 
They have one aspect in common: the computation of homology is done by means 
of a finite free resolution, i.e. a finite complex whose modules are finite free. 

The first section shows a general technique (the mapping cylinder) whereby 
the homology arising from some complex can be computed by using another 
complex which is finite free. One application of such complexes has already 
been given in Chapter X, putting together Proposition 4.5 followed by Exercises 
10-15 of that chapter. 

Then we go to major theorems, going from Hilbert’s Syzygy theorem, from 
a century ago, to Serre’s theorem about finite free resolutions of modules over 
polynomial rings, and the Quillen-Suslin theorem. We also include a discussion 
of certain finite free resolutions obtained from the Koszul complex. These apply, 
among other things, to the Grothendieck Riemann-Roch theorem of algebraic 
geometry. 

Bibliographical references refer to the list given at the end of Chapter XX. 

§1. SPECIAL COMPLEXES 

As in the preceding chapter, we work with the category of modules over a 
ring, but the reader will notice that the arguments hold quite generally in an 
abelian category. 

In some applications one determines homology from a complex which is 
not suitable for other types of construction, like changing the base ring. In this 
section, we give a general procedure which constructs another complex with 

835 
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better properties than the first one, while giving the same homology. For an 
application to Noetherian modules, see Exercises 12-15 of Chapter X. 

Let /: K -► C be a morphism of complexes. We say that / is a homology 
isomorphism if the natural map 

H(f): H(K) -> H(C) 

is an isomorphism. The definition is valid in an abelian category, but the reader 
may think of modules over a ring, or abelian groups even. A family 3 of objects 
will be called sufficient if given an object E there exists an element F in 3 and 
an epimorphism 

F -► E -► 0, 

and if 3 is closed under taking finite direct sums. For instance, we may use for 
3 the family of free modules. However, in important applications, we shall deal 
with finitely generated modules, in which case 3 might be taken as the family of 
finite free modules. These are in fact the applications I have in mind, which 
resulted in having axiomatized the situation. 

Proposition 1.1. Let C be a complex such that HP(C) / 0 only for 
0 ^ p ^ n. Let 3 be a sufficient family of projectives. There exists a 
complex 

O-K0-^1 --► £"-() 

such that: 

Kp / 0 only for 0 ^ p ^ n; 

Kp is in 3 for all p ^ 1; 

and there exists a homomorphism of complexes 

f:K^C 

which is a homology isomorphism. 

Proof We define fm by descending induction on m: 

We suppose that we have defined a morphism of complexes with p ^ m + 1 
such that Hp(f) is an isomorphism for p ^ m + 2, and 

fm+1 : Zm+ *(K) -*• Hm+1(C) 
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is an epimorphism, where Z denotes the cycles, that is Ker <5. We wish to con¬ 
struct Km and /m, thus propagating to the left. First let m ^ 0. Let Bm+ 1 be 
the kernel of 

Ker 3% + l -//m+1(C). 

Let K' be in g with an epimorphism 

5 ':K'->£m+1. 

Let K" -► Hm(C) be an epimorphism with K" in g, and let 

/" : K" - Zm(C) 

be any lifting, which exists since K" is projective. Let 

Km = K' © K" 

and define 5m: Km - Km+ 1 to be on K' and 0 on K". Then 

fm+1oSXK')<=dc(Cm\ 

and hence there exists Cm such that 

°f = fm+ i ° ^ • 

We now define /m : Km -► Cm to be /' on K' and /" on K". Then we have 
defined a morphism of complexes truncated down to m as desired. 

Finally, if m = — 1, we have constructed down to K°, 3°, and f0 with 

K° h H°(C) -» 0 

exact. The last square looks like this, defining K_1 = 0. 

0->K’ 0 K" S'K’ c K1 

0-» C°-* C1 

We replace K° by K°/(Ker 3° n Ker /0). Then H°(f) becomes an isomorphism, 
thus proving the proposition. 

We want to say something more about K°. For this purpose, we define a 
new concept. Let g be a family of objects in the given abelian category (think 
of modules in first reading). We shall say that g is complete if it is sufficient, and 
for any exact sequence 

0 - F - F - F" - 0 

with F" and F in g then F' is also in g. 
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Example. In Chapter XVI, Theorem 3.4 we proved that the family of finite 
flat modules in the category of finite modules over a Noetherian ring is complete. 
Similarly, the family of flat modules in the category of modules over a ring is 
complete. We cannot get away with just projectives or free modules, because 
in the statement of the proposition, K° is not necessarily free but we want to 
include it in the family as having especially nice properties. In practice, the 
family consists of the flat modules, or finite flat modules. Cf. Chaper X, Theorem 
4.4, and Chapter XVI, Theorem 3.8. 

Proposition 1.2. Let f'.K^Cbea morphism of complexes, such that Kp, 
HP{C) are #0 only for p = 1,..., n. Let g he a complete family, and assume 
that Kp, Cp are in g for all p, except possibly for K°. If f is a homology 
isomorphism, then K° is also in g. 

Before giving the proof, we define a new complex called the mapping cylinder 
of an arbitrary morphism of complexes / by letting 

Mp = Kp® Cp~l 

and defining SM : Mp -► Mp+1 by 

y) = (Sxjx - dy). 

It is trivially verified that M is then a complex, i.e. 8 ° 5 = 0. If C is the com¬ 
plex obtained from C by shifting degrees by one (and making a sign change 
in 8CX so C,p = Cp~19 then we get an exact sequence of complexes 

O-C'-M-K-O 

and hence the mapping cylinder exact cohomology sequence 

HP(K)->Hp+1(C) 
II 

Hp+\M)-> Hp+\K)-► Hp+\C) 
II 

Hp(C) HP+1(C) 

and one sees from the definitions that the cohomology maps 

Hp(K)^ Hp+1(C')k Hp(C) 

are the ones induced by/: K -► C. 
We now return to the assumptions of Proposition 1.2, so that these maps are 

isomorphisms. We conclude that H{M) = 0. This implies that the sequence 

0-^ K° -+ M1 -► M2 -+->Mn+l -> 0 

is exact. Now each Mp is in g by assumption. Inserting the kernels and 
cokernels at each step and using induction together with the definition of a 
complete family, we conclude that K° is in g, as was to be shown. 
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In the next proposition, we have axiomatized the situation so that it is 
applicable to the tensor product, discussed later, and to the case when the family 
3 consists of flat modules, as defined in Chapter XVI. No knowledge of this 
chapter is needed here, however, since the axiomatization uses just the general 
language of functors and exactness. 

Let 3 be a complete family again, and let T be a covariant additive functor 
on the given category. We say that 3 is exact for T if given an exact sequence 

0 - F - F - F* - 0 

in 3> then 

0 - T(F') - T(F) - T(F") - 0 

is exact. 

Proposition 1.3. Let 3 be a complete family which is exact for T. Let 

f :K -> C be a morphism of complexes, such that Kp and Cp are in 3 far all 

p, and Kp, HP(C) are zero for all but a finite number of p. Assume that f is a 

homology isomorphism. Then 

T(f):T(K)^T(C) 

is a homology isomorphism. 

Proof. Construct the mapping cylinder M for /. As in the proof of Propo¬ 
sition 1.2, we get H(M) = 0 so M is exact. We then start inductively from the 
right with zeros. We let Zp be the cycles in Mp and use the short exact sequences 

0 -► Zp -► Mp -► ZpJr 1 -► 0 

together with the definition of a complete family to conclude that Zp is in 3 for 
all p. Hence the short sequences obtained by applying T are exact. But T(Af) 
is the mapping cylinder of the morphism 

T(f):T(K)^T(C\ 

which is therefore an isomorphism, as one sees from the homology sequence of 
the mapping cylinder. This concludes the proof. 

§2. FINITE FREE RESOLUTIONS 

The first part of this section develops the notion of resolutions for a case 
somewhat more subtle than projective resolutions, and gives a good example for 
the considerations of Chapter XX. Northcott in [No 76] pointed out that minor 
adjustments of standard proofs also applied to the non-Noetherian rings, only 
occasionally slightly less tractable than the Noetherian ones. 
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Let A be a ring. A module E is called stably free if there exists a finite free 
module F such that E © F is finite free, and thus isomorphic to A(n) for some 
positive integer n. In particular, E is projective and finitely generated. 

We say that a module M has a finite free resolution if there exists a resolution 

0 —► En Eq —> M —► 0 

such that each Et is finite free. 

Theorem 2.1. Let M be a projective module. Then M is stably free if and 

only if M admits a finite free resolution. 

Proof. If M is stably free then it is trivial that M has a finite free resolution. 
Conversely assume the existence of the resolution with the above notation. 
We prove that M is stably free by induction on n. The assertion is obvious if 
n = 0. Assume n ^ 1. Insert the kernels and cokernels at each step, in the 
manner of dimension shifting. Say 

Mi = Ker(£0 - P), 

giving rise to the exact sequence 

0-Af, -E0-M-0. 

Since M is projective, this sequence splits, and E0 « M © Mv But Mx has a 
finite free resolution of length smaller than the resolution of M, so there exists 
a finite free module F such that Mx © F is free. Since £0 © F is also free, this 
concludes the proof of the theorem. 

A resolution 

0 - F„ --> E0 -> M -> 0 

is called stably free if all the modules F, (i = 0,..., n) are stably free. 

Proposition 2.2. Let M be an A-module. Then M has a finite free resolution 

of length n ^ 1 if and only if M has a stably free resolution of length n. 

Proof. One direction is trivial, so we suppose given a stably free resolution 
with the above notation. Let 0 ^ i < n be some integer, and let Fh Fi+l be 
finite free such that E{ © Fx and Ei+1 ® Fi+l are free. Let F = © Fi+1. 

Then we can form an exact sequence 

0 - --► Ei+! © F - Et © F --> E0 -► M - 0 

in the obvious manner. In this way, we have changed two consecutive modules 
in the resolution to make them free. Proceeding by induction, we can then 
make E0, Ex free, then El9 E2 free, and so on to conclude the proof of the 
proposition. 
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The next lemma is designed to facilitate dimension shifting. 
We say that two modules Mu M2 are stably isomorphic if there exist finite 

free modules Fu F2 such that Mx ® Fx « M2 ® F2. 

Lemma 2.3. Let Mx be stably isomorphic to M2. Let 

0-+Nx -+E1 -+MX -►() 

0 -► N2 - E2 - Af2 - 0 

be exact sequences, where Mx is stably isomorphic to M2, and Eu E2 are 

stably free. Then Nx is stably isomorphic to N2. 

Proof. By definition, there is an isomorphism Mx ® Fx & M2 ® F2. 

We have exact sequences 

0 - Nx - Ex ® Fx Mx © Fx 0 

0 - n2 - e2 © f2 - m2 © f2 - 0 

By Schanuel’s lemma (see below) we conclude that 

Nx ®E2 ®F2 « N2 ®Ex ®Fx. 

Since Ex, E2, Fx, F2 are stably free, we can add finite free modules to each side 
so that the summands of Nx and N2 become free, and by adding 1-dimensional 
free modules if necessary, we can preserve the isomorphism, which proves that 
Nx is stably isomorphic to iV2. 

We still have to take care of Schanuel’s lemma: 

Lemma 2.4. Let 

0-K-*P-M->0 

0->K'->P'-»M->0 

be exact sequences where P, P' are projective. Then there is an isomorphism 

K © P' % K' © P. 

Proof. Since P is projective, there exists a homomorphism P -► P' making 
the right square in the following diagram commute. 

0->K—P-►M-►0 

u w id 

0->K'—j—>P'->M->0 
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Then one can find a homomorphism K -> K' which makes the left square 
commute. Then we get an exact sequence 

0 - K - P © - P' - 0 

by x i—► (ix, ux) for x e K and (y, z) i—► wy — jz. We leave the verification of 
exactness to the reader. Since P' is projective, the sequence splits thus proving 
Schanuel’s lemma. This also concludes the proof of Lemma 2.3. 

The minimal length of a stably free resolution of a module is called its 
stably free dimension. To construct a stably free resolution of a finite module, 
we proceed inductively. The preceding lemmas allow us to carry out the induc¬ 
tion, and also to stop the construction if a module is of finite stably free dimen¬ 
sion. 

Theorem 2.5. Let M be a module which admits a stably free resolution of 

length n 

0 —► En Eq —► M —► 0. 

Let 

Fm ► • * • ► F o ► M ► 0 

be an exact sequence with F{ stably free for i = 0,..., m. 

(i) If m < n — 1 then there exists a stably free Fm+l such that the exact 

sequence can be continued exactly to 

+1 —► ■ • ■ T0 —► M —► 0. 

(ii) If m = n - 1, let Fn = Ker(Fw_1 -► F„_2). Then Fn is stably free 

and thus 

0 - F„ - F„_ j --> F0 - M - 0 

is a stably free resolution. 

Remark. If A is Noetherian then of course (i) is trivial, and we can even 
pick Fm+l to be finite free. 

Proof. Insert the kernels and cokernels in each sequence, say 

Km = Ker(Fm -> Em_1) if m # 0 

K0 = Ker(F0 M), 

and define K'm similarly. By Lemma 2.3, Km is stably isomorphic to K'm, say 

Km 0 F % Km 0 F' 

with F, F' finite free. 
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If m < n — 1, then Km is a homomorphic image of Em + x; so both Km ® F 

and K'm © F are homomorphic images of Em+1 © F Therefore K'm is a homo¬ 
morphic image of Em+l © F which is stably free. We let Fm+l = Em+ { © F to 
conclude the proof in this case. 

If m = n — 1, then we can take Kn = En. Hence Km © F is stably free, and 
so is K'm © F by the isomorphism in the first part of the proof. It follows trivially 
that K'm is stably free, and by definition, K'm = Fm+l in this case. This concludes 
the proof of the theorem. 

Corollary 2.6. If 0 —» —» £ —» M —» 0 is exact, M has stably free dimen¬ 

sion ^ n, and E is stably free, then Mx has stably free dimension ^ n — 1. 

Theorem 2.7. Let 

0 —» A/' —» A/ —» A/" —» 0 

be an exact sequence. If any two of these modules have a finite free resolution, 
then so does the third. 

Proof. Assume M' and M have finite free resolutions. Since M is finite, it 
follows that AT is also finite. By essentially the same construction as Chapter 
XX, Lemma 3.8, we can construct an exact and commutative diagram where 
E\ E, E" are stably free: 

0 0 0 

0-► M \-► M j-► M"-► 0 

0-► F -► E -> E"-► 0 

0-> M'-^ M-► M"-► 0 

0 0 0 

We then argue by induction on the stably free dimension of M. We see 
that has stably free dimension ^ n — 1 (actually n — 1, but we don’t care), 
and M\ has finite stably free dimension. By induction we are reduced to the 
case when M has stably free dimension 0, which means that M is stably free. 
Since by assumption there is a finite free resolution of M', it follows that M" 

also has a finite free resolution, thus concluding the proof of the first assertion. 
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Next assume that AT, M" have finite free resolutions. Then M is finite. 
If both AT and Af" have stably free dimension 0, then Af, Af" are projective 
and M « Af © Af" is also stably free and we are done. We now argue by 
induction on the maximum of their stably free dimension n, and we assume 
n ^ 1. We can construct an exact and commutative diagram as in the previous 
case with E\ E, E" finite free (we leave the details to the reader). But the maxi¬ 
mum of the stably free dimensions of Af, and Af,' is at most n — 1, and so by 
induction it follows that Mx has finite stably free dimension. This concludes the 
proof of the second case. 

Observe that the third statement has been proved in Chapter XX, Lemma 3.8 
when A is Noetherian, taking for G the abelian category of finite modules, and 
for # the family of stably free modules. Mitchell Stokes pointed out to me that 
the statement is valid in general without Noetherian assumption, and can be 
proved as follows. We assume that Af, Af" have finite free resolutions. We first 
show that AT is finitely generated. Indeed, suppose first that M is finite free. We 
have two exact sequences 

0 —> A/' —> Af —» Af" —> 0 

0 -► K" F” M" -> 0 

where F" is finite free, and K" is finitely generated because of the assumption 
that Af" has a finite free resolution. That AT is finitely generated follows from 
Schanuel’s lemma. If Af is not free, one can reduce the finite generation of AT 
to the case when Af is free by a pull-back, which we leave to the reader. 

Now suppose that the stably free dimension of M" is positive. We use the 
same exact commutative diagram as in the previous cases, with E\ E, E" finite 
free. The stably free dimension of M'[ is one less than that of M", and we are 
done by induction. This concludes the proof of Theorem 2.7. 

This also concludes our general discussion of finite free resolutions. For 
more information cf. Northcott’s book on the subject. 

We now come to the second part of this section, which provides an applica¬ 
tion to polynomial rings. 

Theorem 2.8. Let R be a commutative Noetherian ring. Let x be a variable. 

If every finite R-module has a finite free resolution, then every finite R[x]-module 

has a finite free resolution. 

In other words, in the category of finite R-modules, if every object is of 
finite stably free dimension, then the same property applies to the category of 
finite R[x]-modules. Before proving the theorem, we state the application we 
have in mind. 

Theorem 2.9. (Serre). If k is a field and xx, . . ., xr independent vari¬ 

ables, then every finite projective module over k[x{,. . . , xr] is stably free, or 

equivalently admits a finite free resolution. 
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Proof. By induction and Theorem 2.8 we conclude that every finite module 
over k[x},. . . , xr] is of finite stably free dimension. (We are using Theorem 
2.1.) This concludes the proof. 

The rest of this section is devoted to the proof of Theorem 2.8. 
Let M be a finite P[x]-module. By Chapter X, Corollary 2.8, M has a finite 

filtration 

M = M0 => M{ =>•••=> M„ = 0 

such that each factor MJMi+l is isomorphic to P[x]/P, for some prime P,. 
In light of Theorem 2.7, it suffices to prove the theorem in case M = R[x]/P 

where P is prime, which we now assume. In light of the exact sequence 

0 - P - P[x] - P[x]/P - 0. 

and Theorem 2.7, we note that M has a finite free resolution if and only if P 

does. 
Let p = P n R. Then p is prime in R. Suppose there is some M = P[x]/P 

which does not admit a finite free resolution. Among all such M we select one for 
which the intersection p is maximal in the family of prime ideals obtained as 
above. This is possible in light of one of the basic properties characterizing 
Noetherian rings. 

Let R0 = R/p so R0 is entire. Let P0 = P/pP[x]. Then we may view M 

as an P0[x]-module, equal to P0/P0. Let fl9 ...,/„ be a finite set of generators 
for P0, and let / be a polynomial of minimal degree in P0. Let K0 be the 
quotient field of R0. By the euclidean algorithm, we can write 

L = <hf + n for i = 1,..., n 

with qi9 r, e /C0[x] and deg r, < deg/. Let d0 be a common denominator for 
the coefficients of all qh r{. Then d0 # 0 and 

d0fi = q'if + r'i 

where q[ = </0q, and r- = d0ri lie in R0M- Since deg / is minimal in P0 it 
follows that r\ = 0 for all i, so 

d0P0 c R0[>]/ = (/)• 

Let N0 = P0/(/), so N0 is a module over P0M» an(i we can also yiew N0 

as a module over P[x]. When so viewed, we denote N0 by N. Let d e R be any 
element reducing to d0 mod p. Then d $ p since d0 # 0. The module N0 has 
a finite filtration such that each factor module of the filtration is isomorphic to 
some P0W/6o where Q0 is an associated prime of N0. Let Q be the inverse 
image of Q0 in P[x]. These prime ideals Q are precisely the associated primes 
of N in P[x]. Since d0 kills N0 it follows that d kills N and therefore d lies in 
every associated prime of N. By the maximality property in the selection of P, 
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it follows that every one of the factor modules in the filtration of N has a finite 
free resolution, and by Theorem 2.7 it follows that N itself has a finite free 
resolution. 

Now we view R0[x] as an R[x]-module, via the canonical homomorphism 

«W - *oM = RW/pRlxl 

By assumption, p has a finite free resolution as R-module, say 

0 —> En Eq —► p —► 0. 

Then we may simply form the modules £,[x] in the obvious sense to obtain a 
finite free resolution of p[x] = pR[x]. From the exact sequence 

0 -► pfl[x] K[x] -► ^oW -> 0 

we conclude that R0[x] has a finite free resolution as K[x]-module. 
Since R0 is entire, it follows that the principal ideal (/) in R0[x] is K[x]- 

isomorphic to K0[x], and therefore has a finite free resolution as K[x]-module. 
Theorem 2.7 applied to the exact sequence of /?[x]-modules 

0 —► (/) —► Po —► N —► 0 

shows that P0 has a finite free resolution; and further applied to the exact 
sequence 

0 —► p.R[[x[] —* p —► Po * o 

shows that P has a finite free resolution, thereby concluding the proof of 
Theorem 2.8. 

§3. UNIMODULAR POLYNOMIAL VECTORS 

Let A be a commutative ring. Let (/l9..., /„) be elements of A generating 
the unit ideal. We call such elements unimodular. We shall say that they have 
the unimodular extension property if there exists a matrix in GLn(A) with first 
column f(/j,... ,/„). If A is a principal entire ring, then it is a trivial exercise to 
prove that this is always the case. Serre originally asked the question whether 
it is true for a polynomial ring k[xl9..., xr] over a field k. The problem was 
solved by Quillen and Suslin. We give here a simplification of Suslin’s proof by 
Vaserstein, also using a previous result of Horrocks. The method is by induc¬ 
tion on the number of variables, in some fashion. 

We shall write / = \1u • • •»/«) f°r the column vector. We first remark 
that/has the unimodular extension property if and only if the vector obtained 
by a permutation of its components has this property. Similarly, we can make 
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the usual row operations, adding a multiple gf to /■ (J # i), and / has the uni- 
modular extension property if and only if any one of its transforms by row 
operations has the unimodular extension property. 

We first prove the theorem in a context which allows the induction. 

Theorem 3.1. (Horrocks). Let (o, m) be a local ring and let A = o[x] 

be the polynomial ring in one variable over o. Let f be a unimodular vector 

in A(n) such that some component has leading coefficient 1. Then f has the 

unimodular extension property. 

Proof. (Suslin). If n = 1 or 2 then the theorem is obvious even without 
assuming that o is local. So we assume n ^ 3 and do an induction of the 
smallest degree d of a component of/ with leading coefficient 1. First we note 
that by the Euclidean algorithm and row operations, we may assume that fx 

has leading coefficient 1, degree d, and that deg/ < d for j / 1. Since/ is 
unimodular, a relation £ g{f = 1 shows that not all coefficients of /2, ...,/„ 
can lie in the maximal ideal m. Without loss of generality, we may assume that 
some coefficient off2 does not lie in m and so is a unit since o is local. Write 

/i(x) = xd + ad_ Xxd~ 1 + • ■ • + a0 with a{ e o, 

/2(x) = b5xs + • • • + b0 with bt e o, s ^ d - 1, 

so that some b{ is a unit. Let a be the ideal generated by all leading coefficients 
of polynomials g{f{ + g2f2 of degree ^ d — 1. Then a contains all the co¬ 
efficients bh i = 0,..., s. One sees this by descending induction, starting with 
bs which is obvious, and then using a linear combination 

xd~sf2(x) - bjfx). 

Therefore a is the unit ideal, and there exists a polynomial glfl + g2f2 of 
degree ^ d — 1 and leading coefficient 1. By row operations, we may now get 
a polynomial of degree ^ d — 1 and leading coefficient 1 as some component 
in the i-th place for some i # 1, 2. Thus ultimately, by induction, we may 
assume that d — 0 in which case the theorem is obvious. This concludes the 
proof. 

Over any commutative ring A, for two column vectors /, g we write / ~ g 

over A to mean that there exists M e GLn(A) such that 

/= Mg, 

and we say that / is equivalent to g over A. Horrocks’ theorem states that a 
unimodular vector/ with one component having leading coefficient 1 is o[x]- 
equivalent to the first unit vector el. We are interested in getting a similar 
descent over non-local rings. We can write / = /(x), and there is a natural 
“constant” vector/(0) formed with the constant coefficients. As a corollary of 
Horrocks’ theorem, we get: 
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Corollary 3.2. Let o be a local ring. Let f be a unimodular vector in 

o[x](n) such that some component has leading coefficient 1. Then f ~ /(0) 
over o[x]. 

Proof. Note that/(0) e o(M) has one component which is a unit. It suffices 
to prove that over any commutative ring R any element c e R(n) such that some 
component is a unit is equivalent over R to c1, and this is obvious. 

Lemma 3.3. Let R be an entire ring, and let S be a multiplicative subset. 

Let x, y be independent variables. If fix) ~/(0) over S~lR[x], then there exists 

c e S such that f(x -I- cy) ~ fix) over /?[x, y\. 

Proof. Let MeGL„(5_1R[x]) be such that /(x) = M(x)/(0). Then 
M(x)~ fix) = fi 0) is constant, and thus invariant under translation x i—► x + y. 

Let 

G(x, y) = M(x)M(x + y)~ L 

Then G(x, y)/(x + y) = /(x). We have G(x, 0) = / whence 

G(x, y) = / + y//(x, y) 

with H(x, y) e S~ ^[x, y]. There exists ce S such that cH has coefficients in 
R. Then G(x, cy) has coefficients in R. Since det Af(x) is constant in S~ 1R, it 
follows that det Af(x + cy) is equal to this same constant and therefore that 
det G(x, cy) = 1. This proves the lemma. 

Theorem 3.4. Let R be an entire ring, and let f be a unimodular vector in 

/?[x](n), such that one component has leading coefficient 1. Then fix) ~ /(0) 
over /?[*]. 

Proof. Let J be the set of elements ce R such that /(x + cy) is equivalent 
to fix) over R[x, y]. Then J is an ideal, for if c e J and a e R then replacing y 
by ay in the definition of equivalence shows that /(x -f cay) is equivalent to 
fix) over K[x, ay], so over K[x, y]. Equally easily, one sees that if c, c' e J 

then c + c'eJ. Now let p be a prime ideal of R. By Corollary 3.2 we know 
that fix) is equivalent to/(0) over Kp[x], and by Lemma 3.3 it follows that 
there exists ceR and c^p such that /(x + cy) is equivalent to fix) over 
K[x, y]. Hence J is not contained in p, and so J is unit ideal in R, so there exists 
an invertible matrix M(x, y) over K[x, y] such that 

/(x + y) = A#(x, y)f (x). 

Since the homomorphic image of an invertible matrix is invertible, we substitute 
0 for x in this last relation to conclude the proof of the theorem. 

Theorem 3.5. (Quillen-Suslin). Let k be afield and let f be a unimodular 

vector in k[x},. . . , xrfn\ Then f has the unimodular extension property. 
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Proof. By induction on r. If r = 1 then fcfxj is a principal ring and the 
theorem is left to the reader. Assume the theorem for r — 1 variables with r ^ 2, 
and put 

R = x^]. 

We view / as a vector of polynomials in the last variable xr and want to apply 
Theorem 3.4. We can do so if some component of/has leading coefficient 1 in 
the variable xr. We reduce the theorem to this case as follows. The proof of the 
Noether Normalization Theorem (Chapter VIII, Theorem 2.1) shows that if we 
let 

= *r 

y>i = xf — XT' 

then the polynomial vector 

f(xl,...,xr) = g(yu...,yr) 

has one component with ^-leading coefficient equal to 1. Hence there exists a 
matrix N(y) = M(x) invertible over K[xr] = K[jr] such that 

g(yu -,y,) = N(yu yr)g(yu ...,yr-i, 0), 

and g(yu ...,yr_lt 0) is unimodular in fc[y,, ...,yr~ 1]<B). We can therefore 
conclude the proof by induction. 

We now give other formulations of the theorem. First we recall that a 
module E over a commutative ring A is called stably free if there exists a finite 
free module F such that E © F is finite free. 

We shall say that a commutative ring A has the unimodular column exten¬ 
sion property if every unimodular vector / e A(n) has the unimodular extension 
property, for all positive integers n. 

Theorem 3.6. Let A be a commutative ring which has the unimodular column 

extension property. Then every stably free module over A is free. 

Proof. Let E be stably free. We use induction on the rank of the free 
modules F such that E © F is free. By induction, it suffices to prove that if 
E ® A is free then E is free. Let E ® A = A{n) and let 

p : A(n) - A 

be the projection. Let u1 be a basis of A over itself. Viewing A as a direct 
summand in E ® A = A(n) we write 

u1 = '(a,anl) with an e A. 
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Then u1 is unimodular, and by assumption u1 is the first column of a matrix 
M = (ciij) whose determinant is a unit in A. Let 

uj = Mej for j = 1,..., n, 

where e-7 is thej-th unit column vector of A(n\ Note that ul is the first column 
of M. By elementary column operations, we may change M so that uj e E for 

7 = 2,...,n. Indeed, if pe7 = cu{ for j ^ 2 we need only replace e-7 by e7 — ce1. 

Without loss of generality we may therefore assume that w2,..., un lie in E. 

Since M is invertible over A, it follows that M induces an automorphism of 
A(n) as /1-module with itself by 

X^MX. 

It follows immediately from the construction and the fact that A(n) = E © A 

that Af maps the free module with basis {e2,..., en} onto E. This concludes 
the proof. 

If we now feed Serre’s Theorem 2.9 into the present machinery consisting 
of the Quillen-Suslin theorem and Theorem 3.6, we obtain the alternative version 
of the Quillen-Suslin theorem: 

Theorem 3.7. Let k be a field. Then every finite projective module over the 

polynomial ring k[xu . .., xr] is free. 

§4. THE KOSZUL COMPLEX 

In this section, we describe a finite complex built out of the alternating 
product of a free module. This gives an application of the alternating product, 
and also gives a fundamental construction used in algebraic geometry, both 
abstract and complex, as the reader can verify by looking at Griffiths-Harris 
[GrH 78], Chapter V, §3; Grothendieck’s [SGA 6]; Hartshorne [Ha 77], Chapter 
III, §7; and Fulton-Lang [FuL 85], Chapter IV, §2. 

We know from Chapter XX that a free resolution of a module allows us to 
compute certain homology or cohomology groups of a functor. We apply this 
now to Horn and also to the tensor product. Thus we also get examples of explicit 
computations of homology, illustrating Chapter XX, by means of the Koszul 
complex. We shall also obtain a classical application by deriving the so-called 
Hilbert Syzygy theorem. 

Let A be a ring (always assumed commutative) and M a module. A sequence 
of elements xx,..., xr in A is called M-reguIar if M/(xx,. . . , xr)M =£ 0, if xx 
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is not divisor of zero in M, and for i ^ 2, xt is not divisor of 0 in 

It is called regular when M = A. 

Proposition 4.1. Let I = (jcj ,..., xr) be generated by a regular sequence 

in A. Then I/I2 is free of dimension r over A/I. 

Proof Let xf be the class of xf mod I2. It suffices to prove that xl9...9xr 

are linearly independent. We do this by induction on r. For r = 1, if ax = 0, 
then ax = bx2 for some b £ A, so x(a — bx) = 0. Since x is not zero divisor in A9 

we have a = bx so a = 0. 
Now suppose the proposition true for the regular sequence xl5..., xr_v 

Suppose 

£ ax xt = 0 in I/I2. 
i = 1 

We may assume that £ a,x,- = 0 in A; otherwise £ ^x, = £ y, x, with e / and 
we can replace a, by without changing a{. 

Since xr is not zero divisor in A/(x1,..., xr_!) there exist b( £ A such that 

r— 1 r— 1 r—1 

arxr + X aixi = 0 => ar = X M, => X (°i + bixr)xi = 0. 
1=1 i = 1 i= 1 

By induction, 

r— 1 

a, + € X AXj (j = 1,..., r - 1) 
i= 1 

so aj e / for all j, so = 0 for all;, thus proving the proposition. 

Let K, L be complexes, which we write as direct sums 

K = @KP and L = 0L, 

with p, # gZ. Usually, Kp= Lq = 0 for /?, # < 0. Then the tensor product 
K (x) L is the complex such that 

(K ® L)„ = ©Kp® Lq; 
p + q = n 

and for n g Kp, v g Lq the differential is defined by 

d{u ® v) = du ® v + { — 1 )pu ® dv. 

(Carry out the detailed verification, which is routine, that this gives a complex.) 
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Let A be a commutative ring and xe A. We define the complex K(x) to have 
K0(x) = A, Kt(x) = Ael9 where et is a symbol, Aex is the free module of rank 1 
with basis {ex}9 and the boundary map is defined by dex = x, so the complex 
can be represented by the sequence 

0-► Aex ——► A -» 0 

0-+Kx(x)-* K0(x)->0 

More generally, for elements xu ..., xr e A we define the Koszul complex 
K(x) = K(xu ..., xr) as follows. We put: 

K0(x) = A\ 

Kx(x) = free module E with basis {el9..., er}\ 

Kp{x) = free module f^E with basis {ei{ a • • • a eip}, i\ < • • • < ip; 

Kr(x) = free module /\E of rank 1 with basis ex a • • • a er. 

We define the boundary maps by det = xf and in general 

d:Kp(x)^Kp^(x) 

by 
p 

d(eit a • • • a eip) = I( - iy'~ lxtj eh a • • • a ttj a • • 

A direct verification shows that d2 = 0, so we have a complex 

a e{ 

0 - Kr(x) --> Kp(x) --> Kx(x) -> A -► 0 

The next lemma shows the extent to which the complex is independent of the 
ideal / = (xj,... , xr) generated by (x). Let 

I = (Xj,...,Xr) =5 I = yr) 

be two ideals of A. We have a natural ring homomorphism 

can : A/l -> A/I. 

Let {e'l9... 9 e'rj be a basis for Kx(y)9 and let 

y{ = Yj cuxj cu e A. 

We define fx \Kx(y) -> K^x) by 

Ae'i = Z cuei 
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and 

/, = /i a • • • a fu product taken p times. 

Let D = det(ctJ) be the determinant. Then for p = r we get that 

fr: Kr(y) -► Kr(x) is multiplication by D. 

Lemma 4.2. Notation as above, the homomorphisms fp define a morphism of 

Koszul complexes: 

>Kr(y)- 

fr = D 

>Kp(y) 

fp 

>Kp(x) 

Kfiy) 

/, 

K,(x) 

A - 

id 

A - 

A/I' 

A/I 

0 

0 

and define an isomorphism ifD is a unit in A, for instance if (y) is a permutation 

of (x). 

Proof. By definition 

/(<?;. a ••• A e'ip) = Ciue^ A ••• A 

Then 

fd(e’it a • • • a e'ip) 

= /(X (- O'1- lyike'h a • • • a ^ a • • • a 

= I (- lf~ X chje) a • • • a X a • • • A 
* \j=i / * 

= x (-!)*“'(jtpijej) A ••• a 

^ v J 

omitted 

= A ••• A e'ip) 

using yt = X cikJ-xj- This concludes the proof that the //; define a homomorphism 
of complexes. 

In particular, if (x) and (y) generate the same ideal, and the determinant D 

is a unit (i.e. the linear transformation going from (x) to (y) is invertible over 
the ring), then the two Koszul complexes are isomorphic. 
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The next lemma gives us a useful way of making inductions later. 

Proposition 4.3. There is a natural isomorphism 

K(xu ..., xr) « K(x{) (g) • • • (g) K(xr). 

Proof. The proof will be left as an exercise. 

Let / = (xl9..., xr) be the ideal generated by xl5..., xr. Then directly from 
the definitions we see that the 0-th homology of the Koszul complex is simply 
A/IA. 

More generally, let M be an A-module. Define the Koszul complex of M by 

K(x; M) = K(xu..., xr; M) = K(xl9..., xr) <g)A M 

Then this complex looks like 

0 Kr(x) ®M^>-> K2(x) ®aM^> Af(r) -> M -> 0. 

We sometimes abbreviate Hp{x\ M) for HpK(x\ M). The first and last homology 
groups are then obtained directly from the definition of boundary. We get 

Hq(K(x\ M)) « M/IM\ 

Hr{K{x)\ M) = {v e M such that xp = 0 for all i = 1,.. . , r}. 

In light of Proposition 4.3, we study generally what happens to a tensor 
product of any complex with K(x), when x consists of a single element. Let 
y e A and let C be an arbitrary complex of A-modules. We have an exact sequence 
of complexes 

(1) 0 C C ® K(y) ^(C® K(y))/C 0 

made explicit as follows. 

o-*cn+l-»(CB+1 ® A)®(Cn® Kx(y)) ->Cn® AT,(y)- 

dn <8> id 

o-♦ C„ ——+(C„ ®A)@ (Cn_j ® Kt(y)->Cn®AT,(y))-K) 

dn _ i <g) id 

1-® i4)©'(C._2® AT,(y))->C„_2® AT,(y)->0 0 
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We note that C ® Kx{y) is just C with a dimension shift by one unit, in other 
words 

(2) (C ® Kx(y))n + x = Cn®Kx(y). 

In particular, 

(3) Hn+l(C ® K{y)/C) = Hn(C). 

Associated with an exact sequence of complexes, we have the homology sequence, 
which in this case yields the long exact sequence 

-►//„+ >(C)-► Hn+ ,(C <g> K,(y)) 

Hn+l(C®K(y)/C)—^Hn(C) 
u 

Hn(Q 

which we write stacked up according to the index: 

(4) -> Hp+l(C) //p+I(C) -► Hp+i(C ® AT(y)) -> 

Hp(C) Hp(C) -> Hp(C ® K(y)) 

ending in lowest dimension with 

(5) HX(C) -+ HX(C ® tf(y)) -> H0(C) -+ //0(C). 

Furthermore, a direct application of the definition of the boundary map and the 
tensor product of complexes yields: 

The boundary map on Hp(C) (p ^ 0) is induced by multiplication by (—\Yy\ 

(6) a = (-1 )pm(y):Hp(C)^Hp(C). 

Indeed, write 

(C ® K(y))p = (Cp ® A) © (Cp_, ® *,(y)) - Cp ® Cp_,. 

Let (i>, w) e Cp © Cp-X with v e Cp and w e C^. Then directly from the 
definitions, 

(7) d{v, w) = (dv -I- (—\)p~xyw, dw). 

To see (6), one merely follows up the definitions of the boundary, taking an 
element w e Cp ~ Cp ® A^(y), lifting back to (0, w), applying d, and lifting 
back to Cp. If we start with a cycle, i.e. dw = 0, then the map is well defined 
on the homology class, with values in the homology. 

Lemma 4.4. Lety e A and let Cbea complex as above. Then m(y) annihilates 
Hp(C®K(y))forallp^0. 

Proof. If (v, w) is a cycle, i.e. d(v, w) = 0, then from (7) we get at once 
that (yv, yw) = d{0, (— \)pv), which proves the lemma. 



856 FINITE FREE RESOLUTIONS XXI, §4 

In the applications we have in mind, we let y = xr and 

C = K(xu ..., xr-X; M) = K(xx,. . . , xr.{) ® M. 

Then we obtain: 

Theorem 4.5.(a) There is an exact sequence with maps as above: 

-> HpK(xl9. .. , xr-X \ M) -> HpK(xx,..., xr.x\M) -> HpK(xx,. .. , *r; Af) 

-» Hx(x i, ..., *r; M) -> H0(x i,... , jcr_i; M) //0(*i, •.., ^r_i; M). 

(b) Ev^ry element of I = (xx,..., xr) annihilates HJx; M) for p ^ 0. 
(c) If I = A, /Ae/i //p(jc; M) - 0/or all p^O. 

Proof. This is immediate from Proposition 4.3 and Lemma 4.4. 

We define the augmented Koszul complex to be 

0 Kr(x\ M) —>-^ A:,(a:; M) = M(r) M M/IM 0. 

Theorem 4.6. Lo/ M be an A-module. 

(a) Let xXy..., xr be a regular sequence for M. Then HpK(x; M) = 0 for 

p > 0. (Of course, H0K(x; M) - M/IM.) In other words, the augmented 

Koszul complex is exact. 

(b) Conversely, suppose A is local, and xx, ..., xr lie in the maximal ideal of 

A. Suppose M is finite over A, and also assume that HxK(x; M) = 0. Then 

(xx, ..., xr) is M-regular. 

Proof. We prove (a) by induction on r. If r = 1 then Hx(x; M) = 0 directly 
from the definition. Suppose r > 1. We use the exact sequence of Theorem 
4.5(a). If p > 1 then Hp(x; M) is between two homology groups which are 0, so 
Hp(x\ M) = 0. If p = 1, we use the very end of the exact sequence of Theorem 
4.5(a), noting that m(xr) is injective, so by induction we find Hx(x\ M) = 0 also, 
thus proving (a). 

As to (b), by Lemma 4.4 and the hypothesis, we get an exact sequence 

»i(*i, A/) —i , Arr_,; M) —*■ //,(*; M) = 0, 

so m(xr) is surjective. By Nakayama’s lemma, it follows that 

Hx(xXi. . . , xr-X \ M) = 0. 

By induction (xx,. . . , xr-X) is an M-regular sequence. Looking again at the tail 
end of the exact sequence as in (a) shows that xr is M/(xj,. . . , *r_ ^M-regular, 
whence proving (b) and the theorem. 

We note that (b), which uses only the triviality of Hx (and not all Hp) is 
due to Northcott [No 68], 8.5, Theorem 8. By (a), it follows that Hp = 0 for 
p > 0. 
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An important special case of Theorem 4.6(a) is when M = A, in which case 
we restate the theorem in the form: 

Let *!,..., xr be a regular sequence in A. Then K(x{,. . . , xr) is a free 

resolution of A/1: 

0 - Kr(x) --> Kfx) ->/!-► A/I -> 0. 

In particular, A/I has Tor-dimension ^ r. 

For the Horn functor, we have: 

Theorem 4.7. Let x{,..., xr be a regular sequence in A. Then there is an 

isomorphism 

(pXtM : Hr(Hom(K(x\ M)) - M/IM 

to be described below. 

Proof The module Kr(x) is 1-dimensional, with basis ex a • • • a er. 

Depending on this basis, we have an isomorphism 

Horn(Kr(x\ M) % M, 

whereby a homomorphism is determined by its value at the basis element in M. 

Then directly from the definition of the boundary map dr in the Koszul complex, 
which is 

r 

dr: ex a • • • a er 2 (-1)7-1 A • • • A ej A • • • A er 
;=i 

we see that 

Hr(Hom(Kr(x)9 M) *s Horn(Kr(x), M)fdr~1 Horn(^(x), M) 

% M/IM. 

This proves the theorem. 

The reader who has read Chapter XX knows that the i-th homology group 
of Hom(X(^), M) is called Extl(A/1, M), determined up to a unique isomorphism 
by the complex, since two resolutions of A/1 differ by a morphism of complexes, 
and two such morphisms differ by a homotopy which induces a homology iso¬ 
morphism. Thus Theorem 4.7 gives an isomorphism 

cpXtM: Extr(A/f M) - M/IM. 

In fact, we shall obtain morphisms of the Koszul complex from changing the 
sequence. We go back to the hypothesis of Lemma 4.2. 
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Lemma 4.8. If I = (x) = (y) where (x), (y) are two regular sequences, then 

we have a commutative diagram 

Exir(A/f : 

M/IM 

D = det(c„) 

M/IM 

where all the maps are isomorphisms of A/1-modules. 

The fact that we are dealing with A/1-modules is immediate since multiplication 
by an element of A commutes with all homomorphisms in sight, and I an¬ 
nihilates A/1. 

By Proposition 4.1, we know that 7/72 is a free module of rank r over A/1. 

Hence 

Aw2) 
is a free module of rank 1, with basis xx a • • • a xr (where the bar denotes 
residue class mod I2). Taking the dual of this exterior product, we see that under 
a change of basis, it transforms according to the inverse of the determinant 
mod I2. This allows us to get a canonical isomorphism as in the next theorem. 

Theorem 4.9. Let xXi..., xr be a regular sequence in A, and let I = (x). 
Let M be an A-module. Let 

: M/IM (M/IM) ® AW2)dual 

be the embedding determined by the basis (Xi a • • • a xr)dual of /\r(///2)dual. 
Then the composite isomorphism 

Extr(A/I, M) M/IM ^ (M/IM) ® /\r(///2)dual 

is a functorial isomorphism, independent of the choice of regular generators 

for /. 

We also have the analogue of Theorem 4.5 in intermediate dimensions. 

Theorem 4.10. Let xlt..., xr be an M-regular sequence in A. Let I = (x). 
Then 

Ext‘(y4/7, A7) = 0 for i < r. 

Proof For the proof, we assume that the reader is acquainted with the 
exact homology sequence. Assume by induction that Ext*(^//, M) = 0 for 
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i < r — 1. Then we have the exact sequence 

0 = Ext' - '(A/1, M/x,M) —► Ext'(^//, M) Extf(-4//, M) 

for i < r. But x{e I so multiplication by Xj induces 0 on the homology groups, 
which gives Extl(A/I, M) = 0 as desired. 

Let Lff —► N —► 0 be a free resolution of a module N. By definition, 

Torf(N, M) = i-th homology of the complex L ® M. 

This is independent of the choice of LN up to a unique isomorphism. We now 
want to do for Tor what we have just done for Ext. 

Theorem 4.11. Let / = (xj,..., xr) be an ideal of A generated by a regular 

sequence of length r. 

(i) There is a natural isomorphism 

Tovf(A/l,A/I) « fyAII(I/I2), for i* 0. 

(ii) Let L be a free A/I-module, extended naturally to an A-module. Then 

Tort(L,A/I)*L®/VA/I(I/I2l for i^O. 

These isomorphisms will follow from the next considerations. 
First we use again that the residue classes xl9..., xr mod I2 form a basis of 

I/I2 over A/I. Therefore we have a unique isomorphism of complexes 

<px: K(x) ® A/I A (I/I2) = © AW/2) 

with zero differentials on the right-hand side, such that 

eix a ••• a eip i ► Xj-j a ••• a xip. 

Lemma 4.12. Let I = (x) D T = (y) be two ideals generated by regular 

sequences of length r. Let f: AT(y) —» £(x) be the morphism ofKoszul complexes 

defined in Lemma 4.2. Then the following diagram is commutative: 

K(y) ® A/T -*-»A AirV/r2) 

f (g) can canonical hom 

<Px 
K(x) ® A/I A ahV/i2) 
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Proof. We have 

<Px ° (/ ® can)(e;, a • • • a e'ip ® 1) 

r r 

= I CltjXj A • • • A I 
j=2 j=l 

= yfl A • • • a ylp = can^/ej., a • • • a e,'p)). 

This proves the lemma. 

In particular, if /' = / then we have the commutative diagram 

K(y) 

J ®d 

K(x) 

which shows that the identification of Tor,04//, A/I) with /\‘(///2) via the 
choices of bases is compatible under one isomorphism of the Koszul complexes, 
which provide a resolution of A/I. Since any other homomorphism of Koszul 
complexes is homotopic to this one, it follows that this identification does not 
depend on the choices made and proves the first part of Theorem 4.11. 

The second part follows at once, because we have 

Torf(A/I, L) = Hi(K(x) ® L) = H&K(x) ®A A/I) ®AfI L 

= fyAII(I/I2)®L. 

This concludes the proof of Theorem 4.11. 

Example. Let k be a field and let A = fc[xl5..., xr] be the polynomial ring 
in r variables. Let / = (x1?..., xr) be the ideal generated by the variables. Then 
A/I = k, and therefore Theorem 4.11 yields for i ^ 0: 

Torf(k9 k) « AHl/I2) 

Tor ?(L, k)*L® A MU2) 

Note that in the present case, we can think of I/I2 as the vector space over k with 
basis Xj,..., xr. Then A can be viewed as the symmetric algebra SE, where E 

is this vector space. We can give a specific example of the Koszul complex in this 
context as in the next theorem, given for a free module. 
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Theorem 4.13. Let E be a finite free module of rank r over the ring R. For 
each p = 1,..., r there is a unique homomorphism 

dp:/\pE®SE^/\p~1E®SE 

such that 

di((xl A • • • A xp) <g> y) 

= £ (- 1)' ‘(*1 A • • • A $ A • • • A Xp) <g) (Xj ® >>) 

i =1 

where x{ e E and y e SE. This gives the resolution 

0 - f\rE ®SE^/\r~lE®SE^-► f\°E (x) - K - 0 

Proof The above definitions are merely examples of the Koszul complex 
for the symmetric algebra SE with respect to the regular sequence consisting of 
some basis of E. 

Since dp maps f\pE ® SqE into f\p~ lE ® Sq+lE, we can decompose this 
complex into a direct sum corresponding to a given graded component, and 
hence: 

Corollary 4.14. For each integer n ^ l, we have an exact sequence 

0 - /\rE ® Sn~rE -►-► /\lE ® Sn~ lE - SnE - 0 

where SjE = 0 for j < 0. 

Finally, we give an application to a classical theorem of Hilbert. The poly¬ 
nomial ring A = k[_xu ..., xr] is naturally graded, by the degrees of the homo¬ 
geneous components. We shall consider graded modules, where the grading is in 
dimensions ^ 0, and we assume that homomorphisms are graded of degree 0. 

So suppose M is a graded module (and thus Mt = 0 for i < 0) and M is finite 
over A. Then we can find a graded surjective homomorphism 

Lq-M-0 

where L0 is finite free. Indeed, let wl9..., w„ be homogeneous generators of M. 
Let el9..., en be basis elements for a free module L0 over A. We give L0 the 
grading such that if a e A is homogeneous of degree d then ae{ is homogeneous of 
degree 

deg ae{ = deg a H- deg wf. 

Then the homomorphism of L0 onto M sending e,-i—>wt is graded as desired. 
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The kernel M1 is a graded submodule of L0. Repeating the process, we can find a 
surjective homomorphism 

Lx Mi -► 0. 

We continue in this way to obtain a graded resolution of M. We want this 
resolution to stop, and the possibility of its stopping is given by the next theorem. 

Theorem 4.15. (Hilbert Syzygy Theorem). Let k be a field and 

A = fc[xl5...,xr] 

the polynomial ring in r variables. Let M be a graded module over A, and let 

0 —► K. —► Lr _ i Lq —► M —► 0 

be an exact sequence of graded homomorphisms of graded modules, such that 

L0,..., Lr_! are free. Then K is free. If M is in addition finite over A and 

L0,..., Lr_ l are finite free, then K is finite free. 

Proof From the Koszul complex we know that Tor,(M, k) = 0 for i > r 

and all M. By dimension shifting, it follows that 

Tori(K, k) = 0 for i > 0. 

The theorem is then a consequence of the next result. 

Theorem 4.16. Let F be a graded finite module over A = k[xl9 ..., xr]. If 

Tor^F, k) = 0 then F is free. 

Proof. The method is essentially to do a Nakayama type argument in the 
case of the non-local ring A. First note that 

F (x) k = F/IF 

where / = (xx,..., xr). Thus F (g) k is naturally an A/I — fc-module. Let 
vl9..., vn be homogeneous elements of F whose residue classes mod IF form a 
basis of F/IF over k. Let L be a free module with basis el9..., en. Let 

L-F 

be the graded homomorphism sending et h-► v( for i = 1,..., n. It suffices to 
prove that this is an isomorphism. Let C be the cokernel, so we have the exact 
sequence 

L - F - C - 0. 

Tensoring with k yields the exact sequence 

L(g)/c->F(x)k-»C(g)/c->0. 
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Since by construction the map L ® k -> F ® k is surjective, it follows that 
C ®k = 0. But C is graded, so the next lemma shows that C = 0. 

Lemma 4.17. Let N be a graded module over A = k[xl9..., xr]. Let 

I = (x i,..., xr). IfN/IN = 0 then N = 0. 

Proo/ This is immediate by using the grading, looking at elements of N 

of smallest degree if they exist, and using the fact that elements of / have degree 
>0. 

We now get an exact sequence of graded modules 

O-F-L^F-O 

and we must show that E = 0. But the exact homology sequence and our as¬ 
sumption yields 

0 = Tor^F, /c)->F(x)/c-»L(x)/c->F(x)k->0. 

By construction L (x) /c -► F (x) /c is an isomorphism, and hence E (x) k = 0. 
Lemma 4.17 now shows that E — 0. This concludes the proof of the syzygy 
theorem. 

Remark. The only place in the proof where we used that k is a field is in the 
proof of Theorem 4.16 when we picked homogeneous elements vi9..., vn in M 
whose residue classes mod IM form a basis of M/IM over A/I A. Hilbert’s 
theorem can be generalized by making the appropriate hypothesis which allows 
us to carry out this step, as follows. 

Theorem 4.18. Let R he a commutative local ring and let A = R[x1? ...,xr] 
be the polynomial ring in r variables. Let M be a graded finite module over A, 
projective over R. Let 

0 —* K. —* Lr _ j Lq —► M —► 0 

be an exact sequence of graded homomorphisms of graded modules such that 

L0,..., Lr_! are finite free. Then K is finite free. 

Proof Replace k by R everywhere in the proof of the Hilbert syzygy 
theorem. We use the fact that a finite projective module over a local ring is free. 
Not a word needs to be changed in the above proof with the following exception. 
We note that the projectivity propagates to the kernels and cokernels in the 
given resolution. Thus F in the statement of Theorem 4.16 may be assumed 
projective, and each graded component is projective. Then F//F is projective 
over A/IA = R, and so is each graded component. Since a finite projective 
module over a local ring is free, and one gets the freeness by lifting a basis from the 
residue class field, we may pick vu ... ,vn homogeneous exactly as we did in the 

proof of Theorem 4.16. This concludes the proof. 



864 FINITE FREE RESOLUTIONS XXI, Ex 

EXERCISES 

For exercises 1 through 4 on the Koszul complex, see [No 68], Chapter 8. 

1. Let 0 —> M' —> M —» M" —» 0 be an exact sequence of A-modules. Show that tensoring 
with the Koszul complex K{x) one gets an exact sequence of complexes, and therefore 
an exact homology sequence 

0 HrK{x\ M') HrK(x\ M) HrK(x; M") • 

-> HpK{jc; M') HpK(x; M) -► HpK(x; M") -► • • • 

-> H0K(x; M') HqK(x; M) -> HqKQc; M") 0 

2. (a) Show that there is a unique homomorphism of complexes 

f :K(x; M) —» K(xx,..., xr_x\ M) 

such that for v E M: 

/P(e„ a • • • a eip ® v) = 
I«/, A 
I e, . A 

A e. ® JC..Z7 if /_ = r ip r p 

A e -. ® v if /_ = r. 

(b) Show that / is injective if xr is not a divisor of zero in M. 
(c) For a complex C, denote by C(-l) the complex shifted by one place to the left, 

so C(—1)„ = C„_, for all n. Let M = M/xrM. Show that there is a unique 

homomorphism of complexes 

9: £(*„ • • •, *r—i, 1; M) -> K(xx,.. ., JCr_,; M)(-l) 

such that for v E M: 

_ fe.- A A e. 
A ••• A Cip®V) = |o‘ 

1 v if ip - r 

if ip < r. 

(d) If xr is not a divisor of 0 in M, show that the following sequence is exact: 

0 —* K(x\ M) -4 jcr.„ K(x.. Af)(-1)^0. 

Using Theorem 4.5(c), conclude that for all p ^ 0, there is an isomorphism 

HpK(x\ M) ^ ^(x„ . . . , M). 

3. Assume A and M Noetherian. Let / be an ideal of A. Let ax,... 9 ak be an M-regular 
sequence in /. Show that this sequence can be extended to a maximal M-regular 
sequence ax,..., aq in /, in other words an M-regular sequence such that there is 
no M-regular sequence ax,..., aq+x in /. 

4. Again assume A and M Noetherian. Let / = (jc,, ..., xr) and let ax,..., a? be a 
maximal M-regular sequence in /. Assume IM =£ M. Prove that 

Hr_q(x\ M) =£ 0 but //p(jc; M) = 0 for p > r - q. 

[See [No 68], 8.5 Theorem 6. The result is similar to the result in Exercise 5, and 
generalizes Theorem 4.5(a). See also [Mat 80], pp. 100-103. The result shows that 
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all maximal M-regular sequences in M have the same length, which is called the 
/-depth of M and is denoted by depth7(M). For the proof, let s be the maximal integer 
such that HsK{x\ M) =£ 0. By assumption, H0(x\ M) = M/IM =£ 0, so s exists. 
We have to prove that q 4- s = r. First note that if q — 0 then s — r. Indeed, if 
q = 0 then every element of / is zero divisor in M, whence / is contained in the 
union of the associated primes of M, whence in some associated prime of M. Hence 
Hr(x\ M) ± 0. 

Next assume q > 0 and proceed by induction. Consider the exact sequence 

0 —> M ^ M —> M/axM 0 

where the first map is m(ax). Since / annihilates Hp{x\ M) by Theorem 4.5(c), we 
get an exact sequence 

0 -► Hp{jc; M) -> Hp{x\ M/axM) -> Hp_x(x; M) -> 0. 

Hence Hs+X(x; M/axM) ± 0, but Hp(x;M/axM) = Oforp ^ s + 2. From the hypothesis 
that ax,.. ., aq is a maximal M-regular sequence, it follows at once that a2,. . . , aq 
is maximal M/axM-regular in /, so by induction, q — 1 = r — (s 4- 1) and hence 
q -I- s = r, as was to be shown.] 

5. The following exercise combines some notions of Chapter XX on homology, and 
some notions covered in this chapter and in Chapter X, §5. Let M be an A-module. 

Let A be Noetherian, M finite module over A, and / an ideal of A such that IM ^ M. 
Let r be an integer ^ 1. Prove that the following conditions are equivalent: 

(i) Ext‘(JV, M) = 0 for all i < r and all finite modules N such that supp(N) c= (/). 

(ii) Ext‘04/7, M) = 0 for all i < r. 

(iii) There exists a finite module N with supp(N) = ££(/) such that 

Ext‘(jV, M) = 0 for all i < r. 

(iv) There exists an M-regular sequence ai9..., ar in /. 

[Hint : (i) => (ii) => (iii) is clear. For (iii) => (iv), first note that 

0 = Ext°(N, M) = Hom(N, M). 

Assume supp(JV) = 3£(/). Find an M-regular element in /. If there is no such element, 
then / is contained in the set of divisors of 0 of M in A, which is the union of the as¬ 
sociated primes. Hence / c= P for some associated prime P. This yields an injection 
A/P c= M, so 

0 t* HomAp(Ap/PAP, M). 

By hypothesis, NP # 0 so NP/PNP # 0, and NP/PNP is a vector space over AP/PAP, 
so there exists a non-zero AP/PAP homomorphism 

Np/PNp - MP, 

so Hom^Np, Mp) ^ 0, whence Hom(N, M) # 0, a contradiction. This proves the 
existence of one regular element av 
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Now let Mj = M/a1M. The exact sequence 

0-A/ ^M-» M/a,M -*■ 0 

yields the exact cohomology sequence 

- Ext\N, M) - Ext‘(N, M/axM) - Exti+ ‘(AT, M) - 

so Ext‘(iV, M/a^M) = 0 for i < r — 1. By induction there exists an Mx-regular se¬ 

quence a2, •.., ar and we are done. 
Last, (iv) => (i). Assume the existence of the regular sequence. By induction, 

Extf(N, axM) = 0 for i < r — 1. We have an exact sequence for i < r: 

0 - Ext\N, M) % Ext\N, M) 

But supp(N) = ^(ann(A)) C 3£(7), so / C rad(ann(A)), so a x is nilpotent on N. 
Hence ax is nilpotent on Ext'(A, M), so Ext‘(N, M) = 0. Done.] See Matsumura’s 
[Mat 70], p. 100, Theorem 28. The result is useful in algebraic geometry, with for 
instance M = A itself. One thinks of A as the affine coordinate ring of some variety, 
and one thinks of the equations a, = 0 as defining hypersurface sections of this variety, 
and the simultaneous equations ax = • • • = ar = 0 as defining a complete intersection. 
The theorem gives a cohomological criterion in terms of Ext for the existence of such 
a complete intersection. 
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The Transcendence of 
e and n 

The proof which we shall give here follows the classical method of Gelfond 
and Schneider, properly formulated. It is based on a theorem concerning values 
of functions satisfying differential equations, and it had been recognized for some 
time that such values are subject to severe restrictions, in various contexts. 
Here, we deal with the most general algebraic differential equation. 

We shall assume that the reader is acquainted with elementary facts con¬ 
cerning functions of a complex variable. Let / be an entire function (i.e. a 
function which is holomorphic on the complex plane). For our purposes, we 
say / is of order ^ p if there exists a number C > 1 such that for all large R we 
have 

1/(01 ^ c*p 

whenever \z\ ^ R. A meromorphic function is said to be of order ^ p if it is a 
quotient of entire functions of order ^ p. 

Theorem. Let K be a finite extension of the rational numbers. Let fl9..., fN 
be meromorphic functions of order ^ p. Assume that the field K(fl9..., fN) 
has transcendence degree ^ 2 over K, and that the derivative D = d/dz maps 
the ring K[fi9..., fN~\ into itself Let wl9... ,wmbe distinct complex numbers 
not lying among the poles of the fi9 such that 

/(wv)gX 

for all i = 1,..., N and v = 1,..., m. Then m ^ 10p[K : Q]. 

Corollary 1. (Hermite-Lindemann). If a is algebraic {over Q) and # 0, 
then ea is transcendental. Hence n is transcendental. 

867 
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Proof. Suppose that a and e* are algebraic. Let K = Q(a, ea). The two 
functions z and ez are algebraically independent over K (trivial), and the ring 
K[z, ez] is obviously mapped into itself by the derivative. Our functions take on 
algebraic values in K at a, 2a,..., met for any m, contradiction. Since e2ni = 1, 
it follows that 2ni is transcendental. 

Corollary 2. (Gelfond-Schneider). If a w algebraic #0, 1 aw/ if /? w 
algebraic irrational, t/ien = e^loga is transcendental. 

Proof. We proceed as in Corollary 1, considering the functions ept and ef 
which are algebraically independent because is assumed irrational. We look 
at the numbers log a, 2 log a,..., m log a to get a contradiction as in Corollary 1. 

Before giving the main arguments proving the theorem, we state some lemmas. 
The first two, due to Siegel, have to do with integral solutions of linear homo¬ 
geneous equations. 

Lemma 1. Let 

anxx + + alnxn = 0 

ar 1*1 + *•* + arnxn = 0 

be a system of linear equations with integer coefficients air and n > r. Let A 
be a number such that \ a{j | ^ A for all i, j. Then there exists an integral, 
non-trivial solution with 

\xj\£ 2(2nA)r,in~r). 

Proof. We view our system of linear equations as a linear equation 
L(X) = 0, where L is a linear map, L: Z(n) -► Z(r), determined by the matrix of 
coefficients. If B is a positive number, we denote by Z{n\B) the set of vectors X 
in Z(n) such that | X \ ^ B (where | X \ is the maximum of the absolute values 
of the coefficients of X). Then L maps Z{n\B) into Z{r\nBA). The number of 
elements in Z(n\B) is Bn and ^(2B -f 1)”. We seek a value of B such that 
there will be two distinct elements X, Y in Z{n)(B) having the same image, 
L(X) = L(Y). For this, it will suffice that Bn > (2nBA)\ and thus it will suffice 
that 

B = (2nA)r/(n~r). 

We take X — Y as the solution of our problem. 

Let K be a finite extension of Q, and let IK be the integral closure of Z in K. 
From Exercise 5 of Chapter IX, we know that IK is a free module over Z, of 
dimension [X: Q]. We view K as contained in the complex numbers. If 
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a e K, a conjugate of a will be taken to be an element <xa, where o is an embedding 
of K in C. By the size of a set of elements of K we shall mean the maximum of the 
absolute values of all conjugates of these elements. 

By the size of a vector X = (xb...,x„)we shall mean the size of the set of its 
coordinates. 

Let ..., coM be a basis of IK over Z. Let a e IK, and write 

a = alojl + ••• + aMajM. 

Let co\,..., oj'm be the dual basis of col9..., ojm with respect to the trace. Then 
we can express the (Fourier) coefficients cij of a as a trace, 

a} - Tr(aa;'). 

The trace is a sum over the conjugates. Hence the size of these coefficients is 
bounded by the size of a, times a fixed constant, depending on the size of the 
elements a>'-. 

Lemma 2. Let K be a finite extension of Q. Let 

otllxl + ••• + ctlnxn = 0 

0trlXl + *•* + 0trnXn = 0 

be a system of linear equations with coefficients in IK, and n > r. Let A be a 
number such that size(a^) ^ A, for all i, j. Then there exists a non-trivial 
solution X in IK such that 

size(X) ^ Cl(C2nA)r,in~r\ 

where CX,C2 are constants depending only on K. 

Proof Let cou ..., coM be a basis of IK over Z. Each x} can be written 

Xj = ^jl^l + * * * + ^jM^M 

with unknowns £JX. Each a,v can be written 

aij = tiij1o)l -F • • • 4- uijM(oM 

with integers aijk e Z. If we multiply out the a^Xy, we find that our linear equa¬ 
tions with coefficients in IK are equivalent to a system of rM linear equations in 
the nM unknowns with coefficients in Z, whose size is bounded by CA, where 
C is a number depending only on M and the size of the elements coA, together with 
the products cokcoM9 in other words where C depends only on K. Applying 
Lemma 1, we obtain a solution in terms of the £jX, and hence a solution X in IK, 
whose size satisfies the desired bound. 
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The next lemma has to do with estimates of derivatives. By the size of a 
polynomial with coefficients in K, we shall mean the size of its set of coefficients. 
A denominator for a set of elements of K will be any positive rational integer 
whose product with every element of the set is an algebraic integer. We define in 
a similar way a denominator for a polynomial with coefficients in K. We 
abbreviate “denominator” by den. 

Let 

Wl, ..., Tn) = £ a(v)M(v)(T) 

be a polynomial with complex coefficients, and let 

Q(T19...,Tn) = ZjP(x)M(v)(T) 

be a polynomial with real coefficients ^0. We say that Q dominates P if 
|a(v)| < j?(v) for all (v). It is then immediately verified that the relation of domi¬ 
nance is preserved under addition, multiplication, and taking partial derivatives 
with respect to the variables Tu ..., TN. 

Lemma 3. Let K be of finite degree over Q. Let fu ..., fN be functions, 

holomorphic on a neighborhood of a point we C, and assume that D = d/dz 

maps the ring K[fu ..., fN~\ into itself Assume that f(w) e K for all i. Then 

there exists a number CY having the following property. Let P(Tl9..., TN) be 

a polynomial with coefficients in K, of degree ^ r. If we set f = P(/1?..., fN\ 

then we have, for all positive integers k, 

size(Dk/(w)) ^ size(P)r*/c!C*+r 

Furthermore, there is a denominator for Dkf(w) bounded by den(P)C\+r. 

Proof There exist polynomials P,(T\,..., TN) with coefficients in K such 
that 

Dfi = Pi(fi, ■..,/*)■ 

Let h be the maximum of their degrees. There exists a unique derivation D on 
K[TX,..., Tn~\ such that DTt = P,(Ti,..., TN). For any polynomial P we have 

D(P(TU ...,Tn))= £ (DiP)(Ti, ...,Tn)- PiTu Tn), 
i = 1 

where £>,,..., DN are the partial derivatives. The polynomial P is dominated by 

size(P)(l + Ti + • • • + TNY, 

and each F, is dominated by size(P,)(l + T, + • • • + TN)h. Thus DP is dominated 
by 

size(P)C2r(l + T, + • • • + TN)r+h. 
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Proceeding inductively, one sees that DkP is dominated by 

size(P)C* r*/c!(l + Tx • • • + TN)r+kh. 

Substituting values /j(w) for Ti9 we obtain the desired bound on Dkf(w). The 
second assertion concerning denominators is proved also by a trivial induction. 

We now come to the main part of the proof of our theorem. Let /, g be two 
functions among fl9..., fN which are algebraically independent over K. Let 
r be a positive integer divisible by 2m. We shall let r tend to infinity at the end 
of the proof. 

Let 

t bijfV 
ij= 1 

have coefficients in K. Let n = r2/2m. We can select the not all equal to 0, 
and such that 

DkF(wy) = 0 

for 0 ^ k < n and v = 1,..., m. Indeed, we have to solve a system of mn linear 
equations in r2 = 2mn unknowns. Note that 

mn _ j 

2 mn — mn 

We multiply these equations by a denominator for the coefficients. Using the 
estimate of Lemma 3, and Lemma 2, we can in fact take the to be algebraic 
integers, whose size is bounded by 

0(rnn\C\+r) S 0(n2n) 

for n -► oo. 

Since /, g are Algebraically independent over K, our function F is not 
identically zero. We let s be the smallest integer such that all derivatives of F 

up to order 5—1 vanish at all points wl9..., wOT, but such that DSF does not 
vanish at one of the w, say wlt Then 5 ^ n. We let 

y = DsF(w1) / 0. 

Then y is an element of X, and by Lemma 3, it has a denominator which is 
bounded by O(Ci) for 5 -► 00. Let c be this denominator. The norm of cy from 
K to Q is then a non-zero rational integer. Each conjugate of cy is bounded by 
0(s5s). Consequently, we get 

1 ^ \N%cy)\ £ 0(s5s)IK:Q]-1|y|, (1) 
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where | y | is the fixed absolute value of y9 which will now be estimated very well by 
global arguments. 

Let 6 be an entire function of order ^ p, such that Of and Og are entire, and 
0(Wl) # 0. Then 62rF is entire. We consider the entire function 

n (*-».>■ 
v= 1 

Then //(wj) differs from DsF(w{) by obvious factors, bounded by C4S!. By the 
maximum modulus principle, its absolute value is bounded by the maximum of 
Horn, large circle of radius R. If we take R large, then z — wv has approximately 
the same absolute value as R, and consequently, on the circle of radius R, H(z) 

is bounded in absolute value by an expression of type 

s3sC25rRP 

Rms 

We select R = s1/2p. We then get the estimate 

\y\ = Sms/2p‘ 

We now let r tend to infinity. Then both n and s tend to infinity. Combining this 
last inequality with inequality (1), we obtain the desired bound on m. This 
concludes the proof. 

Of course, we made no effort to be especially careful in the powers of 5 

occurring in the estimates, and the number 10 can obviously be decreased by 
exercising a little more care in the estimates. 

The theorem we proved is only the simplest in an extensive theory 
dealing with problems of transcendence degree. In some sense, the theorem is 
best possible without additional hypotheses. For instance, if P(t) is a polynomial 
with integer coefficients, then eP{t) will take the value 1 at all roots of P, these being 
algebraic. Furthermore, the functions 

are algebraically independent, but take on values in Q(e) for all integral values 
of t. 

However, one expects rather strong results of algebraic independence to hold. 
Lindemann proved that if at,..., a„ are algebraic numbers, linearly independent 

over Q, then 

e <*1 , ean 

are algebraically independent. 
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More generally, Schanuel has made the following conjecture: If olu ..., a„ 
are complex numbers, linearly independent over Q, then the transcendence 
degree of 

ot1,...,otn,eai9 

should be ^ n. 

From this one would deduce at once the algebraic independence of e and n 

(looking at 1, 2ni, e, e2ni\ and all other independence statements concerning the 
ordinary exponential function and logarithm which one feels to be true, for 
instance, the statement that n cannot lie in the field obtained by starting with the 
algebraic numbers, adjoining values of the exponential function, taking algebraic 
closure, and iterating these two operations. Such statements have to do with 
values of the exponential function lying in certain fields of transcendence degree 
< n, and one hopes that by a suitable deepening of Theorem 1, one will reach 
the desired results. 





APPENDIX 2 

Some Set Theory 

§1. DENUMERABLE SETS 

Let n be a positive integer. Let Jn be the set consisting of all integers /c, 

1 ^ k ^ n. If S is a set, we say that S has n elements if there is a bijection between 
S and Jn. Such a bijection associates with each integer k as above an element of S, 
say k\-+ak. Thus we may use Jn to “ count ” S. Part of what we assume about the 
basic facts concerning positive integers is that if S has n elements, then the integer 
n is uniquely determined by S. 

One also agrees to say that a set has 0 elements if the set is empty. 
We shall say that a set S is denumerable if there exists a bijection of S with the 

set of positive integers Z + . Such a bijection is then said to enumerate the set S. 

It is a mapping 

n i—► cin 

which to each positive integer n associates an element of 5, the mapping being 
injective and surjective. 

If D is a denumerable set, and f:S-+D is a bijection of some set S with D, 
then S is also denumerable. Indeed, there is a bijection g : D -> Z+, and hence 
go f is a bijection of S with Z + . 

Let T be a set. A sequence of elements of T is simply a mapping of Z+ into T. 

If the map is given by the association n\—>x„, we also write the sequence as 
or also {xl5 x2,...}. For simplicity, we also write {x„} for the sequence. 

Thus we think of the sequence as prescribing a first, second,..., n-th element of 
T. We use the same braces for sequences as for sets, but the context will always 
make our meaning clear. 

875 
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Examples. The even positive integers may be viewed as a sequence {x„} if 
we put xn = 2n for n = 1,2, .... The odd positive integers may also be viewed 
as a sequence {yn} if we put yn = 2n — 1 for n = 1, 2,... . In each case, the 
sequence gives an enumeration of the given set. 

We also use the word sequence for mappings of the natural numbers into a set, 
thus allowing our sequences to start from 0 instead of 1. If we need to specify 
whether a sequence starts with the 0-th term or the first term, we write 

{XnJ.ao or {x„}ngl 

according to the desired case. Unless otherwise specified, however, we always 
assume that a sequence will start with the first term. Note that from a sequence 
{xw}n^0 we can define a new sequence by letting yn = xn-x for n ^ 1. Then 
y\ = yi — • • • • Thus there is no essential difference between the two 
kinds of sequences. 

Given a sequence {x„}, we call x„ the n-th term of the sequence. A sequence 
may very well be such that all its terms are equal. For instance, if we let x„ = 1 
for all n ^ 1, we obtain the sequence {1, 1, 1,...}. Thus there is a difference 
between a sequence of elements in a set T, and a subset of T. In the example just 
given, the set of all terms of the sequence consists of one element, namely the 
single number 1. 

Let {xj, x2,...} be a sequence in a set S. By a subsequence we shall mean a 
sequence {xni, x„2,...} such that nx < n2 < ■ • •. For instance, if {x„} is the 
sequence of positive integers, x„ = n, the sequence of even positive integers {x2n} 
is a subsequence. 

An enumeration of a set S is of course a sequence in S. 
A set is finite if the set is empty, or if the set has n elements for some positive 

integer n. If a set is not finite, it is called infinite. 
Occasionally, a map of Jn into a set T will be called a finite sequence in T. 

A finite sequence is written as usual, 

{*i, •••>*..} or {x,}i=1. 

When we need to specify the distinction between finite sequences and maps of 
Z+ into T, we call the latter infinite sequences. Unless otherwise specified, we 
shall use the word sequence to mean infinite sequence. 

Proposition 1.1. Let D be an infinite subset of Z+. Then D is denumerable, 
and in fact there is a unique enumeration of D, say {kl9 k2, ...} such that 

ki < k2 < • • • < kn < kn+! < • • • . 

Proof We let kx be the smallest element of D. Suppose inductively that we 
have defined kx <•••<&„, in such a way that any element k in D which is not 
equal to kl9..., kn is > kn. We define kn+1to be the smallest element of D which 
is > kn. Then the map n i—► /c„ is the desired enumeration of D. 
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Corollary 1.2. Let S be a denumerable set and D an infinite subset of S. 
Then D is denumerable. 

Proof Given an enumeration of 5, the subset D corresponds to a subset of 
Z+ in this enumeration. Using Proposition 1.1, we conclude that we can enumer¬ 

ate D. 

Proposition 1.3. Every infinite set contains a denumerable subset. 

Proof Let S be an infinite set. For every non-empty subset T of 5, we 
select a definite element aT in T. We then proceed by induction. We let x1 be the 
chosen element as. Suppose that we have chosen x1?..., xn having the property 
that for each k = 2,..., n the element xk is the selected element in the subset 
which is the complement of {xl9..., xk-x}. We let xn+ x be the selected element 
in the complement of the set {xl9 ..., x„}. By induction, we thus obtain an 
association n ► x„ for all positive integers n, and since x„ / xk for all ken it 
follows that our association is injective, i.e. gives an enumeration of a subset of S. 

Proposition 1.4. Let D be a denumerable set, and f: D -► S a surjective 
mapping. Then S is denumerable or finite. 

Proof For each ye 5, there exists an element xyeD such that f(xy) = y 
because / is surjective. The association y i—► xv is an injective mapping of S into 
D, because if 

y, z e S and xy = xz 

then 

y = fiXy) = f(x2) = Z. 

Let g(y) = xy. The image of g is a subset of D and D is denumerable. Since g 
is a bijection between S and its image, it follows that S is denumerable or finite. 

Proposition 1.5. Let Dbea denumerable set. Then D x D (the set of all pairs 
(x, y) with x, yeD) is denumerable. 

Proof. There is a bijection between D x D and Z+ x Z + , so it will suffice to 
prove that Z+ xZ+ is denumerable. Consider the mapping of Z+ x Z+->Z + 
given by 

(m, n) h-2"3" 

It is injective, and by Proposition 1.1, our result follows. 

Proposition 1.6. Let {D1? D2, . . .} be a sequence of denumerable sets. Let S 
be the union of all sets Dt (/ = 1,2,.. .). Then S is denumerable. 
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Proof. For each i = 1, 2,... we enumerate the elements of Di9 as indicated 
in the following notation: 

D1 * {*! i, *i2, *13> • • •} 

' {*21> X22> X23> • • •} 

{xiuxi29xi39...} 

The map/:Z+xZ+->D given by 

f(Uj) = 

is then a surjective map of Z+ x Z+ onto 5. By Proposition 1.4, it follows that 
S is denumerable. 

Corollary 1.7. Let F be a non-empty finite set and D a denumerable set. Then 
F x D is denumerable. IfSu S2,... are a sequence of sets, each o/ which is 
finite or denumerable, then the anion u S2 u • • • is denumerable or finite. 

Proof. There is an injection of F into Z + and a bijection of D with Z +. Hence 
there is an injection of F x Z+ into Z+ x Z+ and we can apply Corollary 1.2 
and Proposition 1.6 to prove the first statement. One could also define a sur¬ 
jective map of Z+ x Z+ onto F x D. (Cf. Exercises 1 and 4.) As for the second 
statement, each finite set is contained in some denumerable set, so that the second 
statement follows from Proposition 1.1 and 1.6. 

For convenience, we shall say that a set is countable if it is either finite or 
denumerable. 

§2. ZORN'S LEMMA 

In order to deal efficiently with infinitely many sets simultaneously, one needs 
a special property. To state it, we need some more terminology. 

Let S be a set. An ordering (also called partial ordering) of S is a relation, 
written x ^ y, among some pairs of elements of 5, having the following properties. 

ORD 1. We have x ^ x. 

ORD 2. If x ^ y and y ^ z then x ^ z. 

ORD 3. Ifx ^ y and y ^ x then x = y. 
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We sometimes write y ^ xforx rg y. Note that we don’t require that the relation 
x ^ y or y ^ x hold for every pair of elements (x, y) of S. Some pairs may not be 
comparable. If the ordering satisfies this additional property, then we say that it 
is a total ordering. 

Example 1. Let G be a group. Let S be the set of subgroups. If H, H' are 
subgroups of G, we define 

H SH’ 

if H is a subgroup of H'. One verifies immediately that this relation defines an 
ordering on S. Given two subgroups //, H' of G, we do not necessarily have 
H ^ H' or H' ^ H. 

Example 2. Let R be a ring, and let S be the set of left ideals of R. We define 
an ordering in S in a way similar to the above, namely if L, L are left ideals of R, 
we define 

L^L 

if L ci L'. 

Example 3. Let X be a set, and S the set of subsets of X. If Y, Z are subsets 
of X, we define Y ^ Z if Y is a subset of Z. This defines an ordering on S. 

In all these examples, the relation of ordering is said to be that of inclusion. 
In an ordered set, if x ^ y and x/ywe then write x < y. 

Let A be an ordered set, and B a subset. Then we can define an ordering on B 
by defining x ^ y for x, y e B to hold if and only if x ^ y in A. We shall say that 
R0 is the ordering on B induced by R, or is the restriction to B of the partial 
ordering of A. 

Let S be an ordered set. By a least element of S (or a smallest element) one 
means an element a e S such that a ^ x for all x e S. Similarly, by a greatest 
element one means an element b such that x ^ b for all x e 5. 

By a maximal element m of S one means an element such that if x e 5 and 
x ^ m,thenx = m. Note that a maximal element need not be a greatest element. 
There may be many maximal elements in 5, whereas if a greatest element exists, 
then it is unique (proof?). 

Let S be an ordered set. We shall say that S is totally ordered if given x, y e S 
we have necessarily x ^ y or y ^ x. 

Example 4. The integers Z are totally ordered by the usual ordering. So 
are the real numbers. 

Let S be an ordered set, and T a subset. An upper bound of T (in S) is an 
element b e S such that x ^ b for all x e T. A least upper bound of T in S is an 
upper bound b such that, if c is another upper bound, then b ^ c. We shall say 
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that S is inductively ordered if every non-empty totally ordered subset has an 
upper bound. 

We shall say that S is strictly inductively ordered if every non-empty totally 
ordered subset has a least upper bound. 

In Examples 1, 2, 3, in each case, the set is strictly inductively ordered. To 
prove this, let us take Example 2. Let T be a non-empty totally ordered subset 
of the set of subgroups of G. This means that if//, //' e T,then/f <= H'orH' a H. 
Let U be the union of all sets in T. Then: 

1. U is a subgroup. Proof: If x, ye U, there exist subgroups H, FT eT 
such that x e H and y e H'. If, say, H c= H\ then both x,yeH' and hence 
xyeH'. Hence xyeU. Also, x_1e/F, so x~leU. Hence U is a 
subgroup. 

2. U is an upper bound for each element of T. Proof: Every H eT is con¬ 
tained in U, so H S U for all H eT. 

3. U is a least upper bound for T. Proof : Any subgroup of G which 
contains all the subgroups H eT must then contain their union U. 

The proof that the sets in Examples 2, 3 are strictly inductively ordered is 
entirely similar. 

We can now state the property mentioned at the beginning of the section. 

Zorn’s Lemma. Let S be a non-empty inductively ordered set. Then there 
exists a maximal element in S. 

As an example of Zorn’s lemma, we shall now prove the infinite version of a 
theorem given in Chapters 1, §7, and XIV, §2, namely: 

Let R be an entire, principal ring and let E be a free module over R. Let F be a 
submodule. Then F is free. In fact, if is a basis for F, and F # {0}, 
then there exists a basis for F indexed by a subset of I. 

Proof. For each subset J of / we let Ej be the free submodule of E generated 
by all VjJ e J, and we let F j — Ej n F. We let S be the set of all pairs (Fj, w) 
where J is a subset of /, and w : /' -► Fj is a basis of Fj indexed by a subset J' of J. 
We write w, instead of w(j) for j e J'. If (Fj, w) and (FK, u) are such pairs, we 
define (Fj9 w) ^ (FK, u) if J <= K, if J' c: K', and if the restriction of u to J is 
equal to w. (In other words, the basis u for FK is an extension of the basis w for 
Fj.) This defines an ordering on 5, and it is immediately verified that S is in fact 
inductively ordered, and non-empty (say by the finite case of the result). We can 
therefore apply Zorn’s lemma. Let (Fj, w) be a maximal element. We contend 
that J = I (this will prove our result). Suppose J # / and let fee / but k$J. Let 
K = J u {k}. If 

FjU{k) n F — Fj, 
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then (Fk , w) is a bigger pair than (Fj, w) contradicting the maximality assump¬ 
tion. Otherwise there exist elements of FK which can be written in the form 

cvk + y 

with some yeEj and c e F, c # 0. The set of all elements ceR such that there 
exists ye Ej for which cvk + y e F is an ideal. Let a be a generator of this ideal, 
and let 

wk = avk + y 

be an element of F, with y e Ej. If z e FK then there exists b e R such that 
z — bwk e Ej. But z — bwk e F, whence z — bwk e Fj. It follows at once that 
the family consisting of Wj (j e J) and wk is a basis for FK, thus contradicting the 
maximality again. This proves what we wanted. 

Zorn’s lemma could be just taken as an axiom of set theory. However, it is 
not psychologically completely satisfactory as an axiom, because its statement 
is too involved, and one does not visualize easily the existence of the maximal 
element asserted in that statement. We show how one can prove Zorn’s lemma 
from other properties of sets which everyone would immediately grant as ac¬ 
ceptable psychologically. 

From now on to the end of the proof of Theorem 2.1, we let A be a non¬ 
empty partially ordered and strictly inductively ordered set. We recall that 
strictly inductively ordered means that every nonempty totally ordered subset 
has a least upper bound. We assume given a map /: A -► A such that for all 
x e A we have x ^ /(x). We could call such a map an increasing map. 

Let a e A. Let B be a subset of A. We shall say that B is admissible if: 

1. B contains a. 

2. We have/(F) <= F. 

3. Whenever T is a non-empty totally ordered subset of F, the least upper 
bound of T in A lies in F. 

Then F is also strictly inductively ordered, by the induced ordering of A. We 
shall prove: 

Theorem 2.1. (Bourbaki). Let A be a non-empty partially ordered and 
strictly inductively ordered set. Let f: A -► A be an increasing mapping. 
Then there exists an element x0 e A such that /(x0) = x0. 

Proof. Suppose that A were totally ordered. By assumption, it would have 
a least upper bound be A, and then 

b s m ^ b> 
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so that in this case, our theorem is clear. The whole problem is to reduce the 
theorem to that case. In other words, what we need to find is a totally ordered 
admissible subset of A. 

If we throw out of A all elements xe A such that x is not a, then what 
remains is obviously an admissible subset. Thus without loss of generality, we 
may assume that A has a least element a, that is a ^ x for all xe A. 

Let M be the intersection of all admissible subsets of A. Note that A itself is 
an admissible subset, and that all admissible subsets of A contain a, so that M is 
not empty. Furthermore, M is itself an admissible subset of A. To see this, let 
xe M. Then x is in every admissible subset, so /(x) is also in every admissible 
subset, and hence /(x) e M. Hence /(M) c= M. If T is a totally ordered non¬ 
empty subset of M, and b is the least upper bound of T in A, then b lies in every 
admissible subset of A, and hence lies in M. It follows that M is the smallest 
admissible subset of A, and that any admissible subset of A contained in M is 
equal to M. 

We shall prove that M is totally ordered, and thereby prove Theorem 2.1. 

[First we make some remarks which don’t belong to the proof, but will help 
in the understanding of the subsequent lemmas. Since aeM, we see that 
f(a) e M, / of (a) e M, and in general f\a) e M. Furthermore, 

a ^ /(a) ^ f2(a) g • • •. 

If we had an equality somewhere, we would be finished, so we may assume that 
the inequalities hold. Let D0 be the totally ordered set {f\a)}n^0. Then D0 
looks like this: 

a < f(a) < f2(a) < < f\a) < 

Let aY be the least upper bound of D0. Then we can form 

fli </(«i)</2(«i)<--- 

in the same way to obtain Du and we can continue this process, to obtain 

Du • • • • 

It is clear that Dl9 D2,... are contained in M. If we had a precise way of ex¬ 
pressing the fact that we can establish a never-ending string of such denumerable 
sets, then we would obtain what we want. The point is that we are now trying to 
prove Zorn’s lemma, which is the natural tool for guaranteeing the existence of 
such a string. However, given such a string, we observe that its elements have 
two properties: If c is an element of such a string and x < c, then /(x) ^ c. 
Furthermore, there is no element between c and /(c), that is if x is an element of 
the string, then x ^ c or /(c) ^ x. We shall now prove two lemmas which show 
that elements of M have these properties.] 
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Let c e Af. We shall say that c is an extreme point of M if whenever xeM and 
x < c, then/(x) ^ c. For each extreme point ceM we let 

Mc = set of x e M such that x ^ c or /(c) ^ x. 

Note that Mc is not empty because a is in it. 

Lemma 2.2. We have Mc — M for every extreme point c of M. 

Proof It will suffice to prove that Mc is an admissible subset. Let xeMc. 
If x < c then /(x) ^ c so /(x) e Mc. If x = c then /(x) = /(c) is again in Mc. 
If /(c) ^ x, then /(c) ^ x ^ /(x), so once more /(x)eMc. Thus we have 
proved that f(Mc) a Mc. 

Let T be a totally ordered subset of Mc and let b be the least upper bound of 
T in M. If all elements x e T are ^ c, then b rg c and be Mc. If some x e T is 
such that/(c) ^ x,then/(c) ^ x ^ h, and so his in Mc. This proves our lemma. 

Lemma 2.3. Fycry element of M is an extreme point. 

Proof Let E be the set of extreme points of M. Then E is not empty because 
a e E. It will suffice to prove that E is an admissible subset. We first prove that 
/ maps E into itself. Let ceE. Let x e M and suppose x < /(c). We must prove 
that/(x) ^/(c). By Lemma 2.2, M = Mc, and hence we have x < c, or x = c, 
or /(c) ^ x. This last possibility cannot occur because x < /(c). If x < c 
then 

f(x) S C s /(c). 

If x = c then /(x) = /(c), and hence f(E) cz E. 
Next let T be a totally ordered subset of E. Let b be the least upper bound 

of T in Af. We must prove that b e E. Let x e M and x < b. If for all c e T we 
have/(c) ^ x, then c =/(c) ^ x implies that x is an upper bound for T, whence 
b ^ x, which is impossible. Since Mc = M for all c e. E, we must therefore 
have x ^ c for some c e T. If x < c, then/(x) ^ c ^ h, and if x = c, then 

c = x < b. 

Since c is an extreme point and Mc = Af, we get/(x) ^ h. This proves that 
b e E, that £ is admissible, and thus proves Lemma 2.3. 

We now see trivially that M is totally ordered. For let x, y e M. Then x is an 
extreme point of Af by Lemma 2, and y e Mx so y ^ x or 

x ^ fix) ^ y. 

thereby proving that M is totally ordered. As remarked previously, this con¬ 
cludes the proof of Theorem 2.1. 
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We shall obtain Zorn’s lemma essentially as a corollary of Theorem 2.1. 
We first obtain Zorn’s lemma in a slightly weaker form. 

Corollary 2.4. Let A be a non-empty strictly inductively ordered set. Then A 
has a maximal element. 

Proof. Suppose that A does not have a maximal element. Then for each 
x e A there exists an element yxe A such that x < yx. Let/: A —> A be the map 
such that f(x) = yx for all x e A. Then A, f satisfy the hypotheses of Theorem 
2.1 and applying Theorem 2.1 yields a contradiction. 

The only difference between Corollary 2.4 and Zorn’s lemma is that in 
Corollary 2.4, we assume that a non-empty totally ordered subset has a least 
upper bound, rather than an upper bound. It is, however, a simple matter to 
reduce Zorn’s lemma to the seemingly weaker form of Corollary 2.4. We do 
this in the second corollary. 

Corollary 2.5. (Zorn’s lemma). Let S be a non-empty inductively ordered 
set. Then S has a maximal element. 

Proof. Let A be the set of non-empty totally ordered subsets of S. Then A 
is not empty since any subset of S with one element belongs to A. If X, Y e A, 
we define X ^ Y to mean X c Y. Then A is partially ordered, and is in fact 
strictly inductively ordered. For let T = {XJ; 6/be a totally ordered subset of A. 
Let 

Z = u *1- 
iel 

Then Z is totally ordered. To see this, let x, y e Z. Then x e Xf- and y e Xj for 
some i, j e I. Since T is totally ordered, say X( cz Xj. Then x, y e Xj and since 
Xj is totally ordered, x ^ y or y ^ x. Thus Z is totally ordered, and is obviously 
a least upper bound for T in A. By Corollary 2.4, we conclude that A has a 
maximal element X0. This means that X0 is a maximal totally ordered subset of 
S (non-empty). Let m be an upper bound for X0 in 5. Then m is the desired 
maximal element of S. For if x e S and m ^ x then X0 u {x} is totally ordered, 
whence equal to X0 by the maximality of X0. Thus xel0 and x ^ m. Hence 
x = m, as was to be shown. 

§3. CARDINAL NUMBERS 

Let A, B be sets. We shall say that the cardinality of A is the same as the 
cardinality of B, and write 

card(4) = card(B) 

if there exists a bijection of A onto B. 
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We say card(A) g card(£) if there exists an injective mapping (injection) 
/: A -> B. We also write card (B) ^ card (A) in this case. It is clear that if 
card(A) ^ card(£) and card(B) ^ card(C), then card(A) ^ card(C). 

This amounts to saying that a composite of injective mappings is injective. 
Similarly, if card(A) = card(£) and card(B) = card(C) then card (A) = card(C). 

This amounts to saying that a composite of bijective mappings is bijective. 
We clearly have card(A) = card(A). Using Zorn’s lemma, it is easy to show (see 
Exercise 14) that 

card(A ^ card(Z?) or card(B) ^ card(A). 

Let f: A -► B be a surjective map of a set A onto a set B. Then 

card(£) ^ card(A). 

This is easily seen, because for each yeB there exists an element xeA, 
denoted by xy, such that f(xy) = y. Then the association y h-> xy is an injective 
mapping of B into A, whence by definition, card(B) ^ card(A). 

Given two nonempty sets A, B we have card(A) = card(#) or card(Z?) = card(A). 

This is a simple application of Zorn’s lemma. We consider the family of pairs 
(S,f) where S is a subset of A and/: S —> B is an injective mapping. From the 
existence of a maximal element, the assertion follows at once. 

Theorem 3.1. (Schroeder-Bernstein). Let A, B be sets, and suppose that 
card(A) ^ card(B), and card(B) ^ card(A). Then 

card(A) = card(B). 

Proof. Let 

/: A -* B and g: B -► A 

be injections. We separate A into two disjoint sets Ax and A2. We let Ax consist 
of all x e A such that, when we lift back x by a succession of inverse maps, 

X, 0-1(x), f~l °g~l(x), g~l of~log-\x\... 

then at some stage we reach an element of A which cannot be lifted back to B by 
g. We let A 2 be the complement of A j, in other words, the set of x e A which can 
be lifted back indefinitely, or such that we get stopped in B (i.e. reach an element 
of B which has no inverse image in A by/). Then A = Ax u A2. We shall define 
a bijection h of A onto B. 

If x e A1? we define h(x) = /(x). 
If x £ A 2, we define h(x) = g~ *(x) = unique element yeB such that 

g(y) = x. 
Then trivially, h is injective. We must prove that h is surjective. Let be B. 

If, when we try to lift back b by a succession of maps 

••• /_1 ° 0_1 ° f~l° g~l ° f~lQ>) 
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we can lift back indefinitely, or if we get stopped in B, then g (b) belongs to A2 
and consequently b = h(g(b)), so b lies in the image of h. On the other hand, if we 
cannot lift back b indefinitely, and get stopped in A, then f~ 1(b) is defined 
(i.e., b is in the image of/), and/_1(fe) lies in At. In this case, b = H(f~1(b)) 
is also in the image of A, as was to be shown. 

Next we consider theorems concerning sums and products of cardinalities. 
We shall reduce the study of cardinalities of products of arbitrary sets to the 

denumerable case, using Zorn’s lemma. Note first that an infinite set A always 
contains a denumerable set. Indeed, since A is infinite, we can first select an 
element a1 £ A, and the complement of {a{} is infinite. Inductively, if we have 
selected distinct elements al9..., an in A, the complement of {au ..., an) is 
infinite, and we can select an+1 in this complement. In this way, we obtain a 
sequence of distinct elements of A, giving rise to a denumerable subset of A. 

Let A be a set. By a covering of A one means a set T of subsets of A such that 
the union 

IK 
Cer 

of all the elements of T is equal to A. We shall say that T is a disjoint covering if 
whenever C, C £ T, and C # C', then the intersection of C and C is empty. 

Lemma 3.2. Let A be an infinite set. Then there exists a disjoint covering of 
A by denumerable sets. 

Proof. Let S be the set whose elements are pairs (B, T) consisting of a 
subset B of A, and a disjoint covering of B by denumerable sets. Then S is not 
empty. Indeed, since A is infinite, A contains a denumerable set D, and the pair 
(D, {D}) is in S. If (B, T) and (£', P) are elements of 5, we define 

(£, D S (B\ D 

to mean that B a B\ and T c= P. Let T be a totally ordered non-empty subset 
of S. We may write T = {(£,, T£)}£e/ for some indexing set /. Let 

and T = (J r,. 
iel iel 

If C, Cf e T, C ^ C', then there exists some indices /, j such that C e T, and 
C e Vj. Since T is totally ordered, we have, say, 

(Bh rf) ^ (Bj, r,). 

Hence in fact, C, C are both elements of T,, and hence C, Cf have an empty 
intersection. On the other hand, if x £ B, then x £ B, for some i, and hence there 
is some C £ T, such that x £ C. Hence T is a disjoint covering of B. Since the 
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elements of each T, are denumerable subsets of A, it follows that V is a disjoint 
covering of B by denumerable sets, so (£, T) is in S, and is obviously an upper 
bound for T. Therefore S is inductively ordered. 

Let (Af, A) be a maximal element of S, by Zorn’s lemma. Suppose that 
Af A. If the complement of Af in A is infinite, then there exists a denumerable 
set D contained in this complement. Then 

(Af u D, A u {D}) 

is a bigger pair than (Af, A), contradicting the maximality of (Af, A). Hence the 
complement of Af in A is a finite set F. Let D0 be an element of A. Let 

Dx = D0 u F. 

Then is denumerable. Let Aj be the set consisting of all elements of A, except 
D0, together with D{. Then is a disjoint covering of A by denumerable sets, 
as was to be shown. 

Theorem 3.3. Let A be an infinite set, and let D be a denumerable set. Then 

card(/l x D) = card(/l). 

Proof. By the lemma, we can write 

A = U D‘ 
iel 

as a disjoint union of denumerable sets. Then 

A x D = (J (Pi x D). 
i e I 

For each i e /, there is a bijection of Z), x D on D, by Proposition 1.5. Since the 
sets D, x D are disjoint, we get in this way a bijection of A x Don A, as desired. 

Corollary 3.4. If F is a finite non-empty set, then 

card(/l x F) = card(/l). 

Proo/ We have 

card(^) ^ card(/l x P) ^ card(/l x D) = card(^). 

We can then use Theorem 3.1 to get what we want. 

Corollary 3.5. Let A, B be non-empty sets, >1 infinite, and suppose 

card(B) ^ card(^). 
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Then 

card(/l u B) = card(,4). 

Proof. We can write A u B = A u C for some subset C of B, such that C 
and ,4 are disjoint. (We let C be the set of all elements of B which are not elements 
of A.) Then card(C) ^ card(^l). We can then construct an injection of A u C 
into the product 

A x {1,2} 

of A with a set consisting of 2 elements. Namely, we have a bijection of A with 
A x {1} in the obvious way, and also an injection of C into A x {2}. Thus 

card(,4 uC)^ card(,4 x {1, 2}). 

We conclude the proof by Corollary 3.4 and Theorem 3.1. 

Theorem 3.6. Let A be an infinite set. Then 

card(/l x A) = card(/l). 

Proof. Let S be the set consisting of pairs (B, /) where B is an infinite subset 
of A, and /: B x B is a bijection of B onto B x B. Then S is not empty because if 
D is a denumerable subset of A, we can always find a bijection of D on D x D. 
If (B, /) and (£', /') are in 5, we define (B, /) ^ (£', /') to mean B cz B', and the 
restriction of /' to B is equal to /. Then S is partially ordered, and we contend 
that S is inductively ordered. Let T be a non-empty totally ordered subset of 5, 
and say T consists of the pairs (Bf, f) for i in some indexing set /. Let 

M - U Bi 
i e / 

We shall define a bijection g: M ^ M x M. If x e M, then x lies in some 
We define g(x) = f(x). This value /j(x) is independent of the choice of B, in 
which x lies. Indeed, if x e Bj for some j e /, then say 

(Bhf)^(BjJj). 

By assumption, Bt a Bj9 and ffx) — f(x\ so g is well defined. To show g is 
surjective, let x, yeM and (x, y)e M x M. Then x e B, for some i e / and 
y e Bj for some j e /. Again since T is totally ordered, say (B*, /•) ^ (B;, /}). Thus 
Bi cz Bj, and x, y e Bj. There exists an element b e Bj such that 

ffb) = (x, y) e Bj x Bj. 

By definition, g(b) = (x, y), so g is surjective. We leave the proof that g is 
injective to the reader to conclude the proof that g is a bijection. We then see 
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that (Af, g) is an upper bound for T in S, and therefore that S is inductively 
ordered. 

Let (Af, g) be a maximal element of S, and let C be the complement of M in A. 
If card(C) ^ card(M), then 

card(M) ^ card(4) = card(M u C) = card(M) 

by Corollary 3.5, and hence card(M) = card(/l) by Bernstein’s Theorem. Since 
card(M) = card(M x M), we are done with the proof in this case. If 

card(Af) ^ card(C), 

then there exists a subset M { of C having the same cardinality as M. We consider 

(M u Mj) x (M u Mj) 

= (M x M) u (Mi x M) u (M x MJ u (Mj x Afj). 

By the assumption on Af and Corollary 3.5, the last three sets in parentheses on 
the right of this equation have the same cardinality as Af. Thus 

(MuMi) x (MuMj) = (M x M)uM2 

where Af2 is disjoint from Af x M, and has the same cardinality as Af. We now 
define a bijection 

0!: Af u Mx - (Af u Mj) x (M u Mj). 

We let^^x) = 0(x) if xeM, and we let gr i onM1 be any bijection ofA^ on M2. 
In this way we have extended g to Af u Af l5 and the pair (Af u Mu gx) is in 5, 
contradicting the maximality of (Af, 0). The case card(M) ^ card(C) therefore 
cannot occur, and our theorem is proved (using Exercise 14 below). 

Corollary 3.7. If A is an infinite set, and = A x • • • x A is the product 
taken n times, t/ien 

card(/l(n)) = card(,4). 

Proo/. Induction. 

Corollary 3.8. If Ax, ... , An are non-empty sets with An infinite, ant/ 

card(/lI) ^ card04„) 

/or i = 1,..., n, then 

card^i x • • • x ,4„) = card(,4„). 
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Proof. We have 

card04„) ^ card^j x • • • x An) ^ card(>ln x • • • x An) 

and we use Corollary 3.7 and the Schroeder-Bernstein theorem to conclude the 
proof. 

Corollary 3.9. Let A be an infinite set, and let O be the set of finite subsets 
of A. Then 

card(O) = card(/l). 

Proof Let 0„ be the set of subsets of A having exactly n elements, for each 
integer n = 1,2,.... We first show that card(0„) ^ card(,4). If F is an element 
of 0„, we order the elements of F in any way, say 

F = x„}. 

and we associate with F the element (x1?..., x„) e A{n\ 

F h-^(x1,...,xn). 

If G is another subset of A having n elements, say G = {yu ..., y„}, and G / F, 
then 

(xx,...,xn) ± (yl9...9yH). 

Hence our map 

F ...,xB) 

of <J>„ into Ain) is injective. By Corollary 3.7, we conclude that 

card(0„) ^ card(,4). 

Now O is the disjoint union of the for n = 1,2,... and it is an exercise to 
show that card(O) ^ card(,4) (cf. Exercise 1). Since 

card(/l) ^ card(O), 

because in particular, card(Oj) = card(/l), we see that our corollary is proved. 

In the next theorem, we shall see that given a set, there always exists another 
set whose cardinality is bigger. 

Theorem 3.10. Let A be an infinite set, and T the set consisting of two 
elements {0, 1}. Let M be the set of all maps of A into T. Then 

card(^) ^ card(M) and card(^) ^ card(M). 
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Proof. For each x e A we let 

0,1} 

be the map such that fx(x) = 1 and fx(y) = 0 if y # x. Then x i—► fx is obviously 
an injection of A into M, so that card(/l) ^ card(M). Suppose that 

card(/l) = card(M). 

Let 

x^gx 

be a bijection between A and M. We define a map h: A -► {0, 1} by the rule 

/i(x) = 0 if g,(x) = 1, 

/t(x) = 1 if 0*(x) = 0. 

Then certainly h / gx for any x, and this contradicts the assumption that x ► gx 
is a bijection, thereby proving Theorem 3.10. 

Corollary 3.11. Let A be an infinite set, and let S be the set of all subsets of A. 
Then card(^l) rg card(S) and card(/l) / card(S). 

Proof We leave it as an exercise. [Hint: If B is a non-empty subset of A, 
use the characteristic function cpB such that 

cpB(x) =1 if xe B, 

cpB(x) = 0 if x$B. 

What can you say about the association B i—► <pB?] 

§4. WELL-ORDERING 

An ordered set A is said to be well-ordered if it is totally ordered, and if every 
non-empty subset B has a least element, that is, an element aeB such that 
a ^ x for all x e B. 

Example 1. The set of positive integers Z+ is well-ordered. Any finite set 
can be well-ordered, and a denumerable set D can be well-ordered: Any bijection 
of D with Z+ will give rise to a well-ordering of D. 

Example 2. Let S be a well-ordered set and let b be an element of some set, 
b$S. Let A = Su {b}. We define x ^ bforallxeS. Then A is totally ordered, 
and is in fact well-ordered. 
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Proof. Let B be a non-empty subset of A. If B consists of b alone, then b is a 
least element of B. Otherwise, B contains some element ae A. Then B n A is not 
empty, and hence has a least element, which is obviously also a least element for 
B. 

Theorem 4.1. Every non-empty set can be well-ordered. 

Proof. Let A be a non-empty set. Let S be the set of all pairs (X, co), where 
X is a subset of A and co is a well-ordering of X. Note that S is not empty because 
any single element of A gives rise to such a pair. If (X, co) and (X', co') are such 
pairs, we define (X, co) ^ (X', co') if X C X', if the ordering induced on X by 
(o' is equal to co, and if X is the initial segment of X'. It is obvious that this 
defines an ordering on 5, and we contend that S is inductively ordered. Let 
{(Xz-, coz)} be a totally ordered non-empty subset of S. Let X = U Xz-. If n, b e X, 
then a, b lie in some Xz, and we define a ^ b in X if a ^ b with respect to the 
ordering coz. This is independent of the choice of i (immediate from the assumption 
of total ordering). In fact, X is well ordered, for if Y is a non-empty subset of 
X, then there is some element y e Y which lies in some Xj. Let c be a least 
element of Xj fl Y. One verifies at once that c is a least element of Y. We can 
therefore apply Zorn’s lemma. Let (X, co) be a maximal element in S. If X A, 
then, using Example 2, we can define a well-ordering on a bigger subset than 
X, contradicting the maximality assumption. This proves Theorem 4.1. 

Note. Theorem 4.1 is an immediate and straightforward consequence of 
Zorn’s lemma. Usually in mathematics, Zorn’s lemma is the most efficient tool 
when dealing with infinite processes. 

EXERCISES 

1. Prove the statement made in the proof of Corollary 3.9. 

2. If A is an infinite set, and is the set of subsets of A having exactly n elements, show that 

card(^) ^ card^,,) 

for n ^ 1. 

3. Let Ai be infinite sets for i = 1,2,... and assume that 

card^) ^ card(/l) 

for some set A, and all i. Show that 

card ^ card(/l). 
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4. Let tfbea subfield of the complex numbers. Show that for each integer n ^ 1, the 
cardinality of the set of extensions of K of degree n in C is ^ card(A). 

5. Let K be an infinite field, and £ an algebraic extension of K. Show that 

card(£) = card(K). 

6. Finish the proof of the Corollary 3.11. 

7. If A, B are sets, denote by M(A, B) the set of all maps of A into B. If B, B' are sets with 
the same cardinality, show that M(A, B) and M(A, B') have the same cardinality. If 
A, /I' have the same cardinality, show that M(A, B) and M(A', B) have the same 
cardinality. 

8. Let A be an infinite set and abbreviate card(A) by a. If B is an infinite set, abbreviate 
card(B) by /3. Define a(3 to be card(A x B). Let B' be a set disjoint from A such that 
card(B) = card(B'). Define a + ft to be card(A u B'). Denote by BA the set of all maps 

of A into B, and denote card(BA) by (3°. Let C be an infinite set and abbreviate card(C) 
by y. Prove the following statements: 

(a) ol(P + y) = (xP + ay. 
(b) (xp = fa. 
(c) ocp+y = aV. 

9. Let K be an infinite field. Prove that there exists an algebraically closed field Ka 

containing K as a subfield, and algebraic over K. [Hint : Let Q be a set of cardinality 
strictly greater than the cardinality of K, and containing K. Consider the set S of all 
pairs (£, cp) where £ is a subset of fi such that K a £, and cp denotes a law of addition 

and multiplication on £ which makes £ into a field such that K is a subfield, and £ is 
algebraic over K. Define a partial ordering on S in an obvious way; show that S is 
inductively ordered, and that a maximal element is algebraic over K and algebraically 
closed. You will need Exercise 5 in the last step.] 

10. Let K be an infinite field. Show that the field of rational functions K(t) has the same 
cardinality as K. 

11. Let Jn be the set of integers {1,..., n}. Let Z+ be the set of positive integers. Show 
that the following sets have the same cardinality: 

(a) The set of all maps M(Z+, Jn). 

(b) The set of all maps M(Z+, J2)- 
(c) The set of all real numbers x such that 0 ^ x < 1. 
(d) The set of all real numbers. 

12. Show that M(Z+, Z+) has the same cardinality as the real numbers. 

13. Let S be a non-empty set. Let S' denote the product S with itself taken denumerably 
many times. Prove that (S')' has the same cardinality as S'. [Given a set S whose 
cardinality is strictly greater than the cardinality of R, I do not know whether it is 
always true that card S = card S'.] Added 1994: The grapevine communicates to me 
that according to Solovay, the answer is “no.” 

14. Let A, B be non-empty sets. Prove that 

card (A) i card(B) or card(B) ^ card(A). 

[Hint: consider the family of pairs (C, /) where C is a subset of A and /: C —> B is 
an injective map. By Zorn’s lemma there is a maximal element. Now finish the proof]. 
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Gelfond-Schneider, 868 

generate and generators 

for a group, 9, 23, 68 

for an ideal, 87 

for a module, 660 

for a ring, 90 

generating function or power series, 211 

generators and relations, 68 

generic 

forms, 390, 392 < 

hyperplane, 374 

pfaffian, 589 

point, 383, 408 

polynomial, 272, 345 

ghost components, 330 

GL2, 300, 317, 537, 715 

GL„, 19, 521, 543, 546, 547 

global sections, 792 

Goursat’s lemma, 75 

graded 

algebra, 172, 631 

module, 427, 751, 765 

morphism, 765, 766 

object, 814 

ring, 631 

Gram-Schmidt orthogonalization, 579, 599 

Grassman algebra, 733 

greatest common divisor, 111 

Grothendieck 

algebra and ring, 778-782 

group, 40, 139 

power series, 218 

spectral sequence, 819 

group, 7 

algebra, 104, 121 

automorphism, 10 

extensions, 827 

homomorphism, 10 

object, 65 

ring, 85, 104, 126 

Hall conjecture, 197 

harmonic polynomials, 354, 550 

Hasse zeta function, 255 

height, 167 

Herbrand quotient, 79 

Hermite-Lindemann, 867 

hermitian 

form, 533, 571, 579 

linear map, 534 

matrix, 535 

Hilbert 

Nullstellensatz, 380, 551 

polynomial, 433 

-Serre theorem, 431 

syzygy theorem, 862 

theorem on polynomial rings, 185 

theorem 90, 288 

-Zariski theorem, 409 

homogeneous, 410, 427, 631 

algebraic space, 385 

ideal, 385, 436, 733 

integral closure, 409 

point, 385 

polynomial, 103, 107, 190, 384, 436 

quadratic map, 575 

homology, 445, 767 

isomorphism, 767, 836 

homomorphisms in categories, 765 

homomorphism 

of complex, 445, 765 
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homomorphism (continued) 

of groups, 10 

of inverse systems, 163 

of modules, 119, 122 

of monoid, 10 

of representations, 125 

of rings, 88 

homotopies of complexes, 

787 
Horrock’s theorem, 847 

Howe’s proof, 258 

hyperbolic 

enlargement, 593 

pair, 586, 590 

plane, 586, 590 

space, 590 

hyperplane, 542 

section, 374, 410 

Ideal, 86 

class group, 88, 126 

idempotent, 443 

image, 11 

indecomposable, 440 

independent 

absolute values, 465 

characters, 283, 676 

elements of module, 151 

extensions, 362 

variables, 102, 103 

index, 12 

induced 

character, 686 

homomorphism, 16 

module, 688 

ordering, 879 

representation, 688 

inductively ordered, 880 

inertia 

form, 393 

group, 344 

infinite 

cyclic group, 8, 23 

cyclic module, 147 

extension, 223, 235 

Galois extensions, 313 

period, 8, 23 

set, 876 

under a place, 349 

infinitely 

large, 450 

small, 450 

injective 

map, ix 

module, 782, 830 

resolution, 788, 801, 819 

inner automorphism, 26 
inseparable 

degree, 249 

extension, 247 

integers mod n, 94 

integral, 334, 351, 352, 409 

closure, 336, 409 

domain, 91 

equation, 334 

extension, 340 

homomorphism, 337 

map, 357 

root test, 185 

valued polynomials, 216, 435 

integrally closed, 337 

integrality criterion, 352, 409 

invariant 

bases, 550 

submodule, 665 

invariant 

of linear map, 557, 560 

of matrix, 557 

of module, 153, 557, 563 

of submodule, 153, 154 

inverse, ix, 7 

inverse limit, 50, 51, 161, 163, 169 

of Galois groups, 313, 328 

inverse matrix, 518 

invertible, 84 

Irr(z,*,X), 224 

irreducible 

algebraic set, 382, 408 

character, 669, 696 

element, 111 

module, 554 

polynomial, 175, 183 

polynomial of a field element, 224 

irrelevant prime, 436 

isolated prime, 422 

isometry, 572 

isomorphism, 10, 54 

of representations, 56, 667 

isotropy group, 27 

Iss’sa-Hironaka theorem, 498 

Jacobson 

density, 647 

radical, 658 

Jordan-Holder, 22, 156 

Jordan canonical form, 559 
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A'-family, 771 

A'-theory, 139, 771-782 

kernel 

of bilinear map, 48, 144, 522, 572 

of homomorphism, 11, 133 

Kolchin’s theorem, 661 

Koszul complex, 853 

Krull 

theorem, 429 

topology, 329 
Krull-Remak-Schmidt, 441 

Kummer extensions 

abelian, 294-296, 332 

non-abelian, 297, 304, 326 

L-functions, 727 

lambda operation, 217 

lambda-ring, 218, 780 

Langlands conjectures, 316, 319 

lattice, 662 

law of composition, 3 

Lazard’s theorem, 639 

leading coefficient, 100 

least 

common multiple, 113 

element, 879 

upper bound, 879 

left 

coset, 12 

derived functor, 791 

exact, 790 

ideal, 86 

module, 117 

length 

of complex, 765 

of filtration, 433 

of module, 433, 644 

Lie algebra, 548 

lie above 

prime, 338 

valuation ring, 350 

lifting, 227 

linear 

combination, 129 

dependence, 130 

independence, 129, 150, 283 

map, 119 

polynomial, 100 

linearly disjoint, 360 

local 

degree, 477 

homomorphism, 444 

norm, 478 

parameter, 487 

ring, 110, 425, 441 

uniformization, 498 

localization, 110 

locally nilpotent, 418 

logarithm, 497, 597 

logarithmic derivative, 214, 375 

Mackey’s theorems, 694 
MacLane’s criterion, 364 
mapping cylinder, 838 

Maschke’s theorem, 666 

Mason-Stothers theorem, 194, 220 

matrix, 503 

of bilinear map, 528 

over non-commutative ring, 641 

maximal 

abelian extension, 269 

archimedean, 450 

element, 879 

ideal, 92 

metric linear map, 573 

minimal polynomial, 556, 572 

Mittag-Leffler condition, 164 

modular forms, 318, 319 

module, 117 

over principal ring, 146, 521 

modulo an ideal, 90 
Moebius inversion, 116, 254 
monic, 175 

monoid, 3 

algebra, 106, 126 

homomorphism, 10 

monomial, 101 

monomorphism, 120 

Morita’s theorem, 660 

morphism, 53 

of complex, 765 

of functor, 65, 625, 800 

or representation, 125 

multilinear map, 511, 521, 602 

multiple root, 178, 247 

multiplicative 

function, 116 

subgroup of a field, 177 

subset, 107 

multiplicity 

of character, 670 

of root, 178 

of simple module, 644 

Nakayama’s lemma, 424, 661 

natural transformation, 65 
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negative, 449 

definite, 578 

Newton approximation, 493 

nilpotent, 416, 559, 569 

Noether normalization, 357 

Noetherian, 186, 210, 408-409, 415, 427 

graded ring, 427 

module, 413 
non-commutative variables, 633 

non-degenerate, 522, 572 

non-singular, 523, 529 

norm, 284, 578, 637 

on a vector space, 469 

on a finitely generated abelian group, 166 

normal 

basis theorem, 312 

endomorphism, 597 

extension, 238 

subgroup, 14 

tower, 18 

normalizer, 14 

Northcott theorems, 864 

null 

sequence, 52 

space, 586 

nullstellensatz, 380, 383 

occur, 102, 176 

odd permutation, 31 

one-dimensional 

character, 671 

representation, 671 

open complex, 761 

open set, 406 

operate 

on a module, 664 

on an object, 55 

on a set, 25, 76 

orbit, 28 

decomposition formula, 29 

order 

of a group, 12 

at p, 113, 488 

at a valuation, 488 

of a zero, 488 

ordering, 449, 480, 878 

ordinary tensor product, 630 

orthogonal 

basis, 572-585 

element, 48, 144, 572 

group, 535 

map, 535 
sum, 572 

orthogonality relations, 677 

orthogonalization, 579 

orthonormal, 577 

over a map, 229 

p-adic 
integers, 51, 162, 169, 488 

numbers, 488 

p-class, 706 

p-conjugate, 706 

p-divisible, 50 

p-elementary, 705 

p-group, 33 

p-regular, 705 

p-singular, 705 

p-subgroup, 33 

pairing, 48 
parallelogram law, 598 

partial fractions, 187 

partition, 79 

function, 211 

perfect, 252 

period, 23, 148 
periodicity of Clifford algebra, 758 

permutation, 8, 30 

perpendicular, 48, 144, 522 

Pfaffian, 589 
Pic or Picard group, 88, 126 

place, 349, 482 

Poincarg series, 211, 431 

point 

of algebraic set, 383 

in a field, 408 

polar decomposition, 584 

polarization identity, 580 

pole, 488 

polynomial, 97 

algebra, 97, 633 

function, 98 

invariants, 557 

irreducible, 175, 183 

Noetherian, 185 

Pontijagin dual, 145 

positive, 449 

definite, 578, 583 

power map, 10 

power series, 205 

factorial, 209 
Noetherian, 210 

primary 

decomposition, 422 
ideal, 421 

module, 421 
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prime 

element, 113 

field, 90 

ideal, 92 

ring, 90 

primitive 

element, 243, 244 

group, 80 

operation, 79 

polynomials, 181, 182 

power series, 209 

root, 301 

root of unity, 277, 278 

principal 

homomorphism, 418 

ideal, 86, 88 

module, 554, 556 

representation, 554 

ring, 86, 146, 521 

product 

in category, 58 

of groups, 9 

of modules, 127 

of rings, 91 

profinite, 51 

projection, 388 

projective 

module, 137, 168, 848, 850 

resolution, 763 

space, 386 

proper, ix 

congruence, 492 

pull-back, 61 

purely inseparable 

element, 249 

extension, 250 

push-out, 62, 81 

quadratic 

extension, 269 

form, 575 

map, 574 

symbol, 281 

quadratically closed, 462 

quaternions, 9, 545, 723, 758 
Quillen-Suslin theorem, 848 

quotient 

field, 110 

ring, 107 

radical 

of an ideal, 388, 417 

of a ring, 661 

of an integer, 195 

Ramanujan power series, 212 

ramification index, 483 

rank, 42, 46 

of a matrix, 506 

rational 

conjugacy class, 276, 326, 725 

element, 714 

function, 110 

real, 451 

closed, 451 

closure, 452 

place, 462 

zero, 457 

reduced 

decomposition, 422, 443 

polynomial, 177 

reduction 

criterion, 185 

map, 99, 102 

modulo an ideal, 446, 623 

mod p, 623 

refinement of a tower, 18 

regular 

character, 675, 699 

extension, 366 

module, 699, 829 
representation, 675, 829 

sequence, 850 

relations, 68 

relative invariant, 171, 327 

relatively prime, 113 

representation, 55, 124, 126 

functor, 64 

of a group, 55, 317, 664 

of a ring, 553 

space, 667 

residue class, 91 

degree, 422, 483 

ring, 91 

resolution, 763, 798 

resultant, 200, 398, 410 

system, 403 

variety, 393 

Ribet, 319 

Rieffel’s theorem, 655 

Riemann surface, 275 

Riemann-Roch, 212, 218, 220, 258 

right 

coset, 12, 75 

derived functor, 791 

exact functor, 791, 798 
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right (continued) 
ideal, 66 

module, 117 

rigid, 275 

rigidity theorem, 276 

ring, 83 

homomorphism, 88 

of fractions, 107 

root, 175 

of unity, 177, 276 

row 

operation, 154 
'rank, 506 

vector, 503 

1S3 and S^, 722 

scalar product, 571 
Schanuel 

conjecture, 873 

lemma, 841 

Schreier’s theorem, 22 

Schroeder-Bemstein theorem, 885 
Schur 

Galois groups, 274 

lemma, 643 

Schwarz inequality, 578, 580 

section, 64, 792 

self-adjoint, 581 

semidirect product, 15, 76 

semilinear, 532 

seminorm, 166, 475 

semipositive, 583, 597 

semisimple 

endomorphism, 569, 661 

module, 554, 647, 659 

representation, 554, 712 

ring, 651 

separable 

closure, 243 

degree, 239 

element, 240 

extension, 241, 658 

polynomial, 241 

separably generated, 363 

separating transcendence basis, 363 
sequence, 875 

Serre’s conjecture, 848 

theorem, 844 

sesquilinear form, 532 

Shafarevich conjecture, 314 

sheaf, 792 

sign of a permutation, 31, 77 

simple 

character, 669 

group, 20 

module, 156, 554, 643 

ring, 653, 655 

root, 247 

simplicity of SLn, 539, 542 

size of a matrix, 503 

skew symmetric, 526 

SL2, 69, 537, 539, 546 

generators and relations, 69, 70, 537 

SLn, 521, 539, 541, 547 

snake lemma, 158, 169, 614-621 

Snyder’s proof, 220 

solvable 

extension, 291, 314 

group, 18, 293, 314 

by radicals, 292 

spec of a ring, 405, 410 

special linear group, 14, 52, 59, 69, 541, 546, 

547 

specializing, 101 

specialization, 384 

spectral 

sequence, 815-825 

theorem, 581, 583, 585 

split exact sequence, 132 

splitting field, 235 

square 

matrix, 504 

group, 9, 77, 270 

root of operator, 584 

stably free, 840 

dimension, 840 

stably isomorphic, 841 

stalk, 161 

standard 

complex, 764 

alternating matrix, 587 

Steinberg theorem, 726 

Stewart-Tijdeman, 196 
strictly inductively ordered, 881 

stripping functor, 62 

Sturm’s theorem, 454 
subgroup, 9 

submodule, 118 

submonoid, 6 

subobject, 134 

subring, 84 

subsequence, 876 

subspace, 141 

substituting, 98, 101 
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super 

algebra, 632 

commutator, 757 

product, 631, 751 

tensor product, 632, 751 

supersolvable, 702 

support, 419 

suijective, ix 

Sylow group, 33 

Sylvester’s theorem, 577 

symmetric 

algebra, 635 

endomorphism, 525, 585, 597 

form, 525, 571 

group, 29, 269, 272-274 

matrix, 530 

multilinear map, 635 

polynomial, 190, 217 

product, 635, 781, 861 

symplectic, 535 

basis, 599 

syzygy theorem, 862 

Szpiro conjecture, 198 

Taniyama-Shimura conjecture, 316, 319 

Tate group, 50, 163, 169 

limit, 598 

Taylor series, 213 

tensor, 581, 628 

algebra, 633 

exact, 612 

product, 602, 725 

product of complexes, 832, 851 

product representation, 725, 799 

Tits construction of free group, 81 

tor (for torsion), 42, 47, 149 
Tor, 622, 791 

dimension, 622 

Tomheim proof, 471 

torsion 

free, 45, 147 

module, 147, 149 

total 

complex, 815 

degree, 103 

totally ordered, 879 

tower 

of fields, 225 

of groups, 18 

trace 

of element, 284, 666 

of linear map, 511, 570 

of matrix, 505, 511 

transcendence 
basis, 356 
degree, 355 
of e, 867 

transcendental, 99 

transitive, 28, 79 

translation, 26, 227 

transpose 

of bifunctor, 808 

of linear map, 524 

of matrix, 505 

transposition, 13 

transvection, 542 

trigonometric degree, 115 

polynomial, 114, 115 

trivial 

character, 282 

operation, 664 

representation, 664 

subgroup, 9 

valuation, 465 

two-sided ideal, 86, 655 

type 

of abelian group, 43 

of module, 149 

unimodular, 846 

extension property, 849 

unipotent, 714 

unique factorization, 111, 116 

uniquely divisible, 575 

unit, 84 

element, 3, 83 

ideal, 87 

unitary, 535, 583 

universal, 37 

delta-functor, 800 

derivation, 746 

universally 

attracting, 57 

repelling, 57 

upper bound, 879 

upper diagonal group, 19 

valuation, 465 

valuation ring, 348, 481 

determined by ordering, 450, 452 

value group, 480 

Vandermonde determinant, 257-259, 516 

vanishing ideal, 38 

variable, 99, 104 

variation of signs, 454 
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variety, 382 

vector space, 118, 139 

volume, 735 

Warning’s theorem, 214 

Wedderbum’s theorem, 649 

Weierstrass 

degree, 208 

polynomial, 208 

preparation theorem, 208 

weight, 191 

well-behaved, 410, 478 

well-defined, x 

well-ordering, 891 

Weyl group, 570 

Witt group, 594, 599 
theorem, 591 

vector, 330, 492 

Witt-Grothendieck group, 595 

Zariski-Matsusaka theorem, 372 

Zariski topology, 407 

Zassenhaus lemma, 20 

zero 

divisor, 91 

element, 3 

of ideal, 390, 405 

of polynomial, 102, 175, 379, 390 

zeta function, 211, 212, 255 

Zorn’s lemma, 880, 884 
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